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Detection & isolation of sensor and actuator additive faults in a
4-mecanum wheeled mobile robot (4-MWMR)

Samia MELLAH1, Guillaume GRATON1,2, El Mostafa EL ADEL1, Mustapha OULADSINE1 and
Alain PLANCHAIS3

Abstract— In this paper, the fault detection and isolation
problem regarding actuation and sensing of a 4-mecanum
wheeled mobile robot (4-MWMR) is studied. The challenge
with respect to the current state of the art lies in detecting
and distinguishing wheel sensor from wheel actuator additive
faults for this kind of robots. An approach based on generating
residuals is proposed. Sensor faults isolation is based on simply
analyzing residual signatures which are different under each
sensor fault. Due to omni-move properties, actuator faults
are, however, more difficult to be isolated. More residual
characteristics must be taken into consideration to achieve the
isolation.

Keywords: 4-mecanum mobile robot, kinematic and dy-
namic model, residual generation, residual signature, extended
Kalman observer, sensor and actuator additive faults.

I. INTRODUCTION

Nowadays, autonomous wheeled mobile robots (whether
they are unicycle, car-like, or omni-move robots), are widely
solicited in industry where they play an important role. Their
strong point lies into their capability of replacing humans to
accomplish easily repetitive, difficult, or risky activities.

Unfortunately, although their capacity of working for
several hours without stooping, the appearance of faults
in wheeled mobile robots (WMRs), like in all embedded
systems, is inevitable. This can be due to either components
wear, or to the WMRs environment which can present
unanticipated situations. Such faults can appear in the battery
level, in the positioning system, sensor, or actuator level, ...

Any non-permitted deviation of at least one property of a
system from the acceptable condition can represent a fault.
A fault can be additive or multiplicative and it can lead to
the entire system failure.

In order to be efficient and largely smart, WMRs should
not only be able to localize their selves, to sense their
surroundings (perception), to generate a path to their des-
tination (path planning) and to execute it (navigation) in an
efficient manner, but they should also be able to do self-
diagnosis (i.e, to detect and isolate internal faults without
human intervention).
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Fault detection & isolation (FDI) methods can be classified
into two main categories, namely history or data-based meth-
ods and model-based methods. Data-based methods require
a collection and manipulation of a large quantity of historic
data, while model-based methods need mathematical models
developed from the fundamental understanding of systems
physics. According to [6], several model-based diagnosis
techniques have been successfully implemented on real sys-
tems. This motivates us to be interested in these approaches.

Concerning WMRs FDI, several efforts have been con-
centrated on detecting & isolating either sensor or actuator
faults using model-based approaches. A state of the art about
WMRs FDI and fault tolerant control is given in [2]. In [1],
some model-based techniques are presented for WMRs FDI.

Authors in [3] propose to use Kalman filter identification
technique to detect and isolate car-like WMRs sensor faults.
For the same type of WMRs, a structural analysis-based
approach is proposed for actuator FDI in [4].

This work is focused on omnidirectional mobile robots.
Thanks to their maneuvering capabilities with respect to
nonholonomic mobile robots (i.e, their ability of moving in
any direction without any reorientation), they have received
more attention in mobile robot applications, especially in
dynamic environments such as transportation, military, space,
health-care, ...

This work is sponsored by PRODUCTIVE4.0, with an
application in STMicroelectronics company. In order to robo-
tize the semiconductors production fab, STMicroelectronics
company plans to use omnidirectional mobile robots to
transport batches from one equipment to another.

The purpose of our work is to insure the reliability of
the robots, by detecting as soon as possible any malfunction
that could lead to an unpredictable robot failure. Detect and
isolate a fault allows to plan a corrective maintenance without
having to stop immediately the robot during production. The
goal is to avoid serious economic consequences.

Regarding omnidirectional mobile robots, many works
have been focused on modeling and developing control laws
to improve more and more their autonomy and intelligence
(see [8], [9], [11], [12] and references therein).

In [10], a three omnidirectional mobile robot FDI is
considered using a bank of extended Kalman filters (EKF)
and a bank of particle filters. A comparative study between
the two approaches shows that the EKF is more efficient.

In [11], a 4-mecanum wheeled mobile robot fault tolerant
control is proposed under actuator faults.

