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For components subject to degradation, cost-efficient maintenance is necessary. Periodic or continuous collection
of information, reducing uncertainty on the component’s state of health, generally leads to a better-informed and,
thus, more efficient maintenance. Processing condition monitoring data to estimate the current and future health
states of the component, can prove valuable. In this paper, it is proposed to quantify the Value of Information (VoI)
that may be obtained from state estimation and prediction procedures, with known precision, applied for condition-
based and predictive maintenance. VoI is computed numerically using gamma process paths and on the basis of the
optimization of the parameters of different maintenance strategies.

Keywords: Condition-Based Maintenance, Predictive Maintenance, Value of Information, Prognostics, Maintenance
optimization, Remaining Useful Life.

1. Introduction

Proper maintenance is necessary to keep a com-
ponent undergoing degradation in a functional
state and, thus, limit the risk and costs associated
to its failure. Maintenance operations, such as
repairs, replacements or inspections, are carried
out in view of optimizing life-cycle performance
and minimizing costs in an uncertain environment.
Collection of additional information on the com-
ponent’s State of Health (SoH), thereby reducing
the associated uncertainty, allows performing bet-
ter maintenance.

In this practical context of condition-informed
decision-making for maintenance, it is worth
considering seminal works on optimal decision-
making under uncertainty proposed in the six-
ties by Raiffa (1961), DeGroot (1962), Howard
(1966). The latter offer a framework wherein the
value of a particular piece of information depends
on its ability to ‘guide our decision’. Formally,
the metric of Value of Information (VoI) is defined
as the difference in expected utility when a deci-
sion is made with and without the possession of
additional information. For maintenance planning
and optimization, such a metric may be used to
‘evaluate the benefit of collecting additional in-
formation to reduce or eliminate uncertainty in
a specific decision-making context’, according to
Pozzi and Der Kiureghian (2011).

Maintenance optimization approaches devel-
oped over the years along with probabilistic

models and methods, see e.g. early works
of Barlow and Proschan (1967), Abdel-Hameed
(1975). Exact resolution of the maintenance
optimization problem is sometimes possible us-
ing renewal theory. Good reviews of the exten-
sive literature are given by Dekker (1996), Wang
(2002), Frangopol et al. (2004), van Noortwijk
(2009). With the progress of computer power,
maintenance optimization may also be carried out
numerically, see e.g. Marseguerra et al. (2002).
This is the approach used in this paper.

With the reduction in the cost of monitor-
ing devices, an increasing amount of condition-
monitoring (CM) data is available. The latter
may not directly represent information on the
component’s state and may have to be processed
using adapted methods for state estimation or pre-
diction. In the field of Prognostics and Health
Management (PHM), extracting information on a
component’s state for the purpose of improving
maintenance decisions is a growing concern, see
good reviews of Jardine et al. (2006), Heng et al.
(2009), Si et al. (2011), or approaches of Bayesian
filtering in Myotyri et al. (2006), Zio and Peloni
(2011).

In this paper it is proposed to investigate, with
numerical simulation and using concepts from the
VoI framework, the effect of state estimation and
prognostics information obtained from condition
monitoring data, on condition-based and predic-
tive maintenance policies. Similar considerations
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have been studied by Huynh et al. (2012), and the
present paper will adopt the same approach, albeit
using only numerical tools and a particular model
for specifying the precision of state estimation and
prognostics.

The paper is organized as follows. In section 2,
a brief history of maintenance policies involving
information collection are given. The different
maintenance strategies that are considered and
compared in this paper are, then, described in
section 3. The proposed numerical experimen-
tation and resolution of the maintenance plan-
ning problem with different strategies, for gamma
degradation processes, is described in section 4.
The effect of information in different decision
settings is discussed in 5. Conclusions and future
perspectives are detailed in section 6.

2. Review on maintenance strategies
involving information collection

Early cases of inspection policies were consid-
ered by Thoft-Christensen and Sorensen (1987),
Park (1988), Mori and Ellingwood (1994) and
van Noortwijk and Klatter (1999). In these works,
the objective is mostly to optimize the time in-
terval between costly inspections, generally using
renewal theory.

