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Proof assistants are used in verification, formal mathematics, and other areas to provide trust-
worthy, machine-checkable formal proofs of theorems. Proof automation reduces the burden
of proof on users, thereby allowing them to focus on the core of their arguments. A suc-
cessful approach to automation is to invoke an external automatic theorem prover, such as a
satisfiability-modulo-theories (SMT) solver [5], reconstructing any generated proofs using the
proof assistant’s inference kernel. The success rate of reconstruction, and hence the usefulness
of this approach, depends on the quality of the generated proofs.

We report on the experience gained by working on reconstruction of proofs generated by an
SMT solver while also improving the solver’s output. By doing so, we were able to understand
some practical constraints of reconstruction systems and find areas that require attention in the
documentation of the proof output. We also discovered bugs in the proof generation code.

Proof generation from SMT solvers has attracted attention in the past [3]. The SMT solvers
CVC4 [2] and Z3 [9] produce proofs, but CVC4’s output format does not record quantifier
reasoning, whereas Z3 does not always produce fine-grained steps, notably for skolemization.
The SMT solver we work with, veriT [8], was recently extended with a more fine-grained proof-
producing module [1] that records skolemization and other preprocessing steps in a detailed
fashion. Proofs produced by veriT [6] take the form of a list of steps with optional annotations
for term sharing. The syntax is based on SMT-LIB [4].

Many proof assistants reconstruct proofs generated by automatic theorem provers. Examples
include the SMTCoq plugin [11], which reconstructs proofs from CVC4 and veriT inside Coq,
and Isabelle’s smt tactic [7], which reconstructs Z3 proofs. We extended this tactic to support
veriT proofs as well. The smt tactic first translates the current higher-order proof goal to
a first-order SMT problem. Then the external SMT solver is invoked. If the solver reports
“unsatisfiable,” the tactic will attempt to replay the generated proof in Isabelle.

Our experience emphasizes the importance of complete documentation. When veriT is
called with the option --proof-format-and-exit, it generates a list of proof rules and a
description of their semantics. Furthermore, earlier publications [1, 6, 10] provide background
documentation on the proof calculus. Nevertheless, this documentation was lacking, especially
concerning implicit steps performed by veriT. To replay the proof, the implicit steps must also
be performed on Isabelle’s side. Such implicit transformations appear in two places. First, veriT
ignores the orientation of equalities in the input. The simple solution was to print the input
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assertions after this normalization to allow Isabelle to link atoms with their normalized form.
Second, veriT performs some simplifications immediately before printing a proof step. This
includes eliminating repeated literals and double negation from clauses. Now that this behavior
is precisely documented, Isabelle can reconstruct these implicit steps most of the time at the
cost of some automatic search. We plan to make this implicit normalization optional in future
versions of veriT.

The size of the generated proofs is a practical constraint we initially overlooked. During
skolemization, veriT introduces Hilbert choice terms in place of skolemized variables. Thus,
∃x. p(x) is skolemized to p(εx. p(x)). While this is elegant in theory, the choice term can be
prohibitively large, especially when it is repeated in the output, leading to reconstruction failures.
A solution is to use term sharing in the generated proofs: veriT adds a name annotation to
every term and subsequently uses the name instead of the term. Sharing can have a dramatic
impact on size: a 62 MB proof was compressed to 192 KB.

We encountered some difficulties with the replacement of constants by choice terms. Instead
of choice terms, for efficiency reasons veriT uses fresh constants during solving. These constants
must be replaced by the corresponding choice terms in the proof output. When choice terms
were nested, the proof output did not fully replace constants inside choice terms. Since the
choice functions are often quite long, such errors are hard to detect by a human reader, but
instantly prohibit reconstruction.

We also observed a phenomenon we call proof rot. During the development of an automatic
prover, we might inadvertently introduce small discrepancies with respect to the documented be-
havior. For example, the instantiation rule used by veriT is slightly stronger than published [10]
and documented. The documented form is (∀x. ϕ)→ ϕ[t/x], but in practice it sometimes takes
the form (∀x. ϕ1 ∧ · · · ∧ ϕn) → ϕi[t/x]. Such changes accumulate and complicate reconstruc-
tion. During the implementation of the reconstruction procedure, each change had to be either
documented or corrected. Now that it is in place, proof reconstruction serves as a safeguard to
prevent such changes from being accidentally reintroduced.

Prospect Proofs are meant to be replayed. Implementing the reconstruction during the
development of the proof-producing routines ensures that proofs can be replayed in practice.
Given the flexibility of the SMT language, the proofs generated by SMT solvers need to account
for a wide variety of theories and language features, which results in complex proofs with many
possibilities for errors. These errors can be found by reconstructing proofs.

The quality of veriT’s proofs remains unsatisfactory. Simple input problems often produce
long, unwieldy proofs; yet, many proof steps are too coarse. A rule for linear arithmetic produces
a certificate of the unsatisfiability of a set of inequalities using Farkas’s lemma without providing
explicit coefficients. This means that reconstruction must rely on a decision procedure to refind
the proof, which sometimes fails or is slow. Furthermore, term sharing is required to keep proofs
to a reasonable size, but also results in unreadable proofs. A good balance has yet to be found.

A call to an automated prover from inside a proof assistant can fail. Often this is because
the prover could not find a proof, but sometimes the proof cannot be reconstructed. This should
never happen.
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