For the best of our knowledge, no work has been published



in the literature regarding 4-mecanum wheeled mobile robots
(4-MWMRs) FDI problem.

In this paper, sensor and actuator additive faults are
studied. An observer-based technique is proposed to detect
and distinguish wheel sensor from wheel actuator additive
faults in a 4-MWMRs. The method is based on estimating,
in parallel to the system, the robot state space vectorat each
instant k using an extended Kalman observer (EKO). Then,
based on comparing the system and the observer outputs,
residuals are generated and analyzed.

The challenge of this work lies on the complete isolation of
wheel sensor and wheel actuator small additive faults as early
as possible. These faults can represent components wear.

The paper is organized as follows: in section II, a 4-
MWMR kinematic and dynamic models are presented, and
the robot omni motions principle is explained. In section III,
residual generation and fault isolation principle are detailed.
Simulation results are done in section IV for illustration,
followed by a conclusion and perspectives in the last section.

II. 4-MWMR MATHEMATICAL MODEL

Fig. 1 shows a 4-MWMR geometry. To consider the
kinematic model, it is assumed that the robot is placed on a
plane surface where (O,−→x ,−→y ) is the inertial reference frame
and (G,−→xR,−→yR) is a local coordinate frame fixed on the robot
at its center of mass, which coincides with its geometric
center G.

Fig. 1: 4-mecanum wheeled robot geometry.

Following assumptions are made:
• The WMR is equipped with four optical encoders Ei,
(i = 1, ...4), they return in real time the 4-wheels an-
gular velocities ωi, (i = 1, ...4) , and with a gyroscope
to provide the robot orientation angle θ (see Fig. 1).

• x and y are given by a positioning system (e;g, WIFI,
GPS, ...).

A. Nomenclature

The following notations will be used throughout this
article (see Fig. 1) and Table I.

Variable Description & unit
x, y
θ
lx
ly
l = lx + ly
Rw

ωi = θ̇i
ω̇i = θ̈i
vxR = ẋ, vyR = ẏ

ωR = θ̇
Iz
Iw
m
τi

Robot position along x-axes and y-axes (m).
Robot orientation angle (rad).
Half distance between front wheels (m).
Half distance between front and rear wheels (m).

Wheel radius (m).
Wheel angular velocities (rad/s).
Wheel angular accelerations (rad/ s2).
Robot linear velocities (m/s).
Robot angular velocity (rad/s).
Moment of inertia of the platform (kg.m2).
Moment of inertia of the wheels (kg.m2).
Robot overall mass (m).
Applied torque to wheel i (N.m).

TABLE I: Nomenclature

B. Kinematic model

1) Inverse kinematic model: The inverse kinematic model
is given by: (see [9] for more details)

ω1

ω2

ω3

ω4

 = J

vxRvyR
ωR

 , J =
1

Rw


1 −1 −l
1 1 l
1 1 −l
1 −1 l

 (1)

2) Forward kinematic model: The forward kinematic
model is given by: (see [9] for more details)

vxRvyR
ωR

 = J+


ω1

ω2

ω3

ω4

 (2)

with J+ the pseudo-inverse of the matrix J as follows:

J+ = (JTJ)−1JT =
Rw

4

 1 1 1 1
−1 1 1 −1
−1
l

1

l

−1
l

1

l

 (3)

3) Inertial frame model expression: By denoting c = cosθ
and d = sinθ, the robot velocities are expressed in the
inertial frame (O,−→x ,−→y ) using the following transformation
matrix T (see [11])ẋẏ

θ̇

 = T

vxRvyR
ω

 , T =

c −d 0
d c 0
0 0 1

 (4)

Using this transformation (4), the robot forward kinematic
model (2) is expressed in (O,−→x ,−→y ) as follows:

ẋẏ
θ̇

 = E


ω1

ω2

ω3

ω4

 (5)

where

E = TJ+ =
Rw

4

c+ d c− d c− d c+ d
d− c c+ d c+ d d− c
−1
l

1

l

−1
l

1

l

 (6)



C. Dynamic model

The Lagrangian equation is given by the difference be-
tween K, the robot kinetic energy and P , its potential energy.
Since the robot moves on a planar surface, P = 0. K can
be calculated as follows: [11]

