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Abstract 

Pyroxenites and composite xenoliths occur in the Cenozoic alkali basalts of Jabel El Arab (the southern 

extremity of the Syrian Rift). The anhydrous xenolith suite consists mainly of spinel garnet-sapphirine–

bearing websterites, spinel-olivine–bearing websterite, as well as rare spinel plagioclase-garnet–bearing 

websterites and composite garnet-bearing websterite/anorthosite xenoliths. We report for the first time 

sapphirine coronas around spinel in spinel-garnet–bearing websterite xenoliths from two outcrops in this 

region. Their compositional and microstructural features are consistent with a reaction from spinel + 

orthopyroxene + anorthite  to clinopyroxene + garnet + sapphirine. The full pyroxenite suite is divided 

into two groups based on mineralogical characteristics and geochemical composition: (A) tholeiitic to 

transitional mantle segregates having spinel ± garnet ± sapphirine characterized by a high Al2O3 and CaO 

content, low REE content, LREE depletion, and a highly variable Sr-Nd isotopic ratio; (B) alkaline 

segregates that include spinel-olivine–bearing websterite and composite xenoliths characterized by a high 

TiO2 and alkali content, relatively high REE, and low Ni and Cr. Slight LREE enrichments in 

clinopyroxenes from meta-igneous rocks of tholeiitic to alkaline affinity indicate that they were later 

metasomatized by small volumes of percolating silicate melts in the upper lithospheric mantle. The 

xenoliths have been re-equilibrated within the garnet-pyroxenite stability field. Combining xenolith-

derived P-T estimates with mineral and chemical composition and seismic data, we show that the 

websterite xenoliths formed in the shallow lithospheric mantle near the Moho discontinuity at 28–44 km 

in depth. Nd-model ages and the geodynamic history of the Arabian Plate favor the scenario of tholeiitic-

transitional and alkaline magmas being underplated below or intruded at the base of a thinned Syrian 

crust. This occurred around 200–100 Ma in response to rifting and magmatism beneath the Arabian Plate 

during the early assembly of the eastern Mediterranean region. 
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Highlights 

 Spinel-garnet-sapphirine-websterite xenoliths have a tholeiitic affinity. 

 Spinel-olivine-plagioclase-websterites have an alkaline affinity. 

 Composition of clinopyroxenes is consistent with metasomatism by silicate melts. 

 Websterite xenoliths originated from the shallow lithospheric mantle. 

 Websterite xenoliths highlight crustal growth of the eastern Mediterranean Province. 

1. Introduction 

Cenozoic alkaline volcanic rocks of the Harat Ash Shamm contain a large variety of ultramafic and mafic 

xenoliths derived from the crust and upper mantle. Previous studies of crustal granulites and mantle-

derived ultramafic xenoliths from the northern part of the Arabian Plate, particularly beneath the Dead 

Sea fault system (DSFS), focused mostly on petrographical and geochemical descriptions of mantle 

xenoliths and their Neogene–Quaternary host basalts (McGuire and Stern 1993; Medaris and Syada 1998; 

Nasir and Safarjalani 2000; Bilal and Touret 2001; Bilal and Sheleh 2004; Al-Mishwat and Nasir 2004; 

Al-Fugha and Al-Amaireh 2007; Shaw et al. 2007; Ismail et al. 2008; Ismail 2008; Nasir and Rollinson 

2008; Al-Safarjalani et al. 2009, Krienitz and Haase. 2010, Stern and Johnson. 2010, Trifono et al. 2011, 

Asfahan, 2011, Malpas et al., 2011; Nasir and Stern, 2012). 

Unlike mantle peridotitic xenoliths the composition of Syrian lithospheric deep segregates remain poorly 

documented, especially with regard to the links between modal mineral and isotopic compositions and 

their relationships to both rheological data at the Moho and tectonic history. Websterite, orthopyroxenite, 

and clinopyroxenite represent likely <5% of the upper mantle (Fabriès et al., 1991; Hirschman and 
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Stopler, 1996). The study of pyroxenite xenoliths carried by Neogene–Quaternary basalts from southern 

Syria provides a great deal of information regarding the composition and evolution of the mantle beneath 

a thinned continental lithosphere. Although mantle xenoliths have been studied in the Arabian Plate 

region, their origin and evolution have been much less considered. 

This paper reports new petrographical, mineralogical, and geochemical data for a suite of pyroxenite 

xenoliths originating from Jabel El Arab volcanism in southern Syria (Harat Ash Shamm: Tel Tannoun, 

Tel Imtan El Koudre, and Tel El Ajailate). The investigated xenolith suite comprises spinel-websterites 

and composite websterite/anorthosite xenoliths. Sapphirine coronas are described around spinel 

associated with or without garnet coronas in the websterite xenoliths (Ismail, 2008). This study aims to 

assess the nature and origin of these websterite xenoliths via whole-rock analyses and in situ trace 

element analyses of clinopyroxenes by LA-ICP-MS combined with new isotopic data on clinopyroxenes. 

The geochemical affinity and the clinopyroxene isotopic compositions of the websterite xenoliths are 

discussed in relation to the geodynamic context of the Arabian Plate and the magmatic evolution and 

crustal growth of the eastern Mediterranean provinces. Geochemical and seismic data are then combined 

to construct a model of the dynamics of the lower crust and upper mantle beneath the southern Syrian 

Rift since the late Proterozoic. 

2. Geological setting and xenolith occurrence 

Present-day Syria is situated in the northwestern portion of the Arabian Plate, and its western edge 

represents the northern Levantine continental margin. The Syrian Rift extends northwards for 

approximately 1000 km from the Dead Sea fault system and forms the boundary between the African 

and Arabian plates. Volcanism along the Syrian Rift is related to the movement of the Arabian Plate 

toward the Eurasian Plate at a velocity of 18 ± 2 mm/year in a north–northwesterly direction (McClusky 

et al. 2000; Fig. 1). Previous studies indicate that the lithosphere of the Arabian Plate formed through 



 5 

Neoproterozoic accretion of island arcs and microplates against northeast Africa, ca. 950–640 Ma, as 

part of the widespread pan-African orogeny (Beydoun 1991; Brew et al. 2001a, Stern and Johnson, 2010). 

This was followed by continental rifting and intercontinental extension between 620 and 530 Ma 

(Husseini 1989). The study region then became part of the northern passive margin of Gondwana for 

most of the Phanerozoic (Brew et al., 2001a; Adiyaman and Chorowicz, 2002). Seismic data indicates 

that the metamorphic Precambrian basement in Syria varies between 6 and 8 km in depth (McBride et 

al., 1990; Brew et al., 2001b). The thickness of the platform deposits reaches 10-km thick in the eastern 

part of the Arabian Plate. These platform deposits consist mainly of Phanerozoic sediments. Volcanism 

in Syria can be divided into two distinct periods: Upper Jurassic–Lower Cretaceous (Dubertret, 1933), 

and Neogene–Quaternary (Mouty et al., 1992; Nasir and Safarjalani, 2000). Neogene–Quaternary alkali-

basalt volcanism relates to the formation of the Red Sea (24–16 Ma) and Dead Sea rifts 8–0.4 Ma 

(Bohannon et al., 1989; Camp and Roobol, 1989; Nasir, 1994; Baker et al., 1997; Chorowicz et al., 2005). 

The Syrian Rift therefore represents the northern portion of the Dead Sea Rift and is the continuation of 

the Red Sea Rift. Neogene basalts from southern Syria are mostly alkali basalts and basanites (Stein and 

Hofmann, 1992; Stein et al., 1993; Laws and Wilson, 1997, Ismail, 2008, Ismail et al., 2008). 

Geochemical studies of volcanic rocks from the southern Arabian Plate (Yemen and Jordan) indicate that 

the interaction between the rising Afar asthenospheric mantle plume and the lithospheric mantle 

generated this volcanism (Camp and Roobol, 1989; Nasir, 1994, Baker et al., 1997). More recent 

geochemical studies of lavas from the northern portion of the Arabian Plate (Harat Ash Sham; Syria, 

Jordan) favor, rather, an origin of the volcanism due to asthenospheric upwelling in response to 

lithospheric extension in this region and do not assign any role for the Afar mantle plume (Shaw et al., 

2003; Lustrino and Sharkov, 2006; Weinstein et al., 2006). Nonetheless, recent isotopic data of mantle 

xenoliths entrained in late Cenozoic lavas from northwest Jordan suggest that the Arabian lithospheric 

mantle protolith formed from an already depleted mantle source that first formed during the accretion 
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and growth of the pan-African crust, ca. 700 Ma (Shaw et al., 2003, 2007). The long-term evolution of 

this portion of lithospheric mantle could represent a source region for Arabian intraplate volcanism. The 

study area of Jabel El Arab represents the northwestern boundary of the Arabian Plate (Fig. 1). Most of 

the Cenozoic volcanic fields in Syria are located along secondary faults with a N–S direction parallel to 

the Syrian Rift. The most widespread occurrence of alkali lavas (Neogene–Quaternary) is concentrated 

in southern Syria, as a linear zone parallel to the principal direction of the Syrian Rift. The Cenozoic 

basaltic lavas may be up to 1500-m thick and are covered by Tertiary and Quaternary sediments (Nasir 

and Safarjalani, 2000; Al-Mishwat and Nasir, 2004). We sampled xenoliths collected from the Neogene–

Quaternary volcanic field of Jabel El Arab (belonging to Harat Ash Shamm), south of Damascus, from 

Tel Tannoun (latitude: 32°57′, longitude: 36°44′), Tel Imtan El Koudre, located near the Jordanian border 

with Syria (latitude: 32°25′, longitude: 36°48′), and Tel El Ajailate (latitude: 32°46′, longitude: 36°47′) 

(Fig.1). These xenoliths occur around the flanks and within craters of strombolian volcanic cones. Most 

of these websterite xenoliths are rounded to subrounded in shape. They range in size from a few 

centimeters to more than 20 cm in diameter. 

