
HAL Id: hal-02381819
https://hal.science/hal-02381819

Submitted on 26 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Better SMT Proofs for Easier Reconstruction
Haniel Barbosa, Jasmin Christian Blanchette, Mathias Fleury, Pascal

Fontaine, Hans-Jörg Schurr

To cite this version:
Haniel Barbosa, Jasmin Christian Blanchette, Mathias Fleury, Pascal Fontaine, Hans-Jörg Schurr.
Better SMT Proofs for Easier Reconstruction. AITP 2019 - 4th Conference on Artificial Intelligence
and Theorem Proving, Apr 2019, Obergurgl, Austria. �hal-02381819�

https://hal.science/hal-02381819
https://hal.archives-ouvertes.fr


Better SMT Proofs for Easier Reconstruction

Haniel Barbosa1, Jasmin Christian Blanchette2,3,4, Mathias Fleury4,5,
Pascal Fontaine3, and Hans-Jörg Schurr3

1 University of Iowa, 52240 Iowa City, USA
haniel-barbosa@uiowa.edu

2 Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
j.c.blanchette@vu.nl

3 Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
{jasmin.blanchette,pascal.fontaine,hans-jorg.schurr}@loria.fr

4 Max-Planck-Institut für Informatik, Saarland Informatics Campus, Saarbrücken, Germany
{jasmin.blanchette,mathias.fleury}@mpi-inf.mpg.de

5 Saarbrücken Graduate School of Computer Science, Saarland Informatics Campus,
Saarbrücken, Germany

s8mafleu@stud.uni-saarland.de

Proof assistants are used in verification, formal mathematics, and other areas to provide trust-
worthy, machine-checkable formal proofs of theorems. Proof automation reduces the burden
of proof on users, thereby allowing them to focus on the core of their arguments. A suc-
cessful approach to automation is to invoke an external automatic theorem prover, such as a
satisfiability-modulo-theories (SMT) solver [5], reconstructing any generated proofs using the
proof assistant’s inference kernel. The success rate of reconstruction, and hence the usefulness
of this approach, depends on the quality of the generated proofs.

We report on the experience gained by working on reconstruction of proofs generated by an
SMT solver while also improving the solver’s output. By doing so, we were able to understand
some practical constraints of reconstruction systems and find areas that require attention in the
documentation of the proof output. We also discovered bugs in the proof generation code.

Proof generation from SMT solvers has attracted attention in the past [3]. The SMT solvers
CVC4 [2] and Z3 [9] produce proofs, but CVC4’s output format does not record quantifier
reasoning, whereas Z3 does not always produce fine-grained steps, notably for skolemization.
The SMT solver we work with, veriT [8], was recently extended with a more fine-grained proof-
producing module [1] that records skolemization and other preprocessing steps in a detailed
fashion. Proofs produced by veriT [6] take the form of a list of steps with optional annotations
for term sharing. The syntax is based on SMT-LIB [4].

Many proof assistants reconstruct proofs generated by automatic theorem provers. Examples
include the SMTCoq plugin [11], which reconstructs proofs from CVC4 and veriT inside Coq,
and Isabelle’s smt tactic [7], which reconstructs Z3 proofs. We extended this tactic to support
veriT proofs as well. The smt tactic first translates the current higher-order proof goal to
a first-order SMT problem. Then the external SMT solver is invoked. If the solver reports
“unsatisfiable,” the tactic will attempt to replay the generated proof in Isabelle.

Our experience emphasizes the importance of complete documentation. When veriT is
called with the option --proof-format-and-exit, it generates a list of proof rules and a
description of their semantics. Furthermore, earlier publications [1, 6, 10] provide background
documentation on the proof calculus. Nevertheless, this documentation was lacking, especially
concerning implicit steps performed by veriT. To replay the proof, the implicit steps must also
be performed on Isabelle’s side. Such implicit transformations appear in two places. First, veriT
ignores the orientation of equalities in the input. The simple solution was to print the input



Better SMT Proofs for Easier Proof Reconstruction Barbosa, Blanchette, Fleury, Fontaine, and Schurr

assertions after this normalization to allow Isabelle to link atoms with their normalized form.
Second, veriT performs some simplifications immediately before printing a proof step. This
includes eliminating repeated literals and double negation from clauses. Now that this behavior
is precisely documented, Isabelle can reconstruct these implicit steps most of the time at the
cost of some automatic search. We plan to make this implicit normalization optional in future
versions of veriT.

The size of the generated proofs is a practical constraint we initially overlooked. During
skolemization, veriT introduces Hilbert choice terms in place of skolemized variables. Thus,
∃x. p(x) is skolemized to p(εx. p(x)). While this is elegant in theory, the choice term can be
prohibitively large, especially when it is repeated in the output, leading to reconstruction failures.
A solution is to use term sharing in the generated proofs: veriT adds a name annotation to
every term and subsequently uses the name instead of the term. Sharing can have a dramatic
impact on size: a 62 MB proof was compressed to 192 KB.

