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For components subject to degradation, cost-efficient maintenance is necessary. Periodic or continuous collection
of information, reducing uncertainty on the component’s state of health, generally leads to a better-informed and,
thus, more efficient maintenance. Processing condition monitoring data to estimate the current and future health
states of the component, can prove valuable. In this paper, it is proposed to quantify the Value of Information (Vol)
that may be obtained from state estimation and prediction procedures, with known precision, applied for condition-
based and predictive maintenance. Vol is computed numerically using gamma process paths and on the basis of the
optimization of the parameters of different maintenance strategies.

Keywords: Condition-Based Maintenance, Predictive Maintenance, Value of Information, Prognostics, Maintenance
optimization, Remaining Useful Life.

1. Introduction models and methods, see e.g. early works

. : f Barlow and Proschan (1967), Abdel-Hameed
Proper maintenance is necessary to keep a co 197%). Exact resolution of the maintenance

ponent undergoing degradation in a functional =~/ . ; : ;
. ; : ptimization problem is sometimes possible us-
state and, thus, limit the risk and costs associate g renewal theory. Good reviews of the exten-

o its failure. Maintenance operations, SUch asgye jierature are given by Dekker (1996), Wang
repairs, replacements or inspections, are carrie 2002), [Frangopol et al.[ (2004}, van Noortwijk
out in view of optimizing life-cycle performance (2009). With the progress of computer power,

?:%Clll gz:lt?cl)rr?lg:‘ngd%?tsi(tnsngl ?ngprﬁggg'nn gﬁmgncrgfnr]t‘maintenance optimization may also be carried out
numerically, see e.gl_Marseguerra et al. (2002).

ponent’s State of Health (SoH), thereby reducing—y.: .. ; T
the associated uncertainty, allows performing bet-Th\'/f‘/i{f1 t?ﬁeaeé’&%i?igﬁsﬁld {Réhf‘ops?pgfr' moritor-

ter maintenance. : ; : ; P
In this practical context of condition-informed "9 devices, an increasing a|jr|10u|nt of %omljmon—
decision-making for maintenance, it is worth mgmtgg?gdigg(m) ?gtielsseﬁ/a}ln?gr%atigneonatzﬁ(re
considering seminal works on optimal decision- y rectly rep h
making under uncertainty proposed in the Six_co_mponents state and may have to be processed
ties by Raiffa [(1961), DeGrdot (1962), Howard using adapted methods for state estimation or pre-
Y T ' ) diction. In the field of Prognostics and Health

(1966). The latter offer a framework wherein the Mana s :
: ; : ; gement (PHM), extracting information on a
value of a particular piece of information dependscomponent’s state for the purpose of improving

on its ability to ‘guide our decision’. Formally : o ! -
: h ; -2 maintenance decisions is a growing concern, see
the metric of Value of Information (\Vol) is defined good reviews of Jardine etial, (2003), Heng et al.

as the difference in expected utility when a deci- 2009)/ Si et al[(2011), or approaches of Bayesian
sion is made with and without the possession 0fiItering in Myotyri et al. [2006)] Zio and Peloni
additional information. For maintenance planning 2011)

and optimization, such a metric may be used to In this paper it is proposed to investigate, with

evaluate the benefit of collecting additional in numerical simulation and using concepts from the
formation to reduce or eliminate uncertainty in L
s ' : . Vol framework, the effect of state estimation and
a specific decision-making conttxaccording to prognostics information obtained from condition
Pozzi and Der Kiureghian (2011). o o :
~ - _monitoring data, on condition-based and predic-