3. Analytical methods 

We determined modal compositions by point counting (3000 points per thin section). We selected 18 

websterite xenoliths for mineralogical and geochemical analyses; major element compositions of bulk 

rock powders were then determined by X-ray fluorescence spectrometry (XRF) at the École des Mines 

de St-Étienne (France). Typical detection limits ranged from 0.01 to 0.06 wt% for CaO, Cr2O3, Fe2O3total, 

K2O, MgO, MnO, Na2O, P2O5, and TiO2. Detection limits were 0.20 and 0.50 wt% for Al2O3 and SiO2, 

respectively. We determined the concentrations of rare earth elements (REE) using inductively coupled 

plasma mass spectrometry (ICP-MS) at the Observatoire Midi-Pyrénées (University Paul Sabatier, 

Toulouse, France). For our analyses, 100 mg of powdered sample was dissolved in concentrated 
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HF/HNO3 within closed Savillex Teflon beakers. Following digestion, samples were evaporated to 

incipient dryness, dissolved in concentrated 2M-HNO3, and again evaporated to incipient dryness. We 

then transferred the sample solutions into 50-mL centrifuge tubes, and we filled the tubes to 50 mL using 

internal standard stock solutions. For ICP-MS, solution/sample ratios were >1000–1200. We also ran 

several reference materials (UB-N, JP-1, BE-N) on the ICP-MS with each sample batch to verify 

accuracy and precision. Detection limits were 1–5 ppb for most REE and 5–30 ppb for Ce and Sm. 

Average within-run precision (%RSD) was better than 5% for Er, Tm, Yb, and Lu, and better than 3% 

for all other REE. 

We also measured Sr and Nd isotopic ratios for five fresh clinopyroxenes (~150 mg) using a Finnigan 

MAT261 mass spectrometer at the Observatoire Midi-Pyrénées (University Paul Sabatier, Toulouse, 

France). Sr and Nd were collected using Sr-Spec, TRU-Spec, and LN-Spec resins. We verified the 

accuracy of the measurements using the NIST SRM 987 geostandard for 87Sr/86Sr (0.710271 ± 9) and 

the La Jolla geostandard for 143Nd/144Nd (0.511839 ± 6). 

Electron microprobe analyses of minerals were obtained using a CAMECA SX-100 (CNRS-UMR 6524, 

Clermont-Ferrand, France) with wavelength-dispersive spectrometry (WDS). Operating conditions were 

15 kV accelerating voltage, 15 nA beam current for mineral analyses with a beam diameter of ~2–3 μm. 

We used natural and synthetic minerals as standards. For all elements, counting times were 10 s for peaks 

and 10 s for background. Detection limits were typically 0.01–0.04 wt%. We also measured the 

concentrations of 27 elements (REE, Ba, Rb, Th, U, Nb, Pb, Sr, Zr, Hf, Ti, Y, Sc, V, and Ni) in 

clinopyroxenes from 120-μm thick polished sections using an LA-ICP-MS at the Observatoire Midi-

Pyrénées (University Paul Sabatier, Toulouse, France). This system comprises a CETAC LSX-200 

frequency-quadrupled Nd-YAG laser ablation system that delivers a wavelength of 266 nm connected to 

a Perkin Elmer Elan 6000 ICP-MS (Grégoire et al., 2002). A typical analysis consists of three replicates 
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of 100 readings; each replicate represents one sweep of the mass range. The counting time for one sample 

was typically 160–170 seconds. We used the NIST 610 and 612 glass standards as external standards, 

and normalized the analyses using the Ca wt% values determined by electron microprobe. The ablated 

material was carried from the laser cell to the ICP-MS using a mixture of He and Ar. Typical detection 

limits ranged from 10–20 ppb for REE, Ba, Rb, Th, U, Nb, Ta, Sr, Zr, Hf, and Y, 100 ppb for V and Sc, 

and 2 ppm for Ti, Ni, and Cr. The typical precision and accuracy for LA-ICP-MS analyses ranged from 

1% to 10%. 

4. Petrography 

All studied pyroxenite xenoliths are websterites (17 samples) and one composite websterite/anorthosite 

(IT41) (Table 1). They contain variable amounts of spinel (0.5–18.5 vol%), except for the composite 

xenolith IT41. Only one sample displays plagioclase (ca. 1 vol% in IT26). We distinguished two groups 

based on mineralogical characteristics (shown in Table 1). Group (A) is composed of spinel ± garnet ± 

sapphirine xenoliths, and Group (B) is composed of spinel ± olivine ± plagioclase xenoliths. 

Microstructures in xenoliths are usually coarse-grained and locally coarse grain-tabular to rare 

porphyroclastic, based on the classification of Mercier and Nicolas (1975). Clinopyroxene and 

orthopyroxene vary in size from 1 to 10 mm, and they usually show rectilinear grain boundaries. Both 

pyroxene porphyroclasts are commonly deformed. They display spongy rims in some 

spinel±garnet±sapphirine–bearing websterites (Group A: 12Th, 15Th, 16Th, and 20Th). Large pyroxene 

grains containing abundant exsolution lamellae of spinel and garnet are a common characteristic in most 

studied Syrian websterites (Fig. 2). Spinel occurs both as xenomorphic or subautomorphic crystals and 

as exsolution lamellae in most pyroxene porphyroclasts. Spinel is green in most samples and brownish 

in websterites containing olivine (Group B: II10, II31, and IT23). Their grain size ranges from 0.3 to 1 

mm, although larger grains reach up to 15 mm. Small crystals of orthopyroxene and rare clinopyroxene 
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are enclosed within large spinels of websterite IT28 (Group A) (Fig. 2a). Three spinel-garnet–bearing 

websterites (Group A: IT2, IT28, and 15Th) show significant replacement of thin garnet corona by spinel 

(Fig. 2e and f). We observed spongy rims of spinel only in the websterite sample 16Th (Group A). The 

proportion of garnet varies (2–10 vol%) in most websterites and appears commonly in the form of 

coronas around spinel or sapphirine (Fig. 2a, b, c) as xenomorphic crystals (0.2–2 mm) or exsolution 

lamellae. Some websterites show replacement of thin garnet coronas by kelyphite, similar to that 

described by Grégoire et al. (1994, 1998, 2001) for oceanic garnet granulite xenoliths from the Kerguelen 

Archipelago. Although several petrological and geochemical studies have examined cumulate xenoliths 

within the large volcanic massif of Jabel El Arab (Sharkov et al., 1993; Nasir and Safarjalani, 2000; Al-

Mishwat and Nasir, 2004; Bilal and Touret, 2001), only Ismail (2008) reported sapphirine-bearing meta-

igneous rocks in pyroxenite xenolith suites from the Syrian region. Our observation of sapphirine 

therefore constitutes an original petrological feature of the base of the crust or upper mantle beneath the 

Syrian Rift. We observed sapphirine in some websterite xenoliths (Table 1) from Tel Tannoun and Tel 

El Ajailate. This sapphirine has colorless or slightly blueish grains under polarized light and always 

surrounds spinel with or without garnet having coronas of millimetric thickness (Fig. 2c). Microstructural 

relationships between the three aluminous phases (spinel-garnet-sapphirine) in the studied websterites 

suggest two reactions at high pressure and temperature: (1) clinopyroxene+orthopyroxene+spinel to 

garnet, and (2) spinel+orthopyroxene+anorthite to clinopyroxene+garnet+sapphirine. Reaction (1) 

explains the formation of garnet, whereas reaction (2) indicates the formation of sapphirine and garnet 

coronas (Fig. 2a, b, c). Olivine characterizes, in particular, the two samples from Tel Imtan El Koudre 

(II10 and II31) and one xenolith (IT23) from Tel Tannoun which shows undulose extinction. Olivine is 

slightly altered and ranges in size from 0.5 to 3 mm. Orange-colored pargasite displays coronal textures 

around clinopyroxene in websterite IT26 and the composite xenolith IT41. We also observed pargasite 

as exsolution lamellae in pyroxene porphyroclasts of the websterite IT26. In the composite xenolith IT41, 
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a plagioclase-rich area is cross-cut by veins of clinopyroxenite (Fig. 2d) and, locally, orthopyroxenite. 