The formulation of the maintenance planning
issue as a sequential decision problem, not involv-
ing resolution schemes based on renewal theory
and using Markov Decision Process (MDP), was
proposed by Madanat (1993) and latter extended
by Ellis et al. (1995). In these works, inspections
are not necessarily perfect and may be affected by
measurement uncertainty.

Interest in so-called Condition-Based Mainte-
nance (CBM) policies, and associated formaliza-
tion and resolution approaches, started growing,
as they generally lead to improved maintenance
outcomes, see e.g. Christer and Wang (1995),
Wang and Christer (2000), Grall et al. (2002) or
Dieulle et al. (2003). In many cases, it is assumed
that the current condition of the component is
known perfectly through inspections or contin-
uous monitoring. In particular, the choice of
control-limit strategies, popular in CBM, is used
in the present paper.

Considering limited resources and imperfect in-
spection outcomes, risk-based inspection planning
was studied by Faber (2002), Straub and Faber
(2005) and Kallen and van Noortwijk (2005).

The notion of Value of Information (VoI) has
recently received increasing attention for inspec-
tion prioritization, sensor placement or complex
policies for maintaining systems, especially in
Structural Health Monitoring (SHM) where sen-
sors or inspections can be expensive, see works of
Pozzi and Der Kiureghian (2011), Straub (2014),
Zonta et al. (2014), Konakli et al. (2015) and
Memarzadeh and Pozzi (2016).

On the other hand, developments of numerical
schemes for the resolution of sequential decision
problems using MDP and Partially Observable
Markov Decision Process (POMDP), support the
progress of more advanced maintenance policies,
e.g. with decision structures that may be more dy-
namic, see e.g. Papakonstantinou and Shinozuka
(2014), Srinivasan and Parlikad (2013) and
Memarzadeh and Pozzi (2016). For such policies,
different information collection strategies can be
compared on the basis of a VoI metric, notably
for resource prioritization and sub-optimal and
heuristic resolution schemes.

In this paper, it is proposed to consider VoI as
a metric for evaluating the interest of processing
CM data with state estimation and prognostics ap-
proaches, with different levels of precision. Said
precision must be specified in advance.

3. Maintenance strategies and
information processing

3.1. Maintenance policies

For a component undergoing continuous degra-
dation, the elaboration of maintenance strate-
gies generally consists in specifying a sched-
ule or condition-based decision rules for repair,
replacement or inspection actions. Preventive
maintenance (PM) strategies only rely on time-
based actions whereas condition-based mainte-
nance (CBM) involves decisions rules depen-
dent on the component’s state, either known
exactly or with uncertainty and periodically or
non-periodically, see reviews e.g. in Dekker
(1996),Wang (2002) and van Noortwijk (2009).

Here, three strategies are considered, namely:

• Block Replacement (BR)
• Periodic Inspection and Replacement (PIR)
• Predicted Quantile Replacement (PQR)

Block replacement policy (BR) is purely time-
based. The component is preventively replaced
at costcp at timeTBR or correctively replaced,
at costcc > cp, when failed, whichever occurs
first. Failure of the component is observed without
need of inspection and component is immediately
replaced upon failure. These hypotheses may not
represent all conceivable situations in practice, but
the purpose here is not to compare all possible
situations.

Periodic inspection and replacement policy
(PIR) involves inspections with a given costci. At
each inspection date, with time-interval∆T , the
component is preventively replaced if its condition
is above a specified threshold or control-limitM .
The component is correctively replaced if it fails
before the next inspection date.

A more detailed description of these policies
can be found for example in Huynh et al. (2012).
In this latter reference, more complex policies
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with dynamic decision rules, e.g. inspection dates
that are not fixed in advance, are proposed. Here
it is proposed to focus on studying the effect of
additional information from state estimation and
prognostics.

The efficiency of the policy, in the sense of life-
cycle cost, is quantified by the average cost per
unit timeC∞. The latter is estimated through the
use of renewal theory, which states that it may be
calculated as the ratio of the average renewal cycle
cost other the average renewal cycle length.

C∞ = lim
t→∞

C(t)

t
=

E[C(S)]

E[S]
(1)

whereS is the length of a given renewal cycle,
which brings the system back to an ‘as good as
new’ condition andC(S) is the cost associated to
the cycle.