Maintenance optimization approaches devel-; ; iy hly ; -
oped over the years along with probabilistict've maintenance policies. Similar considerations
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have been studied by Huynh et al. (2012), and the On the other hand, developments of humerical
present paper will adopt the same approach, albegchemes for the resolution of sequential decision
using only numerical tools and a particular modelproblems using MDP and Partially Observable
for specifying the precision of state estimation andMarkov Decision Process (POMDP), support the
prognostics. progress of more advanced maintenance policies,
The paper is organized as follows. In secfidn 2,e.g. with decision structures that may be more dy-
a brief history of maintenance policies involving namic, see e.g. Papakonstantinou and Shinozuka
information collection are given. The different (2014), [Srinivasan and Parlikad (2013) and
maintenance strategies that are considered anldemarzadeh and Pozzi (2016). For such policies,
compared in this paper are, then, described irdifferent information collection strategies can be
section[B. The proposed numerical experimencompared on the basis of a Vol metric, notably
tation and resolution of the maintenance plan-for resource prioritization and sub-optimal and
ning problem with different strategies, for gamma heuristic resolution schemes.
degradation processes, is described in se€fion 4. In this paper, it is proposed to consider Vol as
The effect of information in different decision a metric for evaluating the interest of processing
settings is discussed[ih 5. Conclusions and futureCM data with state estimation and prognostics ap-
perspectives are detailed in sectidn 6. proaches, with different levels of precision. Said
precision must be specified in advance.

2. Review on maintenance strategies . _
involving information collection 3. Maintenance strategies and

Early cases of inspection policies were consid- infor mation processing

ered by Thoft-Christensen and Sorensen (1987)3.1. Maintenance policies

Park (1988),/_Mori and Ellingwood| (1994) and . .

van Noortwilk and Klatter (1999). In these works, For @ component undergoing continuous degra-
the objective is mostly to optimize the time in- dation, the elaboration of maintenance strate-

terval between costly inspections, generally usin%ies generally consists in specifying a sched-
renewal theory. le or condition-based decision rules for repair,

The formulation of the maintenance planning "éPlacement or inspection actions. Preventive
issue as a sequential decision problem, not involvinaintenance (PM) strategies only rely on time-
ing resolution schemes based on renewal theor@sed actions whereas condition-based mainte-
and using Markov Decision Process (MDP), washance (CBM) involves decisions rules depen-
proposed by Madanat (1993) and latter extendedent on the component's state, either known
by [Ellis et al. (1995). In these works, inspections €xactly 'Ord'WltIrI] uncertainty and perIO_dlcaDIIyL I?r
are not necessarily perfect and may be affected bfpon-periodically, see reviews e.g. In_Dekker
measurement uncertainty. y 1996).Wang((2002) arid van Noortwijk (2009).

Interest in so-called Condition-Based Mainte- Here, three strategies are considered, namely:
nance (CBM) policies, and associated formaliza-, gjock Replacement (BR)

tion and resolution approaches, started growing, periodic Inspection and Replacement (PIR)

as they generally lead to improved maintenance, i i
outcomes, see e.gl Christer and Wahg (1995), Predicted Quantile Replacement (PQR)

Wang and Christer (2000), Grall et al. (2002) or Block replacement policy (BR) is purely time-
Dieulle et al.[(2003). In many cases, it is assumedased. The component is preventively replaced
that the current condition of the component isat costc, at time7zp or correctively replaced,
known perfectly through inspections or contin- at costc. > c¢,, when failed, whichever occurs
uous monitoring. In particular, the choice of first. Failure ofpthe component is observed without
control-limit strategies, popular in CBM, is used need of inspection and component is immediately
in the present paper. replaced upon failure. These hypotheses may not
Considering limited resources and imperfect in-represent all conceivable situations in practice, but
spection outcomes, risk-based inspection planninghe purpose here is not to compare all possible
was studied by Faber (2002), Straub and Fabesituations.
(2005) and Kallen and van Noortwijk (2005). Periodic inspection and replacement policy
The notion of Value of Information (Vol) has (PIR) involves inspections with a given caest At
recently received increasing attention for inspec-each inspection date, with time-intenvAll’, the
tion prioritization, sensor placement or complex componentis preventively replaced if its condition
policies for maintaining systems, especially inis above a specified threshold or control-limit.
Structural Health Monitoring (SHM) where sen- The component is correctively replaced if it fails
sors or inspections can be expensive, see works dfefore the next inspection date.
Pozzi and Der Kiureghian (2011), Straub (2014), A more detailed description of these policies
Zonta et al. [(2014),| Konakli et al.[ (2015) and can be found for example in Huynh et al. (2012).
Memarzadeh and Pozzi (2016). In this latter reference, more complex policies



