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Abstract. Equilibrium constants for Hydrogen and Helium isotopes as a function of

density and temperature are measured in the framework of the study made by Qin et

al. [1]. We review and comment on all stages of the analysis and conclude that our

measurements are not inconsistent with Qin et al. results. Improvements are being

made to the initial analysis and we raise the issue of the binding energies which has to

be clarified.
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1. Introduction

In a recent article, Qin et al. [1] have investigated clustering in low density

nuclear matter. Equilibrium constants for 2H, 3H, 3He and 4He have been measured

following Guldberg and Waage law [2] by selecting experimentally a sub-set of events

corresponding to a gas of neutrons and protons in equilibrium with clusters.

Besides the fact that these results are important for the knowledge of the density

dependence of the nuclear equation of state [3], the measurements are related to

density and temperature values that are of major importance for astrophysics since

nuclear equation of state plays a fundamental role in the understanding of core-collapse

supernovae, mergers of compact stars and cooling proto-neutron stars for example.

In particular the chemical composition of proto-neutron stars influences the neutrino

opacities and then their cooling [4] [5].

This result therefore deserves to be confirmed or disproved using another experiment

and equipment.

This paper presents the analysis framework of Qin et al. [1] adapted to our data

concerning H and He isotopes. Then we raise the problem of cluster binding energy

values which are assumed to be the vacuum values for the determination of the density

which seems inconsistent to us.

In our experiment the use of four entrance channel systems with different neutron

to proton ratios (N/Z) at the same bombarding energy, 136,124Xe+124,112Sn, will allow to

test different assumptions made during the analysis.

2. Experimental details

The 4π multi-detector INDRA [6] was used to study four reactions with beams of
136Xe and 124Xe, accelerated by the GANIL cyclotrons to 32 MeV/nucleon, and thin

(530 µg/cm2) targets of 124Sn and 112Sn. INDRA is a charged product multidetector,

composed of 336 detection cells arranged in 17 rings centered on the beam axis and

covering 90% of the solid angle. The first ring (2o to 3o) is made of 12 telescopes

composed of 300 µm silicon wafer (Si) and CsI(Tl) scintillator (14 cm thick). Rings

2 to 9 (3o to 45o) are composed of 12 or 24 three-member detection telescopes : a 5

cm thick ionization chamber (IC); a 300 µm or 150 µm silicon wafer; and a CsI(Tl)

scintillator (14 to 10 cm thick) coupled to a photomultiplier tube. Rings 10 to 17 (45o

to 176o) are composed of 24, 16 or 8 two-member telescopes: an ionization chamber and

a CsI(Tl) scintillator of 8, 6 or 5 cm thickness. INDRA can identify in charge fragments



Equilibrium constants of Hydrogen and Helium isotopes at low nuclear densities. 3

from Hydrogen to Uranium and in mass light fragments with low thresholds. Recorded

event functionality was activated under a triggering factor based on a minimum number

of fired telescopes (Mmin
trigger) over the detector acceptance (90% of 4π). During the

experiment minimum bias (Mmin
trigger=1) and exclusive (Mmin

trigger=4) data were recorded.

This study is limited to the forward part of the centre of mass (hereinafter called

c.m.) for which excellent mass and charge identification performances are achieved for

Hydrogen and Helium isotopes (hereinafter called lcp). Since only most violent collisions

will be used in the following, only exclusive data are analysed.

3. Event and sub-event selections

In this paragraph, we present the event (central collisions) and the sub-event (c.m.

angular cut) selections used in order to study a gas of neutrons and protons in

equilibrium with clusters.

In a previous publication [7] concerning the same experiment, we have demonstrated

that chemical equilibrium is achieved in central collisions. Therefore the most violent

events, as in [1], are employed in order to look for sub-events that correspond to a

gas of neutrons and protons in equilibrium with clusters. Events with reduced impact

parameters lower than 0.15 have been selected, using the impact parameter evaluator

described in [7] (forward c.m. lcp total transverse energy greater than 200 MeV). As

will be explained later, the gas of particles is assumed to have an isotropic momentum

distribution. Since very central collisions have the advantage of minimizing the sideflow

[8], the centrality selection is thus appropriate.