Porphyroclasts of plagioclase (1–5 mm) are more abundant at the contact with the pyroxenite (Fig. 2d). 

This composite xenolith is also extremely rich in titanomagnetite; titanomagnetite occurs in the coronas 

surrounding garnet as small grains enclosed in clinopyroxene porphyroclasts or as large subautomorphic 

crystals (ca. 8 mm) (Fig. 2d). Magnetite associated with titanomagnetite occurs in some samples (IT23, 

IT26, IT28, IT45, and IT53) in both groups as secondary minerals. The websteritic part of the composite 

xenolith IT41 (Group B) displays petrographical and microstructural characteristics similar to the other 

websterites. Garnet exsolutions in orthopyroxene grains in the spinel-amphibole-garnet-plagioclase–

bearing websterite (Fig. 2e) is a characteristic feature of IT26 (Group B). Orthopyroxene porphyroclasts 

locally enclose small garnet crystals (Fig. 2f) in the spinel-garnet–bearing websterite IT8 (Group A). 

Clinopyroxene and orthopyroxene porphyroclasts of the xenolith suite frequently contain variable 

amounts of solid inclusions and fluid inclusions of CO2, similar to those described in mantle xenoliths 

from Tel Tannoun by Bilal and Touret (2001); however, these inclusions are more abundant and larger 

than those observed in other Syrian mantle xenoliths, defined as Type I. The Syrian websterites can be 

classified according to the presence or absence of specific minerals, including garnet, olivine, sapphirine, 

and plagioclase (Table 1). 

5. Mineral major element composition 

5.1. Olivine 

Olivine only occurs in Group B websterite xenoliths (samples II10, II31, and IT23) and is commonly 

very magnesian. The Mg# = [Mg/(Mg+Fe2+)] × 100) in the websterites of Tel Imtan El Koudre site (94.4–

96.6) is clearly higher than that of the xenolith from Tel Tannoun (81.4–84.4). At Tel Imtan El Koudre 

(Group B), olivine could originate from mantle peridotites to explain such a disequilibrium. The NiO 
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content of olivines is relatively homogeneous (0.17–0.32 wt%). Concentrations of CaO are always <0.11 

wt%. 

5.2. Orthopyroxene 

All analyzed orthopyroxenes have enstatite compositions that range from En68.3 to En91.8. The Mg# is 

commonly homogeneous within each group and shows a slight decrease from Group A (81–90) to Group 

B xenoliths (69.6–89.2). These orthopyroxenes are characterized by Al2O3 >2.3 wt%. Higher 

concentrations of Al2O3 occur in orthopyroxene of Group A websterites (4.77–8.17 wt%) relative to the 

concentrations in the orthopyroxene of Group B websterites (2.3–6.65 wt%). The Cr2O3 content is usually 

low (<0.68 wt%). A positive correlation between Al2O3 and both Cr2O3 and Mg# is observed in 

orthopyroxene. 

5.3. Clinopyroxene 

Clinopyroxenes are commonly aluminous diopsides (3.24 < Al2O3 < 9.22 wt%), except for one spinel-

olivine–bearing websterite (Group B: IT23) and two clinopyroxenes from spinel-amphibole-garnet-

plagioclase–bearing websterites (Group B: IT26) that show an Al-augite composition. The Mg# 

decreases progressively from Group A websterites (83.06–91.7) to Group B websterites (70.78-88.4) to 

the composite websterite/anorthosite (68.9–70.8) (Fig. 3). The CaO content of clinopyroxenes is usually 

homogeneous in Group A (21.1–23.26 wt%), while highly variable in Group B websterites (17.35–23.27 

wt%). The highest Cr2O3 concentrations characterize the spinel-garnet-sapphirine websterites (0.07–0.96 

wt%), whereas the composite sample IT41 (Group B) displays the lowest concentration (< 0.06 wt%). 

The clinopyroxenes of Group B websterites are characterized by a higher TiO2 and Na2O content (0.49–

2.11 wt% and 0.56–1.86 wt%, respectively) than Group A websterites (0.09–0.94 wt% and 0.54–1.19 
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wt%, respectively). The clinopyroxene compositions show a progressive trend of decreasing TiO2 and 

Na2O and increasing CaO with increasing Mg# from Group A to Group B websterites. 

5.4. Spinel 

The spinel is aluminous (Al2O3 >47.1 wt%) having a relatively low Cr2O3 content (Cr2O3 <10.7 wt%). 

The Mg# and Al2O3 contents of spinel decrease progressively from Group A (68.2–88.6 and 56.5–68.6 

wt%, respectively) to Group B websterites (42.4–75.6 and 47.1–60.6 wt%, respectively). The Cr# (= 100 

× Cr/[Cr+Al] in mole fractions) is always <11.3 with the highest values for the Group A websterite 

sample 12Th (5.6–11.3) (Fig. 4). TiO2 content is <0.86 wt% and the highest concentrations are observed 

in Group B websterites (0.16–0.86 wt%). The spinel in amphibole-garnet-plagioclase websterite IT26 

(Group B) is characterized by higher TiO2 (0.45–0.86 wt%) and Mg# (42.35–48.85). The exsolution 

lamellae in spinel from sample IT23 (Group B) are characterized by higher TiO2 (0.7 wt%) and FeO 

(32.34 wt%) and a lower Al2O3 (47.06 wt%) content than other spinel (TiO2: 0.16–0.25 wt%, FeO: 18.09–

19.02 wt%, and Al2O3: 58.61–60.59 wt%). 

5.5. Plagioclase 

We analyzed plagioclase for the spinel-amphibole-garnet websterite IT26 (Group B) only. The 

plagioclases are usually andesine (An41.7–42.4), except for one bytownitic plagioclase (An70.4) observed in 

a small vein. 

5.6. Garnet 

Garnet compositions in the xenolith suite cover the range Py43–79, Alm3–40, Grs6–23, with a minor 

spessartine component (<2). All garnet xenoliths are very poor in Cr2O3 (<0.42 wt%) and relatively rich 

in CaO (4.51–8.13 wt%). Cr2O3 and Na2O content increases progressively from Group A (<0.42 wt%, 
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<0.93 wt%, respectively) to the websterites (0.01–0.3 wt%, 0.02–0.33 wt%, respectively). TiO2 

concentrations are always <0.13 wt%. Garnet from websterites has a relatively homogeneous Al2O3 

composition (22.28–24.46 wt%), except the one around spinel from sample IT45 that displays a higher 

Al2O3 content (26.49 wt%). The exsolution lamellae in garnet from sample 26Th (Group A) do not 

present any significant differences from those found in xenomorphic crystals. Although there are no 

remarkable variations between coronas and garnet crystals, the garnet halos around spinel or sapphirine 

often show a greater enrichment in Na, Ca, and Al. 

5.7. Sapphirine 

We observed sapphirine only in Group A websterites from Tel Tannoun and Tel El Ajailate. Sapphirine 

always appears as coronas around spinel associated (or not) with garnet. All sapphirine stoichiometries 

fall between two poles: a 2:2:1 (siliceous pole) and 7:9:3 (aluminous pole) in the (Mg,Fe)O Al2O3 SiO2 

system (Higgins et al. 1979). The studied sapphirines typically have a composition close to 15:17:7 (Fig. 

5). Their chemical composition is normally homogeneous, lacking any systematic variations between 

those only with spinel and those associated with garnet. Sapphirine has a high Mg# (90.6–94.5) and 

Al2O3 content (55.27–61.51 wt%). All sapphirines have negligible TiO2 (0.01–0.08 wt%), whereas their 

Cr2O3 content, however, is relatively high (0.51–4.52 wt%). 

5.8. Amphibole 

Amphiboles occur in two samples of Group B (websterite IT26 and composite xenolith IT41). They are 

Ti-pargasites, based on the classification of Leake et al. (1997). Their Mg# in websterite IT26 (72.3–

90.4) is higher than that in the composite xenolith IT41 (ca. 66.6). The amphiboles are relatively poor in 

Cr2O3 (<0.66 wt%) and K2O (0.15–1.3 wt%) and rich in Na2O (2.81–3.62 wt%) and TiO2 (1.53–4.51 

wt%). 
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6. Trace elements in clinopyroxenes 

REE and other trace element concentrations in clinopyroxenes cores are listed in Table 3 and presented 

in Fig. 6. No trace element data are available for websterites 20Th, 21Th, 26Th, IT23, IT28, and II10. 

We also subdivided the xenoliths containing clinopyroxenes having variable trace element contents into 

two groups on the basis of the shape of their REE patterns and their major elements and Sc, V, and Ni. 

This geochemical-based subdivision agrees well with the mineralogical one. 