Estimation of the value of prognostic information for coiaditbased and predictive maintenance 3

with dynamic decision rules, e.g. inspection datesoften known through the difference between the

that are not fixed in advance, are proposed. HergyredictionsX; and the true valueX, for a set of

it is proposed to focus on studying the effect of japeled examples and generally involving cross-
additional information from state estimation and yajidation. The Root Mean Square Error (RMSE)
prognostics. metric can be used as an estimate of the deviation

The efﬁCiency of the pOlicy, in the sense of life- between the predicted and true state:
cycle cost, is quantified by the average cost per

unit time C*°. The latter is estimated through the
use of renewal theory, which states that it may be RMSE(h) = \/Z (Xeni — Xexni)2 (2

calculated as the ratio of the average renewal cycle
cost other the average renewal cycle length.

where X, is the prediction of the state of the
w ... Ct) EC(9)] component at time + A that is made using the
¢* = lim “t T B[] (1) available information oo, t[, h € [0, AT] is the
prediction horizon andX;, ,, is the true state of
where S is the length of a given renewal cycle, the component at time+ h.
which brings the system back to an ‘as good as In this paper, a model for the evolution of the
new’ condition and’'(S) is the cost associated to precision of the prediction approach with time is

the cycle. specified. While, the representativeness of this
model may be debatable or hard to assess in
3.2. State-estimation-based and practice, it is nonetheless interesting to study the

el ; influence of additional prediction information on
prognostics-based policy the outcome of the maintenance policy based on
Processing the data from inspections or continusuch prediction information.

ous monitoring into an estimate of the current or |t is, then, assumed that the true state of the
future state of health (SoH) of the component maycomponent orit, t + AT is distributed normally
provide information allowing policy decisions that x N (X, 5(h)Xy), whereh € [0, AT], X,

ar(ihbetter adapted to the component’s degradatiof e prediction obtained from the processing of
path.

It is proposed to consider a policy where theCM data andi(h) is the coefficient of variation

S ’ hich controls the prediction precision and may
decision to proceed to a preventive replacemenpyq rg|ated to a RMSE evaluated outside the frame-
is piloted via a control-limit levelM and via a

il | 0.1 The latter i . work of this paper. Here, the following model is
quantile valuea € [0,1]. The latter is associ- ronased and two parameters are used to control
ated to the uncertain distribution of the current

or future SoH of the component, known from the estimation and prediction uncertainty, namely

- - e, andp,. The coefficient of variatiod(h) is
the processing of condition data collected and/or;ss;med to evolve linearly according to:

processed periodically at dates separated by a time
interval AT. The policy is denoted as Predicted b
Quantile Replacement (PQR). _ e

A prediction is made for the SoH of the com- 0(h) = €u + pu AT (3)
]E)onent_ on the Cul”ent mterv@t,ft ; AT]d. Ifd It is worth noting that wher, = 0, this model,
dqr abgl\(en q?arr]ltl eé)‘ |_€| [0, dl[fo the %re Icted  aven if not strictly, can approximate a PIR policy
AS”'. ution o tle N o i”‘” . orbany ﬁw@ h'” hwith measurement uncertainty. Indeed, there is
the time Interval, the value Is above the thresh-y,q hosgibility that high measurement uncertainty

old M, a random valueX;  is drawn from the ; P
former distribution and considered as a possible(here througfr,,), with a significant chance (say

realization of the component’s SoH at time If St)anot}‘vcer(r)gs;ggetr?]%rg?reshoIM, il trigger pre-

X, correspond to a failed state, the component °| et s also note that a normal distribution of the

is correctively replaced at cost, otherwise itis  yrediction may create degradation paths that are
preventively replaced at timtg, and cost,. Thus oy strictly non-decreasing. This is not a serious
the parameter: of the decision rule, Somehow cqncern if high quantiles: of the distribution are

controls the risk of having a prediction that un- considered and compared to preventive replace-
derestimates the true state. ment and failure thresholds.