In [7] we have also indicated for the studied systems the presence of two dominating

lcp sources when analysing the forward part of the c.m. as a function of impact

parameter : intermediate velocity (IV) and projectile-like (PL) sources. The PL source

velocity is evolving with centrality while the IV source is located at the c.m. velocity

The gas of neutrons and protons in equilibrium with clusters has to be looked for in

the IV source [1] since the other source is mostly producing lcp by secondary decays. A

simple and efficient way to minimize contribution from PL source is to apply a 600-900

c.m. polar angular selection [7].

In the following the data concerning lcp are selected via: (i) central events, (ii)

emission almost perpendicular to the beam direction in the c.m.(600-900 polar angular

range).

4. Expanding gas source and surface velocity

The framework of the analysis assumes that the characteristics of the selected lcp

correspond to the outcome of a whole chain of evolution of the IV gas source. Clusters

are formed during the space-time evolution of the expanding gas of nucleons. It is

assumed that, for each time step, neutrons and protons are in equilibrium with clusters.

Equilibrium means that although each collision is a continuously evolving dynamical
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Figure 1. Multiplicity of Z=1 (a) and Z=2 (b) isotopes as a function of their centre

of mass energy for the four studied systems (600-900 polar angular range).

process with no notion of temporal equilibrium, after a certain time in each collision

the composition of the gas of nucleons and light clusters is frozen and corresponds

to that which is detected, this is called (chemical) freeze-out. Because the measured

properties [7] of the set of (sub-)events such as species multiplicity can be reproduced

by assuming an unbiased population of the phase space available for the ensemble of

freeze-out configurations produced by the collisions, then we may say that the observed

(sub-)events are compatible with statistical equilibrium [9] [10] [11].

The key observable is the velocity (vsurf) of the particles in the IV frame prior to

acceleration by the Coulomb field of the remaining charged material [12]. Calculations

[13] indicate that the surface velocity decreases with increasing average emission time

and therefore vsurf values may be used to select different time steps of the gas part

evolution, i.e. of the clusterisation process, fastest particles corresponding to earliest

emission times.

A fitting procedure of the observed energy spectra is performed in [1] in order to

disentangle the different lcp productions and to deduce the Coulomb repulsion on lcp

caused by the remaining charged matter. We have adopted another method since the

barrier parameters are generaly poorly defined in a multi-fit procedure [14].

The characteristics of selected H and He elements are shown in figure 1 through

c.m. energy spectra for the four studied systems. The spectra are double differential

multiplicities. They are c.m. energy spectra for particles detected in the 600-900 c.m.

polar angular range normalized to the number of central events for each studied system,

normalized to the c.m. energy bin size and normalized to the 600-900 c.m. solid angle.

This is then the number of 1H, 2H, 3H, 3He, 4He, 6He per event, per MeV and per

steradian. The chemistry of lcp production is system dependent since neutron-rich/poor

isotope productions are following the neutron-richness/poorness of the entrance channel

systems.

In table 1 we present a calculation using the spectra of figure 1. Coulomb energy
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value per unit charge (EC) is varied and we calculate the particle emission Coulomb

boost caused by the remaining charge after complete emission of the particles of the

expanding gas. The average charge of the expanding gas in the 600-900 c.m. angular

range is the charge integrated over the multiplicity spectra for Ec.m. greater than Z times

EC for each particle and then summed together. This average charge approximated to

the nearest integer is presented in the second column. The numbers quoted in the third

column are the remaining charge over 4π after the complete emission of the particles of

the expanding gas assuming an isotropic emission in the c.m.; this charge is responsible

for the Coulomb boost. Since we are considering an expanding gas of nucleons and

clusters at very low densities therefore the boost from the gas itself is negligible and

we only consider the boost from the remaining part which is considered to be at much

higher density. The amount of the boost per atomic charge (fourth column) is then

calculated by using standard Coulomb barrier formula for surface emission of H or He

from the remaining charge. Comparing the values between first and last columns which

should be identical, only the third hypothesis is consistent (EC=10 MeV). The deduced

Coulomb boost may be considered as an average value since, event by event, the size of

the remaining charge varies.

Table 1. ΣZlcp: sum of atomic number of particles having c.m. energy greater than Z

times EC (hypothesis) in the c.m. considered angular range. 104-4ΣZlcp: 4π remaining

atomic number in relation to the total system charge minus total atomic number of

the gas. Last column: calculated Coulomb barrier per Z between lcp and 104-4ΣZlcp.