3.2. State-estimation-based and
prognostics-based policy

Processing the data from inspections or continu-
ous monitoring into an estimate of the current or
future state of health (SoH) of the component may
provide information allowing policy decisions that
are better adapted to the component’s degradation
path.

It is proposed to consider a policy where the
decision to proceed to a preventive replacement
is piloted via a control-limit levelM and via a
quantile valueα ∈ [0, 1[. The latter is associ-
ated to the uncertain distribution of the current
or future SoH of the component, known from
the processing of condition data collected and/or
processed periodically at dates separated by a time
interval∆T . The policy is denoted as Predicted
Quantile Replacement (PQR).

A prediction is made for the SoH of the com-
ponent on the current interval[t, t + ∆T ]. If
for a given quantileα ∈ [0, 1[ of the predicted
distribution of the SoH and for any datetα in
the time interval, the value is above the thresh-
old M , a random valueXtα is drawn from the
former distribution and considered as a possible
realization of the component’s SoH at timetα. If
Xtα correspond to a failed state, the component
is correctively replaced at costcc, otherwise it is
preventively replaced at timetα and costcp. Thus
the parameterα of the decision rule, somehow
controls the risk of having a prediction that un-
derestimates the true state.

3.3. Model for precision evolution in time

It is assumed that the precision of the state es-
timation or prognostics approach that is used to
process condition data has been previously evalu-
ated, with techniques outside of the scope of the
present paper. Estimation of such precision is

often known through the difference between the
predictionsX̃i and the true valuesXi, for a set of
labeled examples and generally involving cross-
validation. The Root Mean Square Error (RMSE)
metric can be used as an estimate of the deviation
between the predicted and true state:

RMSE(h) =

√

∑

i

(X̃t+h,i −Xt+h,i)2 (2)

whereX̃t+h is the prediction of the state of the
component at timet + h that is made using the
available information on[0, t[, h ∈ [0,∆T ] is the
prediction horizon andXt+h is the true state of
the component at timet+ h.

In this paper, a model for the evolution of the
precision of the prediction approach with time is
specified. While, the representativeness of this
model may be debatable or hard to assess in
practice, it is nonetheless interesting to study the
influence of additional prediction information on
the outcome of the maintenance policy based on
such prediction information.

It is, then, assumed that the true state of the
component on[t, t + ∆T ] is distributed normally
Xh ∼ N (X̃h, δ(h)X̃h), whereh ∈ [0,∆T ], X̃h

is the prediction obtained from the processing of
CM data andδ(h) is the coefficient of variation
which controls the prediction precision and may
be related to a RMSE evaluated outside the frame-
work of this paper. Here, the following model is
proposed and two parameters are used to control
the estimation and prediction uncertainty, namely
eu and pu. The coefficient of variationδ(h) is
assumed to evolve linearly according to:

δ(h) = eu + pu
h

∆T
(3)

It is worth noting that whenh = 0, this model,
even if not strictly, can approximate a PIR policy
with measurement uncertainty. Indeed, there is
the possibility that high measurement uncertainty
(here througheu), with a significant chance (say
α) of crossing the thresholdM , will trigger pre-
ventive replacement.

Let us also note that a normal distribution of the
prediction may create degradation paths that are
not strictly non-decreasing. This is not a serious
concern if high quantilesα of the distribution are
considered and compared to preventive replace-
ment and failure thresholds.

4. Comparison of maintenance polices

4.1. Simulation-based optimization and
evaluation

As described in section 2, different approaches
can be considered for the optimization of main-
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tenance strategies. Here it is proposed to evaluate
C∞ numerically, using (1). The average length
and costs of renewal cyclesE[S] and E[C(S)]
will be dependent on the design parameters of the
selected maintenance strategies, namely:

• For BR: the time of replacementTBR

• For PIR: the interval between inspections∆T
and the preventive replacement thresholdM

• For PQR: the interval between
collections/predictions∆T , the preventive re-
placement thresholdM and the quantile of the
prediction uncertaintyα

Multiple random realizations of renewal cycles
are obtained through the generation of degradation
paths, based on a gamma process model described
hereinafter, and the application of maintenance
strategies described in section 3. The estimated
average cost per unit timeC∞ is the quantity to be
minimized. The minimization problem is solved
using the bounded and non-constrained stochas-
tic optimization technique of simulated annealing,
see Kirkpatrick et al. (1983).