K =
1

2
m(ẋ2+ ẏ2)+

1

2
Izω

2
R+

1

2
Iw(ω1+ω2+ω3+ω4) (7)

where, ẋ, ẏ, and ωR = θ̇ are given by (5) and (6). Neglecting
the loss of energy owing to the wheel viscous friction and
invoking the Euler Lagrange equation, the robot dynamic is
given by: (see [11] for more details)

Mω̇ = τ (8)

ω̇ = [ω̇1, ω̇2, ω̇3, ω̇4]
T , τ = [τ1, τ2, τ3, τ4]

T , and M is a (4×4)
matrix given by:

M=


a+ b+ Iw −b b a− b
−b a+ b+ Iw a− b b
b a− b a+ b+ Iw −b

a− b b −b a+ b+ Iw

 (9)

with a =
mR2

w

8
and b =

IzR
2
w

16l
.

Since M is a invertible matrix, the wheel angular accel-
erations ω̇i, i = 1, ..., 4 can be expressed with respect to the
applied torques as follows:

ω̇ = Sτ (10)

with S =M−1.

D. Augmented state space representation

Combining the forward kinematic and dynamic models
((5) and (10)), the robot global model can be obtained in the
global inertial reference frame:

ẋ
ẏ

θ̇
ω̇1

ω̇2

ω̇3

ω̇4


=



f1(θ, ωi)
f2(θ, ωi)
f3(θ, ωi)

0
0
0
0


+



0 0 0 0
0 0 0 0
0 0 0 0
s11 s12 s13 s14
s21 s22 s23 s24
s31 s32 s33 s34
s41 s42 s43 s44




τ1
τ2
τ3
τ4

 (11)

where fj(θ, ωi), (j = 1, ..., 3) and (i = 1, ...4) are given by
(5) and (6).

Finally, the global model in the presence of model un-
certainties and measurements noise, is given in state space
representation (SSR):{

Ẋ = F (X, t) +Du+ η(t)
Y = CX + γ(t)

(12)

where X is the state vector, u the control input vector
(torques), Y the measurements vector (which is equal to
X according to assumptions given in the beginning of this
section II. Thus, C is a (n × n) identity matrix (n = 7

is the system dimension), D =

(
03×4

S4×4

)
, and η, γ are

respectively model uncertainties and measurement noise.

They are supposed to be white noises with known covariance
matrices, respectively Q , and R. Also, Q is assumed having
no cross-correlation with R.

Since measurements are not given in continuous time, the
SSR is discretized using Euler’s method, respecting sampling
time Ts:{
X(k + 1)=X(k) + Ts(F (X, k) +Du(k) + η(k))

Y (k)=CX(k) + γ(k)
(13)

E. Omni-motion principle

Table II below resumes the different obtained movements
by controlling the omnidirectionnal wheels with different
velocity combinations (C1 and C2, two constants given
respectively in m/s and rad/s). See [9] for more details.

PPPPPPMotion
Velocities

vxR vyR ωR ω1 ω2 ω3 ω4

Forward C1 0 0 C2 C2 C2 C2

Backward -C1 0 0 -C2 -C2 -C2 -C2

Left 0 C1 0 -C2 C2 C2 -C2

Right 0 -C1 0 C2 -C2 -C2 C2

Left diagonal
forward C1 C1 0 0 2C2 2C2 0

Left diagonal
backward -C1 C1 0 -2C2 0 0 -2C2

Right diagonal
forward C1 -C1 0 2C2 0 0 2C2

Right diagonal
backward -C1 -C1 0 0 -2C2 -2C2 0

TABLE II: Motions of four omnidirectional mobile robot
according to [9].

III. RESIDUAL-BASED FAULT DETECTION AND
ISOLATION

Generally speaking, model-based FDI methods are based
on residual generation. Residuals can be defined as a dif-
ference between a system measured and estimated outputs.
Measurements are provided by sensors while estimations are
obtained using observers.

In normal operating conditions (i.e, not faulty mode), the
system and the mathematical model have similar outputs,
residuals are close to zero. In the presence of a fault, residuals
being sensitive to the concerned fault get away from zero.

A. Studied faults

The objective is to detect and isolate wheel sensor and
actuator additive faults of a 4-MWMR, namely:
Encoder faults Ei, (i = (1, ..., 4), and gyroscope fault Gr.
Actuator faults Ai, (i = (1, ..., 4).