EC ΣZlcp 104-4ΣZlcp EC

hypothesis [60o,90o] 4π calculated

0 MeV 8 72 10 MeV

5 MeV 7 76 10 MeV

10 MeV 6 80 11 MeV

15 MeV 5 84 12 MeV

20 MeV 3 92 13 MeV

The key observable (vsurf) of the gas part is then calculated taking into account

a Coulomb Barrier of 10 MeV per atomic number with an error estimated to be ± 2

MeV.

The sub-event selection is thus: (i) emission perpendicular to the beam direction

in the c.m.(600-900 polar angular range), (ii) particles having c.m. energy greater than

Z times 10 MeV. The corresponding surface velocity spectra are presented in figure 2,

vsurf being related to (Ec.m.-ZEC)/A for a cluster (A, Z), with EC=10 MeV.

5. Volume in momentum space

The final-state coalescence model [15] proposed to explain deuteron formation was

phenomenologically extended to heavier fragments [16]. It is assumed that nucleons

coalesce when located together inside a volume in momentum space of size 4πP 3
0 /3,
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Figure 2. Multiplicity of Z=1 (a) and Z=2 (b) isotopes as a function of their

reconstructed surface velocity for the four studied systems (600-900 polar angular

range).

with P0 a parameter. To take into account for the Coulomb field generated by the

remaining charge we use the Coulomb corrected coalescence model formalism of [12] to

determine coalescence parameter P0 for each isotope as in [1].

In the c.m. frame the relationship between the observed cluster and proton

differential cross sections is

d2M(A,Z)

dEc.m.dΩc.m.
= RN

np

A−1

N !Z!

(

4πP 3
0

3[2m3(Eproton
c.m. −EC)]1/2

)A−1(
d2M(1, 1)

dEproton
c.m. dΩc.m.

)A

(1)

where the cluster differential multiplicity, M(A,Z), having a Coulomb corrected energy

Ec.m. − ZEC is related to the proton differential multiplicity, M(1,1), at the same

Coulomb corrected energy per nucleon, Eproton
c.m. -EC . EC is the Coulomb repulsion

per unit charge, m is the nucleon mass, (Ec.m. − ZEC)/A = Eproton
c.m. − EC thus

Ec.m. = AEproton
c.m. − NEC for a nucleus composed of Z protons and N=A-Z neutrons

and Rnp is the neutron to proton ratio. The neutron spectra is assumed to be identical

to the proton spectra once the Coulomb correction has been applied.

Contrary to the original coalescence analysis [17] which determined an average value

of P0, here the goal is to characterize the evolution of the volume of the gas as a function

of time, therefore of vsurf or (Ec.m.-ZEC)/A.

Neutrons are not measured in our experiment but hypotheses concerning the

neutron to proton ratio may be tested by comparing results given by the four entrance

channels (136,124Xe+124,112Sn) since P0 should not depend on them. In a first step we

used equation 1 regardless of the neutron to proton ratio (Rnp=1). The parameter P0

as a function of (Ec.m.-ZEC)/A is presented in figure 3(a). We see that P0 depends on

cluster size and we observe large differences for the four different entrance channels.

Following the coalescence model [18] and as in [1], the unmeasured neutron

multiplicity at a given time, determined by vsurf or (Ec.m.-ZEC)/A, is given by the
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Coulomb acceleration. Results for the four systems and the five isotopes are shown.

Rnp=1 (a). Rnp from free neutrons and protons (b).

proton multiplicity multiplied by 3H/3He multiplicity ratio [19] for that time. The

question asked here is which proton to neutron ratio should be applied for each time

step: the global ratio taking into account all species or the ratio calculated with only free

nucleons. It turns out that the only ratio which preserves entrance channel independence

is the ratio calculated with free neutrons and protons as shown in figure 3(b). In the

coalescence model the proton cross section used is the original production, before any

composites are formed. The observed proton cross section, figure 1, is the original one

minus the protons bound in the clusters. This is also true for the neutron to proton ratio.

The observed proton cross section is not the original one and figure 3 demonstrates the

validity of using observed nucleon spectra. There is therefore a contradiction. It may

be that by using the original nucleon spectra the appropriate neutron to proton ratio

is also the original ratio, but this is impossible to prove experimentally since original

proton energy spectra cannot be reconstructed.