4.2. Gamma degradation process

As continuous-time representations of degrada-
tion, Gamma processes are very often considered,
see e.g. an extensive review in van Noortwijk
(2009). They are quite amenable to mathemat-
ical treatment and the fact that they are non-
decreasing makes them an appropriate represen-
tation for many monotonous degradation mech-
anisms. A gamma processX(t) is a stochastic
process with independent, non-negative, random
increments, having the following distribution:

X(m)−X(n) ∼ Ga(v(m)− v(n), u) (4)

where Ga: x → Ga(x, v, u) is the gamma proba-
bility density function,v is the shape parameter
and u is the scale parameter. At any time, the
expectation and variance of the degradation can
be derived according to:

E[X(t)] = v(t)/u (5)

Var[X(t)] = v(t)/u2 (6)

The specification of the mean function may
allow the description of different degradation
trends. If v(t) = vt, ∀t ∈ [0,∞[ the gamma
process is said to be stationary. Power laws are
also usedv(t) = vtb, where the exponentb may
be quite different for different degradation mecha-
nisms, e.g. mechanical, chemical, etc., see details
in van Noortwijk (2009).

5. Results and discussion

5.1. Comparison of BR and PIR policies

First, let us insist on the fact that, the metric that
will be denoted as VoI here, does not correspond
to the formal definition of VoI but is in fact the
‘net gain of information’. Indeed, the cost of
acquiring information is already included in the
optimization of the policy. Thus, as opposed to
the formal definition of VoI, see Raiffa (1961), the
calculated metric can be negative here. A negative
VoI indicates that it is not worth collecting infor-
mation at cost per inspectionci.

The comparison of the outcome of the opti-
mization of the parameters of both the BR and
PIR policies is given in Figure 1. The parameters
used to describe what will be referred to as the
decision context, namely, the degradation process
and the cost and outcome of actions (here perfect)
is given in Table 1. In this particular configuration
of the decision context, the (net) VoI obtained
from inspection is0.07.

Table 1. Parameters of the considered decision context.. Degra-
dation rate is fixed for failure on average at timet = 200 for
simplicity of visualization and analysis

Parameter Notation Value

Failure threshold y 100
Power law exponent b 1
Degradation variability u 8
Degradation rate v y/(200bu)

Corrective replacement cost cc 300
Preventive replacement cost cp 50
Inspection cost ci 2
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Fig. 1. Comparison of the outcome of maintenance strategies
and visualization of the effect of maintenance parameters
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5.2. Comparison with PQR policy

A visualization of the implementation of the PQR
policy is displayed in Figure 2. On[t, t + ∆T ],
maintenance actions are taken based on a condi-
tional decision rule which is linked to a quantile
of the predicted distribution of the component’s
SoH.
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SPIR: 250
CPIR: 58
SPQR: 221.5
CPQR: 58
CuPIR: 0.232
CuPQR: 0.26185

Degradation process
Predictive replacement level M
Failure threshold
Cross M level
Failure time
Preventive replacement
(PIR policy only)
Quantile prediction
Inspection time
Quantile crossing level M
Random prediction outcome

Fig. 2. Example of degradation path and practical implemen-
tation of PIR and PQR policies. Thin solid lines indicate
predictions (αquantile) on the different intervals

For the specific example of Figure 2, both the
PQR and PIR decision rules would provide quite
similar outcomes. On the segment[200, 250],
the predicted quantile first crosses the preventive
replacement level M, thus triggering a random
generation of a value from the normal distribution
Xtα ∼ N (X̃tα , δ(h)X̃tα), which is in that case,
below the failure level and the component is sub-
sequently preventively replaced at timetα.

Here, the prediction meañX is directly taken
to be the degradation path, which is supposedly
unknown. This is obviously a debatable choice, as
the latter is not necessarily representative of the
mean value of the degradation phenomenon but
only of a given degradation path. Yet, the purpose
here is not to develop a prediction tool and such
a choice has been made for lack of a better, and
nonetheless simple, alternative.