3.3. Model for precision evolution in time 4. Comparison of maintenance polices

It is assumed that the precision of the state esz 1 sjmulation-based optimization and
timation or prognostics approach that is used to
process condition data has been previously evalu-
ated, with technigues outside of the scope of theAs described in sectiohl 2, different approaches
present paper. Estimation of such precision iscan be considered for the optimization of main-

evaluation
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tenance strategies. Heﬁz it is proposed to evaluat®. Resultsand discussion
C* numerically, using[{1). The average length . -
and costs of renewal cycleB[S] and E[C(S)] 91 Comparison of BR and PIR policies

will be dependent on the design parameters of thesjrst, let us insist on the fact that, the metric that

selected maintenance strategies, namely: will be denoted as Vol here, does not correspond
. to the formal definition of Vol but is in fact the
e For BR: the time of replacemeftizr ‘net gain of information’. Indeed, the cost of
e For PIR: the interval between inspectios”  acquiring information is already included in the
and the preventive replacement threshald optimization of the policy. Thus, as opposed to

e For PQR: ~the interval  between the formal definition of VoI, see Raiffa (1961), the
collections/predictions\T,, the preventive re- ca|culated metric can be negative here. A negative
placement threshold/ and the quantile of the \p) indicates that it is not worth collecting infor-
prediction uncertaintyr mation at cost per inspection.

The comparison of the outcome of the opti-

zation of the parameters of both the BR and

R policies is given in Figuriel 1. The parameters

ed to describe what will be referred to as the

ecision context, namely, the degradation process
nd the cost and outcome of actions (here perfect)
is given in Tabl&1L. In this particular configuration

minimized. The minimization problem is solved of“ihe decision context, the (net) Vol obtained
using the bounded and non-constrained stochasom inspection i9.07.

tic optimization technique of simulated annealing,
see Kirkpatrick et al/(1983).

Multiple random realizations of renewal cycles ;
are obtained through the generation of degradatiop
paths, based on a gamma process model describ
hereinafter, and the application of maintenanc
strategies described in sectibh 3. The estimateea
average cost per unit tim&> is the quantity to be

Table 1. Parameters of the considered decision context.. Degra-
dation rate is fixed for failure on average at time= 200 for
simplicity of visualization and analysis
As continuous-time representations of degrada-
tion, Gamma processes are very often considergd, . . oter
see e.g. an extensive review [in_van Noortiwijk
(2009). They are quite amenable to mathematailure threshold y 100
ical treatment and the fact that they are norpower law exponent b 1
u
v

4.2. Gamma degradation process

Notation Value

decreasing makes them an appropriate repres@igradation variability

tation for many monotonous degradation meclpegradation rate y/(200%u)
anisms. A gamma process(t) is a stochastic corrective replacementcost ¢, 300
process with independent, non-negative, randopfeventive replacement cost ¢, 50
increments, having the following distribution:  Inspection cost ¢ 2

X(m) = X(n) ~ Ga(ym) —v(n),u)  (4)

where Ga = — Ga(z, v, ) is the gamma proba-
b|||ty denSIty fUﬂCtIOI’],U |S the Shape pal’ametE Block Replacement Periodic Inspection, Vol = 0.07
and v is the scale parameter. At any time, t
expectation and variance of the degradation (
be derived according to:

M: 60
M: 70
M: 80
M: 90

14

1.2

081
o.s\
The specification of the mean function me 054 @ BR:115.00
allow the description of different degradatic  °¢ 1oep A
trends. Ifv(t) = vt,Vt € [0,00] the gamma
process is said to be stationary. Power laws 02 02

50 100 150 200 250 0 50 100

also used}(t) = ’U'[;b, where the exponem may Block replacement time Inspection interval

be quite different for different degradation mecha-

nisms, e.g. mechanical, chemical, etc., see detailsig- 1. Comparison of the outcome of maintenance strategies
inlvan Noortwijk (2009). and visualization of the effect of maintenance parameters

EX(®)] = v(t)/u ®)

Cost per unit time
Cost per unit time

Var[X(t)] = v(t)/u? (6)
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5.2. Comparison with PQR policy rule, in a case of poor confidence in the prediction

A visualization of the implementation of the PQR model, can be overly conservative.
policy is displayed in Figurgl2. Oft, ¢t + AT],
maintenance actions are taken based on a condli-
tional decision rule which is linked to a quantil

of the predicted distribution of the component | _ _ __ __ __ __ __ __ ____________
SoH. o5l

04 M i
T —6— Vol PQR/BR

= # =Vol PQR/PIR

Comparison of policies
0.6 T T T T T

200

E]
b 3 037 —O— Unit cost PQR | |
180 [ SPIR: 250 S z = = = Unit cost BR
CPIR: 58 J @ L e Unit cost PIR
160 I SPQR: 221i5 J g 02
CPQR: 58 o
140 [ CuPIR: 0.232 i ] ol
% CuPQR: 0.26185 J :
® 120 1
5 /o 0
= 100 6
S hkaaaa N O S g g
g’ 80 // Degradation process -0.1 L L L L L L L L L
[s] = = =Predictive replacement level M 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
60 [ PS s Failure threshold Prognostics uncertainty: p
B Cross Mlevel u
40 ®  Failure time
(Prevemlive reull'c;cemem Fig. 3. Effect of prognostics information on policy output.
20F = PIR policy only) .
Quantile prediction Compal’lson of PQR versus BR and PIR
0 L L L L I Inspection time
0 50 100 150 200 250 ‘ Quantile crossing level M
Time Q Random prediction outcome

Fig. 2. Example of degradation path and practical implemen- o
tation of PIR and PQR policies. Thin solid lines indicate 5.3. Influence of the decision context on

predictions (aquantile) on the different intervals the value of prognostic information

The interest of using prognostic information ex-
tracted from the collected CM data in order to
improve maintenance outcomes is further studied
by repeating the estimation of Vol with different

For the specific example of Figuré 2, both the
PQR and PIR decision rules would provide quite

similar outcomes. On the segmefX0, 250}, 3,65 of the parameters of the decision context.
the predicted quantile first crosses the preventiver, < harison between PQR policy and BR and
replacement level M, thus triggering a random nparison t r o POTICY
generation of a value from the normal distribution PIR policies is displayed in Figurés 4 al S for
= ”. Co different decision contexts and varying prognostic
Xi, ~ N(X,,0(h) Xy, ), which is in that case, yncertaintyp,. As can be expected, when the
below the failure I_evel and the Component IS Sub'\/ariab”iw of the degradation process is more Sig-
sequently preventively replaced at time nificant, it is more valuable to gather information
Here, the prediction meaX is directly taken on the condition of the component. With low
to be the degradation path, which is supposedlyariability, it may be enough to plan maintenance
unknown. This is obviously a debatable choice, asactions with a time-based schedule and, thus, in-
the latter is not necessarily representative of thespections and predictions become less valuable.
mean value of the degradation phenomenon but The interest a prognostics-based policy is
only of a given degradation path. Yet, the purposealso evaluated for different values of inspec-
here is not to develop a prediction tool and suchtion/monitoring cost in Figurg]6. It is seen that
a choice has been made for lack of a better, anavith an increase in inspection cost, overall it be-
nonetheless simple, alternative. comes more advantageous to make the most out
The result in terms of average outcome of poli- of the available information. When the cost of
cies, whose parameters are optimized numericallynspection/monitoring decreases, it may be more
through simulated annealing, is given in Figule 3.valuable to inspect more and to rely less on pre-
It is seen that the use of prediction is valuabledictions that may be imperfect.
from the perspective of expected outcome. As Let us point out again that, here the evaluated
could be expected, the advantage of a predictivenetric denoted as \ol, is in fact the net gain
policy does no longer hold when the prediction between two policies with specific structures, thus
uncertaintyp,, increases. Indeed, a high predic- not necessarily optimal (in a very large action
tion uncertainty may have the effect of making space), with one policy involving additional infor-
the predicted quantile value (for fixed cross the mation in the form of processed condition data,
threshold levelM too early. Thus, the decision i.e. prognostic information.
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0.5 T T T T T T T T T 0.2 T T T T T T T T T