The chemical equilibrium model [20] [21] also predicts a power law for the

momentum space density of a composite nucleus relative to protons but is not affected

by the previous arguments, since the law of mass action involves the free proton and

neutron concentrations already reduced by composite formation.

The results presented in this paragraph thus confirm the validity of the thermal

model. A volume, V0, which represents the spatial region (assumed spherical) over which

chemical equilibrium is established will be calculated for each isotope using differential

cross section power law[21] [22]:

d3M(A,Z)

d3pA
= RN

np

(2s+ 1) eB(A,Z)/T

2A

(

h3

V0

)A−1(
d3M(1, 1)

d3p

)A

(2)

where h is Planck’s constant, s the spin of the cluster (Z, A, N=A-Z), B(A,Z) its ground

state binding energy, T the temperature of the statistical ensemble describing the gas,
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p the free proton momentum and pA = Ap the cluster momentum, both in the source

frame before Coulomb acceleration (p = mvsurf).

The volume V0 for each isotope (A,Z) is related to the volume in momentum space

4πP 3
0 /3 (P0 of figure 3(b)) by the relationship

V0 =
3h3

4πP 3
o

[

(2s+ 1)

(

Z!N !A3

2A

)

eB(A,Z)/T

]1/(A−1)

(3)

6. Temperature and surface velocity confidence interval

In this paragraph we will study the temperature evolution of the expanding gas source

as a function of vsurf .

The determination of the volume with equation 2 requires the measurement of the

temperature. Following the statistical approach of [23], as in [1], the temperature for a

given vsurf value is deduced from the multiplicities, M(A,Z), of 2H, 3H, 3He, 4He at the

same vsurf value with B(A,Z) the ground state binding energy of isotope (A,Z)

T =
B(4, 2) +B(2, 1)−B(3, 2)−B(3, 1)

ln(
√

9/8(1.59 Rvsurf ))
MeV with Rvsurf =

M(2, 1)M(4, 2)

M(3, 1)M(3, 2)
(4)

This relationship, valid for particles emitted from a single source at temperature T and

having a Maxwellian spectrum, is applied for each bin of vsurf .

The deduced temperature values as a function of vsurf are shown in figure 4.

Temperatures are independent of the entrance channel, 136,124Xe+124,112Sn, as expected

since the bombarding energy is identical. This result was not self-evident because the

multiplicities, especially 3H and 3He, are very system dependent (see figure 2). For Vsurf

below 6.5 cm/ns, 2H and 4He productions are entrance channel system independent,

the spectra are the same for the four studied systems. It is not the case for 3H and
3He productions; as expected 3H production is growing with neutron richness of the

system while 3He is decreasing. The temperature depends on 4He, 2H, 3He and 3H

productions. Since only 3H and 3He productions depend on the entrance channel N/Z,

therefore in order for the temperature to be identical for the four studied systems 3H and
3He multiplicities must counterbalance each other almost exactly. This result further

strengthens the validity of the equilibrium model for describing the data. For higher

vsurf values the error bars prevent us from drawing definite conclusions.

The evolution of T as a function of vsurf is similar to that presented in Figure 3

of [13] and figure 1 in [24]. In our case the temperature is constant for vsurf below 3

cm/ns, then it increases to reach a maximum around 9 MeV for vsurf about 6.5 cm/ns.

Then it seems to decrease with increasing vsurf . Figure 4 indicates that the scenario of

the IV source which cools with time is valid for vsurf greater than 3 cm/ns and lower
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Figure 4. Temperature versus surface velocity for the four systems.

than 6.5 cm/ns. The high limit is adopted for lack of cluster population while below 3

cm/ns several lcp production mechanisms are probably present.

In view of the results mentioned in this paragraph, the surface velocity interval

between 3 and 6.5 cm/ns represents the confidence interval for the subsequent analysis.

7. Volume from thermal model

In this paragraph we will study the volume evolution of the expanding gas source as a

function of vsurf using equation 2 and 4.
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Figure 5. Volume from thermal model as a function of surface velocity for the five

isotopes (124Xe+124Sn). The lines represent two fits of the average volumes of A≥3.

The full line is a fit of data using the ratio of free neutrons to free protons with equation

5 whereas the dashed line is a fit of data without the temperature dependence of free

neutrons to free protons ratio.

The results are presented in figure 5. The gas source volumes are increasing

with decreasing vsurf . This observation is compatible with the picture of an evolving
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expanding source with time. There exists a dependence on the composite particle which

has been interpreted in terms of the finite size of the composite [22].