6.1. Group A 

Clinopyroxenes are usually characterized by a low abundance of LREE relative to MREE and HREE 

(IT2, IT8, IT45, IT53, 9Th, 12Th, 15Th, 16Th, and IG4, Fig. 6). They have a high Mg# (86.3–91.7), high 

Al2O3 (6.32–9.07 wt%), CaO (21.16–23.3 wt%), Cr2O3 (0.07–0.96 wt%), Ni (190–440 ppm), and V 

(175–505 ppm) content and a low Na2O (0.62–1.12 wt%), TiO2 (0.01–0.38 wt%), and Sc (20–57 ppm) 

content (Tables 2 and 3). The [La/Yb]N (N = primitive mantle–normalized, after McDonough and Sun, 

1995) ratios are low and range from 0.07 to 1.16. The clinopyroxenes of this group (Fig. 6) have a shape 

similar to those of Syrian peridotites depleted in LREE (Ismail et al., 2008) and spinel-garnet pyroxenites 

from Jordan (Shaw et al., 2007). Clinopyroxenes in the garnet-rich websterite IT53 are distinguished by 

a lower REE content relative to other xenoliths, whereas those of websterite 12Th are slightly depleted 

in Eu. The spinel websterite 16Th is characterized by a progressive depletion from Yb to Pr, and in 

contrast, by a slight enrichment in Ce and La showing a ‘‘spoon-shaped’’ REE pattern ([La/Sm]N: 0.40; 

[Sm/Yb]N: 0.25; [La/Yb]N: 0.15). Trace element patterns display a marked enrichment in some of the 

LILE (Th and U for the samples 9Th, 12Th, and 15Th), and Eu (samples 15Th, 16Th, IT2, and IT53) as 

well as being highly depleted in Ba, Zr, Ti, and Nb (sample 15Th) and Sr for the websterite samples, 9Th 

and 12Th. Their Sr concentrations are relatively low at 1 to 25 ppm (Fig. 6). 
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6.2. Group B 

Clinopyroxenes are characterized by REE and trace element patterns that show an enrichment in the most 

incompatible trace elements (IT26, IT41, and II31). They have a low Mg# (67.4–88.4) and a variable 

Al2O3 (2.24–8.73 %), CaO (17.35–23.27 wt%), Cr2O3 (< 0.78 wt%), V (230–290 ppm), and Ni (55–255 

ppm) content as well as a high Na2O (0.56–1.86 wt%), TiO2 (0.49–2.11 %), and Sc (55–75 ppm) content 

(Table 2 and 6). All clinopyroxenes are highly enriched in REE compared to the primitive mantle (PM; 

McDonough and Sun, 1995), ranging 1–26× PM values. The clinopyroxenes of samples IT26 and IT41 

are very homogeneous and clearly more enriched in REE  than the clinopyroxenes of sample II31. Their 

trace element patterns show regular enrichments from HREE to MREE for websterite II31 and Nd for 

websterites IT26 and IT41, whereas the LREE are slightly depleted relative to MREE (La/Sm]N: 0.30–

0.53; [Sm/Yb]N: 0.98–1.90; and [La/Yb]N: 0.49–1.39. Only the clinopyroxene from the olivine websterite 

II31 plots within the field of LREE-rich clinopyroxenes from the Syrian mantle peridotites (Ismail et al., 

2008) (Fig. 6). The Group B clinopyroxene trace element patterns have negative Ba, Nb, Pb, Sr, Zr, and 

Ti anomalies and have positive U and Nd anomalies (Fig. 6). 

7. Whole rock major and trace element composition 

The major and trace element composition of the studied websterite xenoliths are listed in Table 4. These 

websterites are ultrabasic and basic having a SiO2 range from 39.81 to 49.57 wt% and a MgO range from 

11.52 to 26.50 wt%. The Mg# decreases sharply from Group A (76–90) to Group B (56–84) websterites 

(Fig. 7). The Group B websterites are characterized by a higher TiO2 (0.34–2.57 wt%) and FeOtotal (7.83–

18.05 wt%) content than the Group A websterites (TiO2: 0.05–0.52 wt%, and FeOtotal: 3.68–10.11 wt%), 

whereas Group B has the lowest Al2O3 concentrations (7.87–16.26 wt%). Mg# is negatively correlated 

with TiO2, FeOtotal, K2O, and Na2O from Group A to Group B, reflecting their modal mineralogy, 

particularly in ilmenite, magnetite, and plagioclase. All websterite xenoliths of Group A and one Group 
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B olivine websterite IT23 are similar in composition to the “Mafic 1” field defined for global granulite 

xenoliths (Kempton and Harmon, 1992; Fig. 7). Two spinel-olivine websterites, II10 and II31, from the 

Group B xenoliths have the highest SiO2/Al2O3 ratios (10.5–11.2), whereas the composite IT41 and 

spinel-garnet-plagioclase websterite IT26 plot within the “primitive basaltic magma” field. Compatible 

trace elements, such Cr, Ni, Co, V, and Sc, vary markedly within the xenolith suites. The xenoliths of 

Group A, particularly spinel-garnet-sapphirine websterites, are characterized by high concentrations of 

Cr (355–2265 ppm), V (70–215 ppm), and Sc (12–25 ppm), and low Ni (170–210 ppm) and Co (15–20 

ppm) (Table 4). 

Clinopyroxenes in both groups have distinctive PM–normalized REE patterns (Fig. 8). Within each 

group, the xenoliths usually exhibit homogeneous trace element compositions. Group A websterite 

xenoliths commonly show LREE depletion compared to MREE and HREE ([La/Sm]N: 0.35–2.10; 

[Sm/Yb]N: 0.07–0.55; and [La/Yb]N: 0.09–0.75) (Fig. 8). All xenoliths of this group display a slight 

enrichment either in La (IT8, 9Th, 12Th, 15Th, 16Th, and 20Th) or La-Ce (IT45, IT53, IT2, 21Th, and 

26Th). The garnet-rich websterite IT53 is distinct from the other websterites by having an extremely low 

LREE abundance, whereas sample IT28 is slightly enriched in HREE and MREE (2× PM). The Group 

A websterites are greatly depleted in some HFSE (Ti, Zr, and Nb for 9Th, 12Th, IT8, IT28, and IT53) 

and LILE (Th, Rb, and Sr for 9Th, 12Th, 20Th, and IT28), whereas the samples are enriched in Ba, U, 

and Pb (except for the sample 16Th) and also show a slight enrichment in Ta. 

Group B websterites have upward convex, normalized patterns, enriched in MREE relative to LREE and 

HREE ([La/Sm]N: 0.35–0.90; [Sm/Yb]N: 0.75–1.55; and [La/Yb]N: 0.45–2.25) (Fig.8). The composite 

xenolith and one garnet-plagioclase–bearing websterite IT26 have the highest REE abundance (ca. 5× 

PM). The Group B websterites display positive Ba and U anomalies and negative Zr, Pb, Th, Nb, and Sr 

anomalies (except for sample IT41). Low Ti content is only observed in two samples, II10 and II31. The 
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slight Eu enrichment in xenoliths IT26 and IT41 is consistent with the occurrence of plagioclase in these 

rocks. 

8. Sr-Nd isotopic composition 

The Sr-Nd isotopic composition of five clinopyroxenes from Group A spinel-garnett±sapphirine  

websterite xenoliths (IT2, IT8, IT53, 12Th, and IG4) are remarkably heterogeneous in 87Sr/86Sr 

(0.702970–0.706177) and in 143Nd/144Nd (0.512953–0.514024). Furthermore, all plot outside the mantle 

array (Fig. 9). These clinopyroxenes are usually depleted in LREE (Fig. 6) and have low to very low 

Rb/Sr and Sm/Nd ratios. Clinopyroxenes from samples IG4 and IT2 show an atypical isotopic 

composition, particularly their relatively high 143Nd/144Nd ratios (= 0.513850–0.514024). The 

clinopyroxene from sample 12Th has the lowest observed radiogenic Sr and Nd isotopic composition 

(87Sr/86Sr = 0.702970 and 143Nd/144Nd = 0.512953) and is similar to the clinopyroxene found in the 

Arabian lithospheric mantle or in the Syrian mantle xenoliths. The clinopyroxene in the spinel-garnet-

sapphirine–bearing websterite IT53 is extremely radiogenic in 87Sr/86Sr (0.706177), but it has a very low 

LREE content and low amounts of highly incompatible elements (Rb, Sr). Its highly radiogenic Sr 

isotopic signature could be due to recent surface alteration and will not be discussed further. It does, 

however, have a similar 143Nd/144Nd to the clinopyroxene from sample IT8 and clinopyroxenes from the 

Syrian, Arabian, and Jordanian lithospheric mantle (Fig. 9). 

9. Pressure-temperature estimates 

We calculated temperatures estimates using the two-pyroxene (clinopyroxene-orthopyroxene) 

geothermometers of Wells (1977) and Brey and Köhler (1990a), and we calculated pressure estimates 

using the garsnet-orthopyroene geobarometer of Harley (1984), only considering the major element 

composition of mineral cores (Table 1). Except for the composite xenolith IT41, the estimated 
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temperatures and pressures of the websterite xenoliths are relatively similar and range respectively from 

885 to 1080 °C and 1.1 to 1.5 GPa. The Brey and Köhler geothermometer (1990a) estimates temperatures 

of 820–1080 °C, slightly higher than those based on the Wells (1977) geothermometer (815–1050 °C). 