0.4
0.15

0.3

Q.e_—-9~~~
0.2 01f
0.1 e --"%~_

0.05 S~

Vol/BR
Value
1

0

—e—VOl/BR,CfZ ~

—=#— VOI/BR,c.=0.5
-0.1 i

VoI/BR,c‘:S

0.2 -0 _\/oI/PIR‘c|=2

0.05[ |- @ =VollPIRC=05 R
0.3 VOIPIR ¢=5
04 . . . . . . . . . 01 . . . . . . . . .
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Prognostics uncertainty: P, Prognostics uncertainty: P,

Fig. 4. Influence of the degradation process on the Vol ob-Fig. 6. Influence of the inspection/monitoring cost on the
tained form a prognostic-based maintenance policy with differ- Vol obtained form a prognostic-based maintenance policy with
ent levels of precision and comparison with BR poliéyand different levels of precision and comparison with BR and PIR
u control the trend and variability of the degradation process policies

It is seen that the Value of Information (Vol)
concept can provide a relevant metric to quantita-
tively asses if the processing of condition monitor-
ing data into predictions of the current and future
states of the component has a positive effect on
the maintenance policy. The reasoning behind the
¢ present study is that such assessment may provide
insights into the need and interest of further in-

] vesting in the development of a more precise pre-
\ diction tool, in a particular maintenance decision
oAl context.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 For illustration purposes, rather simp|e settinggy

Prognostics uncertainty: p, in terms of maintenance cost and consequences,
have been considered in this paper but the same
overall approach could be used for more complex
settings. In the end, the interest of using addi-
tional information is always dependent on the con-
sidered decision context, namely the degradation
process and the cost and outcomes of maintenance
actions.

Perspectives of the present work include studies
In this paper, different maintenance strategiesof predictive policies involving specific prediction
have been compared in terms of overall maintetools from the Prognostics and Health Manage-
nance cost. They can be based on the combinatioment domain, especially in a setting where the
of the available stochastic information on deterio-degradation process can evolve in time, thus re-
ration, the outcome of periodic inspections and onquiring dynamic updating of models and deci-
the information that can be obtained by processsions. Another interesting perspective is to look at
ing condition-monitoring data through adapteda more strict application of the Vol concept, which
state estimation and prognostics procedures, witlinvolves a comparison between policies that are
known precision. The parameters of maintenanceptimal, given a certain state of knowledge. This
policies have been optimized to achieve minimalmay not be the case with predefined specific pol-
cost. All estimations have been carried out nu-icy structures, thus demanding that the complete
merically, using a sample of simulated paths fromsequential decision problem is formulated, e.g.
a gamma degradation process. using POMDP.

Vol/PIR

-0.1

-0.2

-0.3

Fig. 5. Influence of the degradation process on the Vol ob-
tained form a prognostic-based maintenance policy with differ-
ent levels of precision and comparison with PIR polieygnd

u control the trend and variability of the degradation process

6. Conclusions
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