In the coalescence model the free neutron to free proton ratio is given by the 3H/3He

multiplicity ratio. In the equilibrium model [23] this ratio (Rnp of equation 2) is given

by

Rnp =
M(3, 1)

M(3, 2)
e((B(3,2)−B(3,1))/T ) (5)

where T is the temperature and B(A,Z) the ground state binding energy of isotope

(A,Z).

The volume evolution of the expanding gas source as a function of vsurf is calculated

using equation 5 for Rnp. Without this temperature dependence contained in the

exponential term of equation 5 the deduced volumes of 3H and 3He are different.

The validity of introducing this temperature dependence is confirmed by Relativistic

Mean-Field approach calculations [5] where deviations of about 20% concerning the free

neutron proton ratio can occur for temperatures around 4 MeV if the exponential term

of equation 5 is not introduced [25]. This dependence on temperature is a difference as

compared to [1].

The volumes extracted for deuterons are larger as in [1]. This could be explained

by the fragility of the deuteron and its survival probability once formed [1]. Therefore,

as in [1], the average volumes over which chemical equilibrium is established are derived

from A≥3 clusters. The average volumes are represented by the full line in figure 5.

The full line is the result of a fitting procedure of the average volumes using a Landau

function for each studied system. The dashed line is the Landau fit of average volumes

without the temperature dependence of Rnp. We see that the temperature dependence

of equation 5 is small for high vsurf and becomes important for low vsurf where the

temperature is the lowest.

8. Density

In this paragraph we will study the density evolution of the expanding gas source as a

function of vsurf .

The average volumes of figure 5 are free volumes since they were calculated in a

framework of point-like clusters. In order to deduce the total average volumes it is

necessary to add the excluded volumes represented by the volumes occupied by the

clusters themselves. The density is related to total average volume.

The evolving source volume for each bin of vsurf , for a given time t, is

Vt = V0 +
4

3
πr30At (6)

where Vt is the total volume of the gas at time t, V0 is the volume deduced from the
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thermal model at time t, At is the total mass of the gas at time t and r0 is the average

particle radius (1.3 fm). The density at time t is ρt = At/Vt.
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Figure 6. Fits of Ecm isotope spectra: 1H (a), 2H (b), 3H (c), 3He (d), 4He (e), 6He

(f). Full lines are the fits performed independently for each isotope, the dashed lines

correspond to vsurf=3 cm/ns. 124Xe+124Sn system.

The knowledge of At at time t is related to the knowledge of Asource, the mass of

the gas source at the beginning of the expansion process, through At = Asource − Aexp,

where Aexp is the mass expelled before time t. In other words, for a given vsurf , At is

the total mass integrated from 0 to vsurf .

It has been shown that the vsurf interval between 0 and 3 cm/ns does not match

with the picture of a cooling while expanding gas (confidence interval). Therefore we

cannot rely directly on the data in this velocity range to calculate At. Asource has thus

been evaluated using a fitting procedure of Ecm spectra of figure 1.

The spectra were fitted independently by an expanding Boltzmann distribution [26]

d2M(A,Z)

dEc.m.dΩc.m.
= C e−(Ec.m.−ZEC+EReff )/Teff sinh(2

√

(Ec.m. − ZEC)EReff/Teff) (7)

where EC is the Coulomb repulsion per unit charge, EReff is related to the radial
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expansion energy of the source, Teff is the temperature and C a normalization factor.

The fits are performed for Ecm values corresponding to vsurf greater than 3 cm/ns

and EC is set at 10 MeV, the other three parameters being left free. EReff and Teff

are effective parameters since they represent an integration over the whole expansion

process.
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Figure 7. Density versus surface velocity for the four studied systems.

The results of the fitting procedure are given in figure 6 for the 124Xe+124Sn system.

We see that the spectra are quite well reproduced for the vsurf confidence interval whose

lower limit is represented by the dashed line. It should be mentioned that the proton

spectrum is not so well reproduced between vsurf=3 and 4 cm/ns, which would tend to

decrease the confidence interval. However, the latter has not been modified. Results for

the three other studied systems are similar.