The temperature estimates in the composite xenolith IT41 are very homogenous and low (815–820 °C at 

1.2 GPa), whereas the spinel-olivine–bearing websterite IT23 has a higher estimated temperature of 

1050–1080 °C. The temperature estimates for Group B websterites (815–1080 °C) are slightly higher 

than those estimated for Group A (895–1000 °C). The low temperatures of the spinel-olivine websterites 

II10 and II31 (885–905 °C) compared to other xenoliths could relate to slight alteration effects. Spinel-

garnet websterites, with or without sapphirine, commonly have similar equilibration temperatures in the 

range 900–1000 °C, irrespective of the applied geothermometers. 

Pressures for the spinel-garnet-sapphirine xenoliths (1.2 to 1.5 GPa) are slightly higher than for those 

lacking sapphirine (1.1 to 1.3 GPa). Pressures cannot be calculated for xenoliths lacking garnet, but they 

can be deduced approximately from experimental studies, and by comparing mineral assemblages with 

known phase stability fields. Therefore, we estimated that spinel-olivine xenoliths (IT23, II10, and II31) 

equilibrated at a pressure range of 1.0 to 1.5 GPa. Based on their mineral assemblages, all studied 

websterites re-equilibrated in the garnet-pyroxenite stability field, except for the spinel-garnet websterite 

IT28 (Fig. 10). This latter assemblage lies at the boundary between the spinel and garnet-pyroxenite 

stability fields; however, the estimated temperature and pressures of this study (950 ± 130 °C and 1.25 ± 

0.18 GPa) are slightly lower than those calculated using CO2 fluid-inclusion microthermometry in mantle 

pyroxenites (1200 °C and 1.5 GPa) along the Syrian Rift (Bilal and Touret, 2001) and correspond to the 

estimated average temperature and pressure. 

10. Discussion 

10.1 An igneous origin for the meta-websterite xenolith suites 
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Based on the model of Kempton and Harmon (1992) for identifying the origin of granulites (Fig. 7), most 

xenoliths show a strong affinity with the “Mafic 1” field. The exceptions are two samples having a lower 

Mg# that are similar to “primitive basaltic melts”. The whole-rock Mg# and SiO2/Al2O3 of the xenolith 

suite are therefore consistent with them being magmatic cumulates of pyroxene and olivine (and/or 

plagioclase), except for the two amphibole-bearing xenoliths IT26 and IT41. Some of the xenoliths in 

the suite also show an affinity with high pressure (1.2 GPa) experimental igneous pyroxenites (Fig. 3, 

Müntener et al. 2001). The spinel composition of the websterite xenoliths clearly differs from that of 

Syrian mantle xenoliths (Ismail et al., 2008), abyssal peridotites (Dick and Bullen, 1984), and subduction-

zone pyroxenites from the Solomon Islands (Berly et al., 2006). Rather, they resemble sapphirine-garnet–

bearing oceanic meta-gabbros from the Kerguelen Archipelago (Grégoire, 1994; Grégoire et al., 1998), 

which have a clear tholeiitic-transitional affinity related to a high degree of partial melting of a depleted 

mantle source (Fig. 4). All studied Syrian websterites (Fig. 10) have a rather similar equilibration T (900–

1100 °C) and P (1–1.5 GPa), comparable to equilibration temperatures and pressures for spinel-bearing 

mantle xenoliths from the Arabian Plate (McGuire, 1988; Nasir and Safarjalani, 2000; Bilal and Touret, 

2001; Bilal and Sheleh, 2004; Nasir et al., 2006; Ismail et al., 2008); the exception is for the composite 

xenolith (IT41; T: ~820 °C and P: 1.2 GPa). In contrast, the Syrian pyroxenite xenoliths display much 

higher equilibration temperatures and pressures than the granulite xenoliths from the Arabian Plate 

(McGuire, 1988; Al-Mishwat and Nasir, 2004), and they crystallized at depths close to the Moho and 

can be considered as deep magmatic segregates near the crust–lithospheric mantle transition zone. 

10.2  Sp±Ga±Sa–bearing websterites (Group A): Deep cumulates from tholeiitic-             

transitional basaltic melts 

Group A xenoliths are characterized by anhydrous parageneses and the occurrence of garnet. Their major 

element compositions of mineral phases and whole rocks are commonly homogenous. They show a high 
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Mg#, Al2O3, and CaO content as well as low concentrations of TiO2, Na2O, K2O, and P2O5. Trace element 

composition in clinopyroxenes and whole rocks are also homogenous and commonly characterized by 

low REE, Zr, Ti, Sr, Rb, and Th. However, preferential enrichment in LREE in whole rocks or 

clinopyroxenes, particularly in La, Ce, and Pr, as well as some very incompatible elements (Fig. 6 and 

8), indicates that these cumulates were later metasomatized by small volumes of silicate melt percolating 

through the upper lithospheric mantle beneath the Syrian Rift. All the clinopyroxenes in the sapphirine-

garnet–bearing websterites show similarities with the sapphirine-garnet–bearing oceanic meta-gabbros 

from the Kerguelen Archipelago equilibrated in the granulite facies (Grégoire, 1994; Grégoire et al., 

1998), but are more aluminous than in mantle pyroxenites worldwide, and subduction-zone pyroxenites 

from the Solomon Islands (Berly et al., 2006) (Fig. 3). The Syrian pyroxenite xenoliths suite (Fig. 5) 

crystallized at depth close to the Moho and may be considered as deep magmatic segregates around the 

crust–lithospheric mantle transition zone. The Syrian sapphirines commonly plot in the field of the 

sapphirine granulites from Antarctica (Dunkley et al., 1999; Harley and Motoyoshi, 2000; Tsunogae et 

al., 2002; Grew et al., 2006). In detail, some fall within the sapphirine field of basic granulites from the 

Finero ultrabasic and basic massif (Sills et al., 1983); others are situated within the field of sapphirine-

garnet meta-gabbros from the Kerguelen Archipelago (Grégoire 1994, Grégoire et al.,1998) or in the 

field of sapphirine from ultra-high-temperature granulites from north-central Madagascar (Goncalves, 

2002). Only three sapphirines fall within the field of the Indian sapphirine granulites (Mohan et al., 1996; 

Owen et al., 2003; Braun et al., 2007); however, they are all situated at the boundary of the sapphirine 

field for the basic granulite xenoliths from Stockdale, USA (Meyer and Brookins, 1976). 

The major and trace element composition of Group A xenoliths compares to that of ultramafic and mafic 

cumulates derived from tholeiitic to tholeiitic-transitional melts of the lithospheric mantle of the Arabian 

Plate (Al-Mishwat and Nasir, 2004), some ophiolitic complexes of the Apennines from Italy (Cottin, 

1984), and Type II xenoliths from the oceanic lithospheric mantle beneath the Kerguelen Archipelago 
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(Grégoire, 1994; Grégoire et al., 1998). The mineralogical and chemical characteristics suggest that 

Group A xenoliths represent deep cumulates (1–1.15 GPa) crystallized from basaltic melt that have a 

tholeiitic to transitional affinity derived from a depleted MORB-source mantle (DMM), similar to the 

clinopyroxene compositions of some Patagonian mantle xenoliths (Melchiorre et al., 2015). 

10.3 Sp±Ol±Pl–bearing websterites (Group B): Deep cumulates from alkali basaltic melts 

The olivine±plagioclase±garnet websterites and the composite websterite/anorthosite xenoliths from 

Group B xenoliths share a similar mineralogical and geochemical composition; this pattern indicates that 

they are derived from melts being similar in composition. These xenoliths have the highest concentrations 

of incompatible trace (REE, Zr, Rb, Y, and Sr) and major elements (TiO2, Na2O, and K2O) associated 

with the lowest Mg#. However, clinopyroxenes in the composite websterite-anorthosite xenolith are 

relatively similar to garnet-granulites from Saudi Arabia (Fig. 3, McGuire and Stern, 1993). The REE 

clinopyroxene patterns of Group B are similar in shape to those of spinel-garnet–bearing pyroxenites 

from the Jordanian lithospheric mantle, but the Group B samples have a higher trace element content 

(Fig. 6). The two amphibole-bearing websterites, IT26 and IT41, are comparable to olivine 

clinopyroxenites from the Kerguelen Archipelago (Fig. 8) (Scoates et al. 2008). The enrichment in Ti 

and alkalis, together with the overall REE enrichment in xenoliths of this group—particularly in 

MREE—could indicate they are associated with (earlier) alkaline Cenozoic magmatism along the Syrian 

Rift. This hypothesis is favored by the high REE content of basalts from the same location (Fig. 8; Jabel 

El Arab, Ismail, 2008). The mineralogical and chemical composition of Group B xenoliths indicates that 

they could represent deep cumulates crystallized from alkali basaltic melt under HP-HT conditions of 

the upper lithospheric mantle beneath the Syrian Rift (1.1–1.3 GPa). Finally, all studied websterite 

xenoliths lacked similarity with Cenozoic alkali basalts from southern Syria (Ismail 2008), indicating 
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that the slight interaction with basaltic magma observed for some samples could be considered as a minor 

metasomatic imprint. 