Fig. 2: Studied faults.

In the presence of actuator and sensor additive faults, the
system (13) is given by:



 X(k + 1) = X(k) + Ts(F (X, k) +Du(k)
+Eafa(k) + η(k))

Y (k) = CX(k) + Esfs(k) + γ(k)
(14)

where Ea and Es are respectively actuator and sensor fault
matrices with appropriate dimensions, and fa(k), fs(k) are
actuator and sensor additive fault vectors.

B. Residual generation

Extended Kalman observer (EKO) is used to estimate at
each instant k the system state X(k).
η and γ characteristics given for model and measurement

noises in (12) are adequate to use EKO.
Kalman observer is based on two steps: a prediction step

and a correction step. To predict the state X at time k + 1
knowing k, EKO is defined for the system (14) as follows:{
X̂ (k + 1|k) = X̂ (k|k) + Ts(F (X̂, k) +Du(k))
P (k + 1|k) = Al(k)P (k|k)AT

l (k) +Q
(15)

where P (k+1|k) denotes the a priori error covariance matrix
associated to X and Al the linearized matrix of function F

given by Al(k) = I + Ts
∂F

∂X

∣∣∣∣
X̂(k|k)

, where:

∂F

∂X

∣∣∣∣
X̂(k|k)

=


∂F1

∂x1

∂F1

∂x2
. . .

∂F1

∂x7
...

∂F7

∂x1

∂F7

∂x2
. . .

∂F7

∂x7


X̂(k|k)

(16)

and I is an identity matrix with the appropriate dimension.
The correction step is given by:
X̂ (k+1|k+1) = X̂ (k + 1|k) +K (k + 1)×[

Y (k + 1)− CX̂ (k + 1|k)
]

K (k+1) = P (k+1|k)CT
(
CP (k+1|k)CT +R

)−1

P (k+1|k+1) = (I −K (k + 1)C)P (k + 1|k)

(17)

with K(k+1) the filter gain matrix and P (k+1|k+1) is the
a posteriori error covariance matrix at time k + 1.

Using the linear approximation Al of the function F , the
state estimation error e(k + 1) is given for the system (14)
as follows:

e(k + 1) = X(k + 1)− X̂(k + 1)

≈ (Al −K(k)C)e(k) + Eafa(k)

+η(k)−K(k)Esfs(k)−K(k)γ(k)(18)

In Kalman Observer principle, the gain K(k) is calculated
to minimize the error variance matrix trace, whose the
expression is not in terms of sensor and actuator faults.
Hence, when a fault appears, it is detected by the state
estimation error (18).

To insure the observer convergence, matrices Q, R, and
P (0|0) must be well defined. In practical use, several data-
based methods are applied to determine Q and R (see e.g,
[5] and references therein). In simulation, these matrices are
defined as a part related to the added model uncertainties

and to noise behavior in the measurement vector. R values
correspond on the residual variances in the nominal (i.e not
faulty) mode, while Q values must respect the compromise
between filtering and delay: very small values lead to a
considerable delay on the filter response, while great values
do not allow a good filtering. Regarding P (0|0) matrix, it is
initialized large enough to compensate estimation errors.

Based on measurements and EKO estimation outputs, five
residuals are generated (see Fig. 3).

r1 = θ − θ̂
r2 = ω1 − ω̂1

r3 = ω2 − ω̂2

r4 = ω3 − ω̂3

r5 = ω4 − ω̂4

(19)

Fig. 3: Residual generation.

C. Thresholds determination

Each generated residual ri is compared to 2 threshold
values ±rth,i. Threshold determination is the main difficulty
of residual-based FDI methods. Too large thresholds can
cause missing alarms, and too small thresholds can cause
false alarms.

In the literature, two types of thresholds are distinguished:
fixed and adaptive thresholds. Adaptive thresholds are used
for inevitable parameter uncertainty, disturbance and noise
encountered in practical applications.