The gas source size, integrated over 4π, is calculated using fit integration. vsurf > 0

neutron multiplicity is deduced from equation 5 and as far as their contribution to the

source is concerned, they are assigned the percentage of protons. The gas source size

(Asource) is 51 ± 2.2, 53 ± 1.6, 49 ± 1.6 and 51 ± 1.5 for 124Xe+124Sn, 136Xe+124Sn,
124Xe+112Sn, 136Xe+112Sn respectively. With regard to the confidence interval defined

above (vsurf values between 3 cm/ns and 6.5 cm/ns), as the mass of the evolving source

(At) for a given vsurf is taken as the total integrated mass between 0 and vsurf , it

appears that the integrated mass between 6.5 cm/ns and infinity will have no influence

on the following results.

The density values (ρt = At/Vt) are presented in figure 7 as a function of surface

velocity in the confidence interval. Density is increasing with surface velocity, i.e. is

decreasing with time. As in [1] very low values are achieved.

Concerning the 4π isotropic distribution of the gas source, we should note that

this requirement could be restricted to the 60o-90o angular range (π) without changing

density values, the source size being divided by 4 as well as the volume.
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9. Gas source characteristics

In this paragraph we present the characteristics of the gas source during its evolution.

The gas source characteristics for each time step are given by its temperature, its

composition and its density. In fact, the value of the temperature and the composition of
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Figure 8. Gas source characteristics. (a): temperature versus density for the four

studied systems, squares are results from [1] with uncertainties represented by the lines.

(b): proton fraction as a function of density for the four studied systems; for clarity

errors on density are not drawn. Density errors are indicated in figures 7 and 8(a).

the evolving source for each time step is given by the temperature and the composition

calculated with lcp multiplicities contained in each bin of vsurf . Only the calculation of

density requires the knowledge of the total mass of the source for each time step (At).

The temperature is calculated with equation 4 and the neutron multiplicity from the

proton multiplicity through equation 5.

The density dependence of the temperature is given in figure 8(a) for the four

studied systems. The temperature, ranging from 5 to 9 MeV, does not depend on

the entrance channel. The figure presents the thermodynamical path of the cooling

of the source. The INDRA data are confronted to results from [1] obtained at higher

bombarding energy (47A MeV). This difference in beam energy may explain the gap

between the two thermodynamical paths. For very low densities, the temperatures are

closer. We may also attribute these differences to different collision dynamical paths and

therefore different characteristics for the expanding gas present at mid-rapidity since in

our case the entrance channel system is quasi-symmetric (Xe+Sn) while in the case of

Qin et al. it is asymmetric (Ar+Sn and Zn+Sn).

The composition of the evolving source is given by the proton fraction, Z/A, whose

density dependence is shown in figure 8(b). The proton fraction values depend on the

projectile plus target proton fractions, we note that they are identical for 136Xe+112Sn

and 124Xe+124Sn systems in agreement with chemical equilibrium hypothesis. The

entrance channel proton fraction values are reached for low densities while there appears

to be a trend towards larger proton fraction values as the density increases. This trend
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is larger for proton rich entrance channel systems. This density dependence is essentially

due to the 4He contribution to the global proton fraction. The 4He contribution evolves

from 0.1 to 0.5 as the density decreases for the four studied systems, 4He clusters being

more abundant for low densities. Therefore the global proton fraction is decreasing with

decreasing density.

10. Equilibrium constants

In this paragraph we will compare the INDRA equilibrium constants to the data of Qin

et al. [1].

Equilibrium constant for a cluster of mass A and atomic number Z is defined as

Kc(A,Z) =
ρpa(A,Z)

ρpa(1, 1)Z ρpa(1, 0)N
(8)

where ρpa(A,Z) is the (A,Z) particle partial density (ρt =
∑

i ρpa(Ai, Zi)). Kc should

depend only on density and temperature of the equilibrated gas source which makes it

a universal parameter. The isotope equilibrium constants are shown in figure 9(a) for

the four studied systems as a function of the gas source density (ρt).
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Figure 9. Equilibrium constants as a function of density. (a): for the studied isotopes

and for the four studied systems. (b): 4He Equilibrium constant as a function of

density, three results are shown for the 124Xe+124Sn data to take into account for the

error on the Coulomb barrier used to calculate vsurf , the squares are the Qin et al. [1]

data with the uncertainties represented by the lines.