10.1. Isotope characteristics of Group A websterites 

The measured Sr-Nd isotopic compositions of clinopyroxenes in the websterite suite vary highly, 

especially in terms of the 143Nd/144Nd isotopes (Table 5); however, these clinopyroxenes also have low 

Rb/Sr and 147Sm/144Nd values. Their measured isotopic composition cannot have changed significantly 

since the originating eruption (<10 Ma). The age of the websterite formation being unknown, the initial 

Sr-Nd isotopic ratios of the websterite cannot be used to discuss the exact nature of the mantle source 

from which they formed. Clinopyroxenes in the Sp-Ga-Sa–bearing websterite 12Th and the spinel-

garnet–bearing websterite IT8 have Sr-Nd isotopic ratios comparable to clinopyroxenes from the Arabian 

lithospheric mantle or from Saudi Arabian and Jordanian mantle xenoliths but different from those of the 

Afar plume field (Fig. 9). They also have similar Sr-Nd isotopic ratios to clinopyroxene from Syrian 

mantle xenoliths. Except for sample IT53, which has a very radiogenic Sr isotopic ratio (0.706177, Table 

5), all clinopyroxenes have Sr isotopic ratios in the range of those for southern Syrian alkaline basalts, 

and all have Sr and Nd isotopic compositions that differ from those found in Jordanian pyroxenites and 

in the upper crust of the Arabian Plate (Fig. 9). The Nd isotopes of these four samples vary quite 

markedly, while Sr isotopes present a relatively limited variation; this pattern is similar to that of 

clinopyroxene from the Syrian, Saudi Arabian, and Jordanian mantle xenoliths. Depleted mantle Nd-

model ages (TDM) for two websterites are younger (140–250 Ma, Table 5) than the large range of TDM of 

270–910 Ma given for the formation of Jordanian mantle peridotites by Shaw et al. (2007). The highly 

radiogenic Nd isotopic ratios and the associated respective TDM model ages of 515 and 717 Ma (IG4 and 

IT2) could reflect their derivation from an older portion of lithospheric mantle beneath the Arabian Plate, 

structured during the pan-African orogeny (750–620 Ma) as also suggested by other studies (McGuire 
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and Stern, 1993; Brooker et al., 2004; Shaw et al., 2007). The pyroxenite xenoliths could thus represent 

ancient cumulates, formed possibly at the time of the pan-African orogeny or later when such lithospheric 

domains were reactivated by later tectonic events, such as rifting and intracontinental extension (620–

530 Ma) along the northern edge of the Arabian Plate (Husseini, 1989; Brueckner et al., 1995; Blusztajn 

et al., 1995; Shaw et al., 2007). The highly variable TDM in clinopyroxenes supports the idea that the 

northern border of the Arabian lithosphere in Syria and Jordan is composed of mantle portions that were 

extracted or reworked at different times during important geodynamic events that have structured the 

Arabian Plate since pan-African times. 

10.2. Structure of the lower crust and upper mantle beneath the Syrian Rift 

Thermobarometric data for the studied websterites (Fig. 10) indicate that the xenoliths were derived from 

deep levels within the lithosphere (~28–44 km). These thermobarometric estimations can be correlated 

with seismic discontinuities observed beneath the Syrian Rift. The seismic and gravity models suggest 

that the thickness of the crust in Syria is about 37 km (McBride et al., 1990; Sawaf et al., 1993; Brew et 

al., 2001a). Geophysical studies coupled with those of mantle xenoliths from the northwestern part of the 

Arabian Plate (Syria, Jordan and Saudi Arabia) indicate that the lithosphere-asthenosphere boundary 

occurs at a depth ranging between 70 and 75 km (Gettings et al., 1986; El-Isa et al., 1987a, b; McGuire 

and Bohannon, 1989; McBride et al., 1990; Sawaf et al., 1993; Hofstetter and Bock, 2004; Al- Damegh 

et al., 2005). Four major seismic discontinuities are distinguished in the northwestern region of the 

Arabian Plate on the basis of seismic data (El-Isa et al., 1987a, b; McBride et al., 1990; Sawaf et al., 

1993; Brew et al., 2001a, b; Al-Damegh et al., 2005). The first discontinuity is situated at a depth between 

19 and 21 km and represents the transition zone between upper crustal granitic and meta-volcanic rocks 

(Vp = 6.2 km s-1) and deeper mafic rocks (Vp = 6.7 km s-1) of the Arabian Shield. Gabbros having 

tholeiitic, tholeiitic-transitional, and alkaline affinities also occur in Cretaceous (Jubats region) and 
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Neogene–Quaternary (Tel Tannoun locality) rocks and may represent such a deeper mafic crustal level 

(Ismail, 2008). The second discontinuity can be found at a depth between 27 and 30 km and corresponds 

to a thick crust-mantle transition zone. It is characterized by an increase in P-wave velocity (from Vp = 

7.1 km s-1 to Vp = 7.7 km s-1) and a thickness varying between 5 and 8 km. The third discontinuity 

represents the true Moho at a depth of 35–40 km, similar to the depth range for the studied xenoliths as 

deduced from equilibrium pressure calculations (Table 1). The comparison between geophysical and 

petrological data indicates that the investigated Syrian pyroxenite xenolith suite likely represents deep 

ultramafic and mafic segregates constitutive of the petrological Moho beneath the Syrian Rift. A similar 

interpretation has been proposed for oceanic granulite xenoliths from the Kerguelen Archipelago in a 

mantle plume context (Grégoire et al., 1998), as well as various continental orogenic settings, including 

the late Hercynian Ivrea area in the Alps (Garuti et al., 2001) or the Caledonian subcrustal delamination 

domain of the sub-Scottish area, revealed by xenoliths and attesting to the opening of the Iapetus Ocean 

following the breakup of the Rodinia supercontinent (Halliday et al., 1993; Downes et al., 2001, 

Bonadiman et al., 2008, Upton et al., 2011). The ultramafic segregates of various affinities in the Syrian 

xenoliths could have formed as dikes or lenses within the lherzolitic or harzburgitic mantle in a 

continental or oceanic setting (Wilshire and Shervais, 1975; Grégoire et al., 1998). We suggest that these 

pyroxenites may represent the subhorizontal boundary between the Syrian lithospheric upper mantle, 

where underplated tholeiitic-transitional melts intruded at the base of a thinned Syrian crust in response 

to Mesozoic rifting, and magmatism beneath the Arabian Plate (Stein and Hoffman 1992) and the eastern 

Mediterranean region. This scenario may also be supported by the occurrence of early Mesozoic 

ophiolites (Parot 1977, 1980, Dileck et al., 1991). The alkaline ultramafic-mafic cumulates could also 

represent deep dikes or lenses also associated with the Mesozoic rifting episode in Syria, itself possibly 

related to a “fossilized?” Cretaceous mantle plume head (Stein and Hoffman 1992). The small number 

of old Nd-model ages of some tholeiitic-transitional cumulates also suggests their formation may be 
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linked to older geodynamic events that structured the Arabian Plate during the pan-African period (Shaw 

et al., 2007). 

11. Conclusions 

The Cenozoic alkali basalts of Jabel El Arab (Harat Ash Shamm) from southern Syria carry anhydrous 

websterite xenoliths. The sapphirine coronas, described in some xenoliths, are a main characteristic 

feature of some of the Syrian spinel-garnet–bearing websterites and attest to the reaction from 

spinel+orthopyroxene+anorthite to clinopyroxene+garnet+sapphirine. The pyroxenite suite can be 

divided into two groups based on petrographical, mineralogical, and geochemical composition: 

 Group A consists of deep magmatic cumulates (1–1.5 GPa) crystallized from basaltic liquids of 

tholeiitic-transitional affinity that originated from a depleted mantle source. 

 Group B consists of deep magmatic cumulates that crystallized under HP-HT conditions (1.2–1.5 

GPa) from liquids of alkaline affinity. 

The high Mg# and high Al2O3 and CaO content coupled with low SiO2/Al2O3 ratios indicate the 

cumulative origin of the xenolith suite under high-pressure conditions. The xenoliths have been 

equilibrated in the garnet-pyroxenite stability field (950 ± 130 °C and 1.25 ± 0.18 GPa), indicating that 

they were derived from the crust and lithospheric mantle transition zone at an approximate depth between 

28 and 44 km. Nd isotopic ratios of the lithospheric mantle beneath the Syrian Rift vary greatly. Based 

on a limited number of Nd-model ages and considering the geodynamic history of the Arabian Plate, we 

propose that tholeiitic-transitional and alkaline magmas were underplated below or intruded at the base 

of a thinned Syrian crust in response to Mesozoic rifting and magmatism beneath the Arabian Plate and 

the eastern Mediterranean region. 
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Figure captions 

Fig. 1 Geological map of the Syrian Rift showing the websterite xenolith localities at Tel Tannoun, Tel 

Imtan El Koudre, and Tel El Ajailate, Syria. These sites had eruptions at the surface during Cenozoic 

basaltic volcanism at Jabel El Arab. 