The result in terms of average outcome of poli-
cies, whose parameters are optimized numerically
through simulated annealing, is given in Figure 3.
It is seen that the use of prediction is valuable
from the perspective of expected outcome. As
could be expected, the advantage of a predictive
policy does no longer hold when the prediction
uncertaintypu increases. Indeed, a high predic-
tion uncertainty may have the effect of making
the predicted quantile value (for fixedα) cross the
threshold levelM too early. Thus, the decision

rule, in a case of poor confidence in the prediction
model, can be overly conservative.
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Fig. 3. Effect of prognostics information on policy output.
Comparison of PQR versus BR and PIR

5.3. Influence of the decision context on
the value of prognostic information

The interest of using prognostic information ex-
tracted from the collected CM data in order to
improve maintenance outcomes is further studied
by repeating the estimation of VoI with different
values of the parameters of the decision context.
The comparison between PQR policy and BR and
PIR policies is displayed in Figures 4 and 5 for
different decision contexts and varying prognostic
uncertaintypu. As can be expected, when the
variability of the degradation process is more sig-
nificant, it is more valuable to gather information
on the condition of the component. With low
variability, it may be enough to plan maintenance
actions with a time-based schedule and, thus, in-
spections and predictions become less valuable.

The interest a prognostics-based policy is
also evaluated for different values of inspec-
tion/monitoring cost in Figure 6. It is seen that
with an increase in inspection cost, overall it be-
comes more advantageous to make the most out
of the available information. When the cost of
inspection/monitoring decreases, it may be more
valuable to inspect more and to rely less on pre-
dictions that may be imperfect.

Let us point out again that, here the evaluated
metric denoted as VoI, is in fact the net gain
between two policies with specific structures, thus
not necessarily optimal (in a very large action
space), with one policy involving additional infor-
mation in the form of processed condition data,
i.e. prognostic information.
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Fig. 4. Influence of the degradation process on the VoI ob-
tained form a prognostic-based maintenance policy with differ-
ent levels of precision and comparison with BR policy;b and
u control the trend and variability of the degradation process
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Fig. 5. Influence of the degradation process on the VoI ob-
tained form a prognostic-based maintenance policy with differ-
ent levels of precision and comparison with PIR policy;b and
u control the trend and variability of the degradation process

6. Conclusions

In this paper, different maintenance strategies
have been compared in terms of overall mainte-
nance cost. They can be based on the combination
of the available stochastic information on deterio-
ration, the outcome of periodic inspections and on
the information that can be obtained by process-
ing condition-monitoring data through adapted
state estimation and prognostics procedures, with
known precision. The parameters of maintenance
policies have been optimized to achieve minimal
cost. All estimations have been carried out nu-
merically, using a sample of simulated paths from
a gamma degradation process.
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Fig. 6. Influence of the inspection/monitoring cost on the
VoI obtained form a prognostic-based maintenance policy with
different levels of precision and comparison with BR and PIR
policies

It is seen that the Value of Information (VoI)
concept can provide a relevant metric to quantita-
tively asses if the processing of condition monitor-
ing data into predictions of the current and future
states of the component has a positive effect on
the maintenance policy. The reasoning behind the
present study is that such assessment may provide
insights into the need and interest of further in-
vesting in the development of a more precise pre-
diction tool, in a particular maintenance decision
context.

For illustration purposes, rather simple settings,
in terms of maintenance cost and consequences,
have been considered in this paper but the same
overall approach could be used for more complex
settings. In the end, the interest of using addi-
tional information is always dependent on the con-
sidered decision context, namely the degradation
process and the cost and outcomes of maintenance
actions.

Perspectives of the present work include studies
of predictive policies involving specific prediction
tools from the Prognostics and Health Manage-
ment domain, especially in a setting where the
degradation process can evolve in time, thus re-
quiring dynamic updating of models and deci-
sions. Another interesting perspective is to look at
a more strict application of the VoI concept, which
involves a comparison between policies that are
optimal, given a certain state of knowledge. This
may not be the case with predefined specific pol-
icy structures, thus demanding that the complete
sequential decision problem is formulated, e.g.
using POMDP.
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