In our case, time invariant noises are used in simulations to
schematize the system and the measurements noises. Then
fixed thresholds are defined using three-sigma method [7].
By defining thresholds with three-sigma method, some false
alarms are detected. They must not be taken into consid-
eration. For that, the detection is done when the threshold
is exceeded more than N consecutive times. The decision
residual Ri is turned into 1 when it satisfies the fault handling
condition as follows:

Ri(k) =

 1 if (ri(j) < −rth,i or rth,i < ri(j)),
∀j ∈ [k −N + 1, k]

0 otherwise
(20)



D. Residual signature

When residuals have different signature under different
faults, the isolation is easy. However, when residuals have
the same signature under more than one fault, which is the
case here, isolation becomes complicated. The residuals (20)
signature under the different considered faults are given in
Table III.

PPPPPPResiduals
Fault

E1 E2 E3 E4 Gr A1 A2 A3 A4

R1 0 0 0 0 1 1 1 1 1
R2 1 0 0 0 0 1 1 1 1
R3 0 1 0 0 0 1 1 1 1
R4 0 0 1 0 0 1 1 1 1
R5 0 0 0 1 0 1 1 1 1

TABLE III: Residual signature under wheel sensor and
actuator faults.

As it can be noticed, sensor faults are easily isolated. How-
ever, actuator faults have the same signature. Relaying only
on residual signatures, actuator faults can be detected but not
isolated. The isolation is done by taking into consideration
other residual properties as explained in the next subsection.

E. Isolation principle

According to (8), the input vector τ acts on the system
state through the matrix S = M−1, which is symmetric.
Relying on the matrix S characteristics, each input acts on
one wheel more than the others (i.e, the input τi acts on the
ωi or on the wheel i more than ωj , (i = 1, ..., 4 and j 6=
i). Hence, a fault on wheel i is detected predominantly by
residual r(i+1), followed by residual r(6− i) (see S values
and characteristics, section IV). Fault detection percentage
by each residual can be calculated at each iteration using the
following relation:

ri,percentage = 100
max|ri(k)|∑5
i=2 |ri(k)|

(21)

These detection percentages depend on the physical pa-
rameters of the system (9). Table V in section IV illustrates
these percentages for the taken parameters in this work
(Table IV).

IV. SIMULATION RESULTS

For simulation, the following assumptions are made:
• All the robot components are in a normal mode when

the robot starts to function.
• Faults are permanent.
• The challenge is to detect and isolate components

wear. Hence, additive faults with small magnitudes are
simulated using time varying ramp signals with different
magnitudes.

Physical parameters are given in Table IV. They corre-
spond to the Kuka KMR robot parameters. In simulations,
the right diagonal forward motion is applied for 2s at
the beginning of simulation (the other motions give same
results), with a torque vector: τ=[0.5, 0, 0, 0.5]T . The angular
velocity of resultant wheels 1 and 4 is 2C2 = 0.41 rad/s.

Parameter Value Unit
lx 0.1825 m
ly 0.28 m
Rw 0.125 m
Iz 50 kg.m2

Iw 0.89 kg.m2

m 390 kg

TABLE IV: Kuka KMR plateform physical parameters.

Using the parameters given in the Table IV, the matrix S
is given by:

S =


0.6786 0.0904 −0.0904 −0.2642
0.0904 0.6786 −0.2642 −0.0904
−0.0904 −0.2642 0.6786 0.0904
−0.2642 −0.0904 0.0904 0.6786

 (22)

According to (21), Table IV illustrates the isolation of actu-
ator faults using the detection percentages of each residual.

PPPPPPPP
Detection
percentages

Fault
A1 A2 A3 A4

r2,percentage % 60.28 2.8 2.8 23.32
r3,percentage % 2.8 60.28 23.32 2.8
r4,percentage % 2.8 23.32 60.28 2.8
r5,percentage% 23.32 2.8 2.8 60.28

TABLE V: Actuator fault detection percentages by the
different residuals.

In what follows, some simulation results of FDI of sensor
and actuator additive faults are presented to illustrate the
effectiveness of the proposed method.

In Fig. 4, all residuals are presented to illustrate the
signatures given in Table III. In the sequel, only significant
residuals are shown. Residuals staying close to zero are not
presented.

A time varying ramp signal with a slope of 10−2 is used
to simulate a time varying fault on E2. The additive signal
represents an additive fault with a percentage of 10−2% with
respect to the real value ω2. It is detected and isolated 0.3s
after its apparition as illustrated in Fig. 4.
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Fig. 4: E2 fault detection and isolation.