Fig. 2 Photomicrographs of petrographic features in the Syrian websterite xenoliths. (a) Spinel enclosing 

orthopyroxene grains and surrounded by garnet coronas in spinel-garnet–bearing websterite IT28. (b) 

Corona of altered garnet (kelyphite) around spinel in spinel-garnet-sapphire–bearing websterite IG4. (c) 

Garnet and sapphirine coronas around spinel in Ga-Sa–bearing websterite 9Th. (d) Composite xenolith 

of websterite/anorthosite IT41. e) Exsolutions of garnet in orthopyroxene grains in Sp-Am-Ga-Pl–

bearing websterite IT8. f) Mutual exsolutions in orthopyroxene and clinopyroxene in Sp-Ga–bearing 

websterite IT26. Photomicrographs (a) and (b) demonstrate that the formation of garnet coronas lacking 

sapphirine can be explained by the retrograde reaction (1) clinopyroxene+orthopyroxene+spinel --> 

garnet, whereas the garnet and sapphirine corona in photomicrograph (c) results from the reaction (2) 

spinel+orthopyroxene+anorthite--> clinopyroxene+garnet+sapphirine. 

Fig. 3 Mg# vs Al2O3 in clinopyroxenes from Syrian websterite xenoliths. Stars represent data from 

experimental igneous pyroxenites at 1.2 GPa (Müntener et al., 2001); light gray area represents the 

compositional field of mantle pyroxenites (Kornprobst, 1969; Irving, 1974, 1980; Frey and Prinz, 1978; 

Sinigoi et al., 1980; Bodinier et al., 1987, 1988; Griffin et al., 1988; Piccardo et al., 1988; Seyler and 

Mattson, 1993; Shervais, 1990; Pearson et al., 1993; Rivalenti et al., 1995; Vaselli et al., 1995; Kumar et 

al., 1996; Wilkinson and Stolz, 1997; Garrido and Bodinier, 1999; Zanetti et al., 1999; McInnes et al., 

2001); the dark gray area represents the compositional field of garnet-granulites from Saudi Arabia 

(McGuire and Stern, 1993); the horizontal lines represent the compositional field of subduction zone 

pyroxenites from the Solomon Islands (Berly et al., 2006); the horizontal dashed lines represent the 
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compositional field of spinel of sapphirine-garnet–bearing meta-gabbros from the Kerguelen 

Archipelago (Grégoire, 1994; Grégoire et al., 1998. Solid circles: spinel-garnet-sapphirine–bearing 

websterites, open circles: Sp-Ga–bearing websterites, solid squares: spinel-olivine–bearing websterites, 

open squares: Sp-bearing websterites, solid triangles: spinel-amphibole-garnet-plagioclase–bearing 

websterite, open triangles: Ga-Am–bearing composite websterite/anorthosite. 

Fig. 4 Mg# vs Cr# in spinel from Syrian websterite xenoliths. The light gray area represents the 

compositional field of spinel from peridotite xenoliths from southern Syria (Ismail et al., 2008); the 

horizontal dashed lines represent the compositional field of spinel of sapphirine-garnet–bearing meta-

gabbros from the Kerguelen Archipelago (Grégoire, 1994); the horizontal lines represent the 

compositional field of subduction zone pyroxenites from the Solomon Islands (Berly et al., 2006); dark 

gray area represents the compositional field of abyssal peridotites (Dick and Bullen, 1984). Symbols for 

rock types are the same as in Figure 3. 

Fig. 5 SiO2+MgO+FeO-Al2O3+Cr2O3 ternary plot for sapphirine from Syrian websterite xenoliths. Dark 

gray area represents the compositional field of sapphirine from Indian granulites (Mohan et al., 1996; 

Owen et al., 2003; Braun et al., 2007); light gray shading represents the compositional field of sapphirine 

from Antarctic granulites (Dunkley et al., 1999; Harley and Motoyoshi, 2000; Tsunogae et al., 2002; 

Grew et al., 2006); the vertical line shading represents the compositional field of sapphirine from ultra-

high-temperature granulites, north-central Madagascar (Goncalves, 2002); horizontal dashed line 

shading represents the compositional field of sapphirine of sapphirine±garnet-bearing meta-gabbros from 

the Kerguelen Archipelago (Grégoire, 1994); the horizontal line shading represents the compositional 

field of sapphirine from basic granulites of the Finero ultrabasic and basic massif (Sills et al., 1983); the 

dotted area represents the compositional field of sapphirine from basic granulite xenoliths from 

Stockdale, USA (Meyer and Brookins, 1976). Symbols for rock types are the same as in Figure 3. 
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Fig. 6 Primitive mantle-normalized REE and trace element patterns for clinopyroxenes from Syrian 

websterite xenoliths. Normalized values taken from McDonough and Sun (1995). Dark gray field 

represents clinopyroxenes of spinel-garnet–bearing pyroxenite xenoliths from Jordan (Shaw et al., 2007); 

light gray field represents LREE enrichment and depletion patterns for clinopyroxene peridotites from 

Syria (Ismail et al., 2008, Ismail, 2008). Symbols for rock types are the same as in Figure 3. 

Fig. 7 Mg# vs SiO2/Al2O3 diagram after Kempton and Harmon (1992) for Syrian websterite xenoliths 

compared with fields of global granulite xenoliths (adapted from Grégoire et al., 2001). Symbols for rock 

types are the same as in Figure 3. 

Fig. 8 Primitive mantle–normalized REE and trace element patterns for whole-rock samples of Syrian 

websterite xenoliths. Normalization values from McDonough and Sun (1995). Light gray and dark gray 

shading represent respectively Ol-Pl–bearing websterites (Grégoire, 1994; Grégoire et al., 1998) and Ol-

bearing clinopyroxenites (Scoates et al., 2008) from the Kerguelen Archipelago, the dark line represents 

alkali basalt from southern Syria (Ismail, 2008). Symbols for rock types are the same as in Figure 3. 

Fig. 9 Measured Sr-Nd isotopic compositions of mantle clinopyroxenes in Syrian websterite xenoliths. 

Plotted for comparison are the isotopic compositions of Cenozoic Syrian alkali basalts (Bertrand et al., 

2003; Krienitz et al., 2006, 2007; Ismail, 2008), Red Sea MORB (Schilling et al., 1992; Volker et al., 

1993; Haase et al., 2000), Afar plume (Deniel et al., 1994), Arabian lithosphere mantle (Blusztajn et al., 

1995; Baker et al., 1998), upper crust of Arabian Plate (Henger and Pallister, 1989; Jarrar et al., 2003), 

Saudi Arabian and Jordan mantle xenoliths (Henjes-Kunst et al., 1990; Blusztajn et al., 1995; Brueckner 

et al., 1995; Shaw et al., 2007), Jordan pyroxenites (Shaw et al., 2007), and Syrian mantle xenoliths 

(Ismail, 2008). Symbols for rock types are the same as in Figure 3. 
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Fig. 10 Pressure-temperature estimates for Syrian websterite xenoliths. Geotherm xenoliths of Arabian 

Plate are modified after Nasir and Safarjalani (2002). Light gray field corresponds to spinel-bearing 

peridotites of the Arabian Plate (Syria, Jordan, Saudi Arabia, Yemen, and Oman) as determined by 

McGuire (1988), Nasir and Safarjalani (2000), Bilal and Touret (2001), Bilal and Sheleh (2004), Nasir 

et al. (2006), Ismail et al. (2008); dark gray field represents granulites from Syria, Jordan, and Saudi 

Arabia (McGuire, 1988; Al-Mishwat and Nasir, 2004). Spinel lherzolite/garnet lherzolite transitions are 

from O’Neill (1981). Spinel-pyroxenites/garnet pyroxenites transition is taken from Herzberg (1978) and 

the olivine-in and garnet-in reactions are from Irving (1974). The dry peridotite solidus is from Ito and 

Kennedy (1971). Symbols for rock types are the same as in Figure 3. 
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Table captions 

Table 1 Modal composition and calculated equilibration pressures and temperatures of the sampled 

websterite xenoliths. 

Table 2 Representative major element composition (wt%) of minerals within the sampled websterite 

xenoliths. 

Table 3 Trace element composition (ppm) of clinopyroxenes in the sampled websterite xenoliths. 

Table 4 Bulk rock major (wt%) and trace element (ppm) abundance in the sampled websterite xenoliths. 