We encountered some difficulties with the replacement of constants by choice terms. Instead
of choice terms, for efficiency reasons veriT uses fresh constants during solving. These constants
must be replaced by the corresponding choice terms in the proof output. When choice terms
were nested, the proof output did not fully replace constants inside choice terms. Since the
choice functions are often quite long, such errors are hard to detect by a human reader, but
instantly prohibit reconstruction.

We also observed a phenomenon we call proof rot. During the development of an automatic
prover, we might inadvertently introduce small discrepancies with respect to the documented be-
havior. For example, the instantiation rule used by veriT is slightly stronger than published [10]
and documented. The documented form is (∀x. ϕ)→ ϕ[t/x], but in practice it sometimes takes
the form (∀x. ϕ1 ∧ · · · ∧ ϕn) → ϕi[t/x]. Such changes accumulate and complicate reconstruc-
tion. During the implementation of the reconstruction procedure, each change had to be either
documented or corrected. Now that it is in place, proof reconstruction serves as a safeguard to
prevent such changes from being accidentally reintroduced.

Prospect Proofs are meant to be replayed. Implementing the reconstruction during the
development of the proof-producing routines ensures that proofs can be replayed in practice.
Given the flexibility of the SMT language, the proofs generated by SMT solvers need to account
for a wide variety of theories and language features, which results in complex proofs with many
possibilities for errors. These errors can be found by reconstructing proofs.

The quality of veriT’s proofs remains unsatisfactory. Simple input problems often produce
long, unwieldy proofs; yet, many proof steps are too coarse. A rule for linear arithmetic produces
a certificate of the unsatisfiability of a set of inequalities using Farkas’s lemma without providing
explicit coefficients. This means that reconstruction must rely on a decision procedure to refind
the proof, which sometimes fails or is slow. Furthermore, term sharing is required to keep proofs
to a reasonable size, but also results in unreadable proofs. A good balance has yet to be found.

A call to an automated prover from inside a proof assistant can fail. Often this is because
the prover could not find a proof, but sometimes the proof cannot be reconstructed. This should
never happen.

Acknowledgments The work has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation program (grant
agreement No. 713999, Matryoshka). Previous experiments were carried out using the Grid’5000
testbed (https://www.grid5000.fr/), supported by a scientific interest group hosted by Inria
and including CNRS, RENATER, and several universities as well as other organizations.

2

https://www.grid5000.fr/


Better SMT Proofs for Easier Proof Reconstruction Barbosa, Blanchette, Fleury, Fontaine, and Schurr

References

[1] Haniel Barbosa, Jasmin Christian Blanchette, Mathias Fleury, and Pascal Fontaine. Scalable
fine-grained proofs for formula processing. Journal of Automated Reasoning, 2019.

[2] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim
King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh Gopalakrishnan and Shaz Qadeer,
editors, CAV 2011, volume 6806 of LNCS, pages 171–177. Springer, 2011.

[3] Clark Barrett, Leonardo de Moura, and Pascal Fontaine. Proofs in satisfiability modulo theories.
In David Delahaye and Bruno Woltzenlogel Paleo, editors, APPA 2014, volume 55 of Mathematical
Logic and Foundations, pages 23–44. College Publications, 2014.

[4] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2016.

[5] Clark Barrett, Roberto Sebastiani, Sanjit Seshia, and Cesare Tinelli. Satisfiability modulo theories.
In Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, chapter 26, pages
825–885. IOS Press, 2009.

[6] Frédéric Besson, Pascal Fontaine, and Laurent Théry. A flexible proof format for SMT: A proposal.
In Pascal Fontaine and Aaron Stump, editors, PxTP 2011, pages 15–26, 2011.

[7] Sascha Böhme. Proving Theorems of Higher-Order Logic with SMT Solvers. PhD thesis, Technische
Universität München, 2012.

[8] Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and Pascal Fontaine. veriT: An
open, trustable and efficient SMT-solver. In Renate A. Schmidt, editor, CADE 2009, volume 5663
of LNCS, pages 151–156. Springer, 2009.

[9] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In C. R. Ramakrishnan
and Jakob Rehof, editors, TACAS 2008, volume 4963 of LNCS, pages 337–340. Springer, 2008.

[10] David Déharbe, Pascal Fontaine, and Bruno Woltzenlogel Paleo. Quantifier inference rules for
SMT proofs. In Pascal Fontaine and Aaron Stump, editors, PxTP 2011, pages 33–39, 2011.

[11] Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew Reynolds, and
Clark Barrett. SMTCoq: A plug-in for integrating SMT solvers into Coq. In Rupak Majumdar
and Viktor Kunčak, editors, CAV 2017, volume 10426 of LNCS, pages 126–133. Springer, 2017.

3