Kc is easily reformulated as a function of mass fractions w(A,Z)

Kc(A,Z) =
w(A,Z)

w(1, 1)Z w(1, 0)(A−Z)
ρ
−(A−1)
t with w(A,Z) =

A M(A,Z)
∑

i Ai M(Ai, Zi)
(9)

M(A,Z) being the multiplicity of particle (A,Z) calculated in a given vsurf bin.
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This to say that Kc has an explicit dependence on ρ
−(A−1)
t which explains its global

density behaviour. From figure 9 we note that Kc is independent of A/Z entrance

channel within the error bars.

In figure 9(b), Kc density dependence is presented for 4He. In order to take into

account for the error on the Coulomb barrier per atomic number used to calculate

vsurf (EC = 10 ± 2 MeV) we present three results (EC = 8, 10 and 12 MeV) whose

superposition indicates the final error on our data.

In figure 9(b) our data is also compared to results of Qin et al. [1]. Since the

thermodynamical paths (figure 8(a)) are not the same, we do not expect the two data

sets to overlap. This is indeed the case. At very low densities, where the temperatures of

the two experiments are close, we could have expected a better agreement, however, as

we indicated earlier, the confidence interval below vsurf = 4 cm/ns (density lower than

0.008 nucleon/fm3) is questionable for our data. Also we remind the reader that Qin et

al. did not use equation 5 whose impact is important at low temperatures. Therefore

there is no contradiction between the two results. However the full compatibility test

has to be done with a model comparison.

11. The problem of binding energies

In this paragraph we will comment the method used to extract the equilibrium constants

and the density values.

Model comparisons with [1] data have been made [27] [4] [5] and all the studies

conclude that the measured equilibrium constants are not reproduced by an ideal gas

modelisation. Medium effects are present and the consequence is the existence of a shift

of the cluster binding energies [28] [29] [30] for ρ > 0. The decrease in the binding

energy arises from the indistinguishability between the nucleons inside the clusters and

the free nucleons (Pauli blocking). The procedure ignores the reduction in the binding

energy of the clusters as the density of the surrounding medium increases because it

assumes values of the cluster binding energy in vacuum in equations 2, 3, 4 and 5.

In summary, chemical constants measured by Qin et al. were compared to

statistical models employing different treatments of the nucleon-nucleon and nucleon-

cluster interactions with the purpose of constraining the expected cluster binding energy

shifts in dense matter. Formulae used to extract the measured quantities, temperature

and volume and free neutron number, explicitly assume that the cluster abundancies

are uniquely governed by their vacuum binding energies, which is in contradiction with

the purpose of the analysis. Furthermore in reference [4] it is shown that the Qin

et al. experimental points are not reproduced by an ideal gas hypothesis although

all the experimental analysis is based supposing an ideal gas of classical clusters in

thermodynamic equilibrium at temperature T in the grand-canonical ensemble. Indeed

if in medium corrections were negligible, the measured chemical constants would agree

with the ideal gas prediction. There is therefore a contradiction in the method. This

point has to be clarified.
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12. Conclusions

Equilibrium constants as a function of density has been presented in the framework

of the study made by Qin et al. [1]. A subset of events has been selected whose

characteristics are consistent with a chemically- and thermally-equilibrated expanding

gas of nucleons and clusters. The power law for the momentum space density of

composite nuclei relative to protons has been used to extract the source volumes.

It turned out that the chemical equilibrium model is more adapted to our data as

compared to the coalescence model. The temperature values of the expanding source

have been deduced using nuclear statistical equilibrium framework and entrance channel

independence (136,124Xe+124,112Sn) of the result confirmed the validity of its use and

allowed us to define a confidence interval for the subsequent analysis. The volume

values of the expanding source have been extracted and an improvement, confirmed

by theorical calculations, has been applied concerning the relationship between neutron

and proton multiplicities as compared to the original work of Qin et al. Those volume

values have been transformed in density values by determining the total source size.

The thermodynamical path covered by the expanding source in the temperature-density

plane is different to that of Qin et al. This is not abnormal because the bombarding

energies of the two experiments are not the same. Equilibrium constant values as a

function of density were presented for 2H, 3H, 3He, 4He, 6He and the result is not in

contradiction with the results of Qin et al.

Finally, we raised the problem of the values of cluster binding energies. Indeed,

the values used in the analysis are those in vacuum (zero density) while all comparisons

with the models indicate the existence of a shift towards lower values and existence of

in-medium effects. This point has to be clarified.
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