Table 5 Measured Sr and Nd isotopic composition of clinopyroxenes from the sampled xenoliths. 
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1 

 

 Sample Type of rock Ol Opx Cpx Sp Am mt+Tmt Sa Ga Pl T (°C) T (°C) P 
(GPa) 

            Wells 
(1977) 

Brey & 
Köhler 
(1990) 

Harley 
(1984) 

 IG4   20.3 61.6 4.6   3.3 10.2  970 960 1.28 

 9Th   17.1 69.8 7.5   1.7 3.9  950 930 1.21 

 12Th   34.4 56.5 3.7   3.3 2.1  955 960  

 21Th Sp-Ga-Sa-
bearing 
websterites 

 30.7 48.7 11.2   6.3 3.1  925 905 1.3 

 IT45   17.9 68.1 1.8  3.2 0.1 8.9  1000 985 1.45 

 IT53   8.5 72.5 10.2  0.8 3.1 4.9     

Groupe 
A 

15Th   51.5 44.2 2.3    2  950 940  

 26Th   13.5 72.9 6.4    7.2  955 930 1.34 

 IT2 Sp-Ga-
bearing 
websterites 

 40.5 53.1 2.3    4.1  950 940 1.27 

 IT8   41.5 45.8 3.5    9.2  960 955 1.24 

 IT28   15.3 60.3 18.5  1.3  4.6  905 895 1.07 

 16Th Sp-bearing 
websterites 

 67.7 28.4 3.9      940 940  

 20Th   27.5 63.3 9.2      925 905  

 IT23  6.9 15.4 67.8 4.5  5.4    1050 1080  

 II10 Sp-Ol-
bearing 
websterites 

11.3 16.1 69.4 3.2      905 895  

Groupe 
B 

II31  2.4 32.3 61.3 4      885   

 IT26 Sp-Am-Ga-
Pl-bearing 
websterite 

20.2 72.1 0.5 1.5 0.4  4.2 1.1 1020 1005 1.28  

 IT41 Ga-Am-
bearing 
composite 

 17.1 32.9  6.5 11.3  9.2 23 815 820 1.15 
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 Total Fe as FeOtotal, mg# = 100 x Mg/(Mg+Fe) 
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Total Fe as FeOtotal, mg#= 100 x Mg/(Mg+Fe), cr#= 100 x Cr/(Cr+Al) 
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Total Fe as FeOtotal, mg#= 100 x Mg/(Mg+Fe), cr#= 100 x Cr/(Cr+Al) 
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            Group A           Group B 

Site   IG IT IT IT IT IT IT IT IT   II IT IT 

Sample   IG4 9Th 12Th IT45 IT53 16Th 15Th IT2 IT8   II31 IT26 IT41 

Sc   49.1 52.6 74.5 33.5 20.1 55.9 57.2 27.8 28.3   53.9 77.4 72.6 

Ti   769 861 1943 572 272 1814 1328 1655 603   2819 8417 8339 

V   314 203 213 504 174 230 307 272 327   232 286 290 

Ni   385 238 191 370 261 441 323 393 267   255 53.3 78 

Rb     0.40                       

Sr   0.75 10.4 21.9 24.8 1.41 15.6 18 3.29 4.5   24 69 132 

Y   7.93 4.43 11.9 5.87 0.96 15.9 15.6 3.19 3.47   11.1 34.9 32.3 

Zr   1.61 5.03 7.78   2.78 9.20 6.24 12.2 3.16   14.3 161 146 

Nb   0.03   0.33 0.97 0.04 0.45 0.30       0.21 0.41 0.55 

Ba   0.03 0.10 0.11 2.14 2.42 0.10 0.06 0.21 0.04   0.26 0.13 1.40 

La     0.27 0.20 1.04   0.44 1.52 0.04     0.70 6.42 6.04 

Ce   0.15 0.85 0.95 2.59 0.02 0.87 3.14 0.23 0.21   2.81 27.7 24.5 

Pr     0.20 0.28 0.35 0.02 0.13 0.42 0.09 0.07   0.57 5.85 4.62 

Nd   0.40 1.14 2.59 1.40 0.25 1.20 1.98 0.99 0.68   3.51 32.6 24.6 

Sm   0.31 0.45 1.16 0.35 0.12 0.71 0.70 0.59 0.42   1.39 9.05 7.16 

Eu   0.19   0.29 0.12 0.06 0.41 0.32 0.24 0.17   0.55 3.04 2.34 

Gd   0.93 0.69 1.69 0.54 0.23 1.61 1.38 0.78 0.90   1.96 9.24 7.41 

Tb   0.19 0.14 0.31 0.12 0.04 0.27 0.29 0.13 0.15   0.35 1.35 1.11 

Dy   1.49 0.87 1.91 0.87 0.20 2.66 2.47 0.75 0.84   2.15 7.85 6.64 

Ho   0.33 0.21 0.46 0.19 0.04 0.63 0.62 0.14 0.15   0.41 1.43 1.25 

Er   0.95 0.51 1.39 0.57 0.09 1.70 1.90 0.36 0.40   1.07 3.51 3.14 

Yb   0.81 0.50 1.25 0.56 0.08 1.73 1.90 0.31 0.34   0.89 2.95 2.73 

Lu   0.10 0.07 0.17 0.09   0.26 0.28 0.04 0.04   0.12 0.38 0.35 

Hf     0.35 0.50     0.55               

Pb         0.09     0.36       0.13 0.16 0.25 

Th       0.27 0.10   0.07 0.28   0.05   0.05 0.03 0.08 

U       0.05 0.02     0.12       0.04   0.03 

[La/Sm]N   0.38 0.11 1.89   0.39 1.35 0.04     0.31 0.44 0.53 

[La/Yb]N   0.34 0.10 1.16   0.16 0.50 0.07     0.49 1.36 1.39 

[Sm/Yb]N 0.24 0.56 0.58 0.39 0.99 0.26 0.23 1.22 0.79   0.98 1.92 1.65 
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9 0.51 

0.3
3 

0.2
9 

0.6
6   0.42 0.33 0.31 0.93 0.66 

Lu     
0.0
3 

0.0
6 

0.0
4 

0.1
0 

0.0
3 

0.0
8 

0.0
5 

0.0
8 0.08 

0.0
5 

0.0
4 

0.0
9   0.06 0.05 0.04 0.14 0.09 

Hf     
0.0
7 

0.1
0 

0.0
7 

0.0
3 

0.0
1 

0.0
8 

0.0
4 

0.0
8 0.05 

0.1
1 

0.0
6 

0.3
1   0.55 0.16 0.17 1.06 0.96 

Ta     
0.0
1 

0.0
3 

0.0
2 

0.0
2 

0.0
3 

0.0
2 

0.0
2 

0.0
4 0.02 

0.0
2 

0.0
5 

0.0
2   0.03 0.01 0.01 0.05 0.09 

Pb     
0.0
5 

0.1
0 

0.0
6 

0.0
7 

0.0
3 

0.1
0 

0.0
8 

0.2
1 0.29 

0.0
2 

0.0
6 

0.0
0   0.10 0.00 0.16 0.00 0.14 

Th     
0.0
1 

0.0
5 

0.0
1 

0.0
3 

0.0
0 

0.0
9 

0.0
1 

0.0
2 0.00 

0.0
2 

0.0
2 

0.0
1   0.02 0.01 0.02 0.01 0.03 

U     
0.0
0 

0.0
2 

0.0
1 

0.0
1 

0.0
1 

0.0
4 

0.0
0 

0.0
1 0.00 

0.0
1 

0.0
1 

0.0
1   0.01 0.01 0.01 0.01 0.02 

[La/Sm
]N   

0.9
2 

0.5
9 

0.6
1 

2.0
7 

0.4
8 

2.0
1 

0.5
3 

0.9
7 0.37 

1.0
0 

1.4
6 

0.3
3   0.44 0.35 0.39 0.65 0.90 

[La/Yb]

N   
0.6
8 

0.4
3 

0.2
9 

0.2
5 

0.1
1 

0.6
2 

0.3
1 

0.2
8 0.09 

0.4
2 

0.7
7 

0.2
9   0.93 0.43 0.50 1.33 2.24 

[Sm/Y
b]N   

0.4
6 

0.4
6 

0.3
0 

0.0
7 

0.1
5 

0.1
9 

0.3
7 

0.1
8 0.15 

0.2
6 

0.3
3 

0.5
5   1.32 0.77 0.80 1.28 1.56 
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Sample Type of rock 
Sm 

(ppm) 
Nd 

(ppm) 87Sr/86Sr 143Nd/144Nd 147Sm/144Nd εNd 
Model Age TDM 

(Ma) 

IG4   0.311 0.399 0.704453 0.514024 0.469 27.08 515 

12Th 
Sp-Ga-Sa-bearing 
websterites  1.162 2.587 0.702970 0.512953 0.270 6.14 -567 

IT53   0.123 0.25 0.706177 0.513296 0.296 12.84 247 

IT2 
Sp-Ga-bearing 
websterites 0.592 0.99 0.703790 0.513850 0.360 23.64 717 

IT8   0.420 0.68 0.703436 0.513306 0.372 13.03 138 

         

 

 



 

Highlights 

� Spinel-garnet-sapphirine-websterite xenoliths have a tholeiitic affinity.

� Spinel-olivine-plagioclase-websterites have an alkaline affinity.

� Composition of clinopyroxenes is consistent with metasomatism by silicate melts.

� Websterite xenoliths originated from the shallow lithospheric mantle.

� Websterite xenoliths highlight crustal growth of the eastern Mediterranean Province.
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