In Fig. 5, a fault with a slope of 10−2 is simulated on the
gyroscope sensor. The fault is detected and isolated just 0.22s
after its apparition. In Fig. 6, wheel 1 actuator (A1) FDI is
presented. The simulated fault slope is −10−2. The fault
presents a wear on the wheel actuator. The fault is detected
and isolated just 1s after its apparition.
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Fig. 5: Gyroscope fault detection and isolation.
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In Fig. 7, a fault with a slope of −10−3 is simulated in
the wheel 3 actuator. It is detected and isolated 2s after its
apparition.
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Fig. 7: A3 fault detection and isolation.

V. CONCLUSION

In this paper, the problem of detecting and distinguishing
wheel sensor additive faults from wheel actuator additive
faults in a 4-mecanum wheeled mobile robot is studied. The
considered faults have a small amplitude that they are hard
to be noticed based only on the robot behaviour. These faults
can represent components wear.

An approach based on an extended Kalman observer to
estimate the system state and generate residuals is proposed.
Sensor faults are isolated based on analyzing residual signa-
ture, while actuator faults, due to this type of robot motion
properties, are more difficult to be isolated. Additional char-
acteristics, besides on residual signatures had to be taken into
consideration to isolate successfully actuator faults.

With the proposed method, such faults are detected and
isolated in few seconds after their apparition. This allows to
take time of planing a corrective maintenance without the
need of an emergency stop of the robot. With such small
faults, the robot can continue its mission without any risk of
damages, until the maintenance planning.

The strongest point of the proposed approach, beside
on detecting and successfully isolating wheel sensor and
actuator faults in few seconds, is that it is easy to be
implemented and it is very efficient.

Simulation obtained results are very promising, this is the
reason for why the method is planned to be implemented
sooner on a Kuka KMR omni-move plateform.
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Diagnosis Techniques for Mobile Robots”. In: IFAC-
PapersOnLine 49 (2016).

[2] C. Zixing D. Zhuohua and Y. Jinxia. “Fault Diagno-
sis and Fault Tolerant Control for Wheeled Mobile
Robots under Unknown Environments: A Survey”. In:
Proceedings of IEEE ICRA. 2005.

[3] G.K. Fourlas, G.C. Karras, and K.J. Kyriakopoulos.
“Sensors fault diagnosis in autonomous mobile robots
using observer Based technique”. In: ICRA. May 2015.

[4] G.K. Fourlas et al. “Model based actuator fault diag-
nosis for a mobile robot”. In: IEEE International Con-
ference on Industrial Technology (ICIT). Feb. 2014.

[5] O. Kost, O. Straka, and J. Dunik. “Identification of
State and Measurement Noise Covariance Matrices us-
ing Nonlinear Estimation Framework”. In: 659 (Nov.
2015).

[6] M. Luo et al. “Model-based fault diagnosis/prognosis
for wheeled mobile robots: a review”. In: 31st Annual
Conference of IEEE Industrial Electronics Society,
2005.

[7] F. Pukelsheim. “The Three Sigma Rule”. In: The
American Statistician (1994).

[8] D. Rotondo et al. “A Fault-Hiding Approach for
the Switching Quasi-LPV Fault-Tolerant Control of
a Four-Wheeled Omnidirectional Mobile Robot”. In:
IEEE Transactions on Industrial Electronics (June
2015).

[9] H. Taheri, B. Qiao, and N. Ghaeminezhad. “Kinematic
Model of a Four Mecanum Wheeled Mobile Robot”.
In: (Mar. 2015).

[10] C. Valdivieso and A. Cipriano. “Fault detection and
isolation system design for omnidirectional soccer-
playing robots”. In: IEEE Conference on Computer
Aided Control System Design, IEEE International
Conference on Control Applications,IEEE Interna-
tional Symposium on Intelligent Control. 2006.

[11] P. Vlantis, C. P. Bechlioulis, and K. J. Kyriakopou-
los G. Karras and G. Fourlas and. “Fault tolerant
control for omni-directional mobile platforms with 4
mecanum wheels”. In: IEEE ICRA. May 2016.

[12] L. Xiang and A. Zell. “Motion Control of an Om-
nidirectional Mobile Robot”, bookTitle=”Informatics
in Control, Automation and Robotics: Selected Pa-
pers from the International Conference on Informatics
in Control, Automation and Robotics”. In: Springer
Berlin Heidelberg, 2009.


