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Highlights 

 Mixed membrane assemblies of monoolein and a -3 polyunsaturated fatty acid 

characterized by non-trivial porous topologies 

 Amphiphilic composition-triggered transition from a vesicle to a sponge structure at room 

temperature 

 Small-angle X-ray scattering (SAXS) patterns detect the internal nanostructure 

transformation due to curvature changes  

 Cryo-TEM imaging reveals a sequence of intermediate states upon the vesicle-to-sponge 

nanoparticle transition 
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Abstract 
 

We investigate the nanostructure evolution and the membrane reorganization of diluted lipid 

dispersions of self-assembled monoolein (MO)/eicosapentaenoic acid (EPA, 20:5) mixtures by 

synchrotron small-angle X-ray scattering (SAXS) and cryogenic transmission electron 

microscopy (cryo-TEM) microscopy. The nonlamellar lipid phase containing a -3 

polyunsaturated fatty acid was fragmented into stable nanoscale objects with the help of 

PEGylated lipids. The Cryo-TEM imaging revealed the transformation pathway of the 

vesicular bilayer membranes into sponge nanoparticles (spongosomes) in excess aqueous 

medium. At ambient temperature, the topological transition occurred through the proliferation 

of membrane-linking pores (MLP) within the individual lipid nanoparticles. The density of the 

MLP pores varied starting from the nanoparticle center towards the periphery. The generation 

of MLP is governed by the amphiphilic composition and leads to formation of 3D networks of 

aqueous channels inside the nanoparticles, i.e. spongosomes. A higher density of MLP pores 

was established at increasing fraction of EPA in the mixed lipid membranes. This 

corresponded to sponge particles of less hydrated internal structure, i.e. with smaller-size 

aqueous compartments. Synchrotron SAXS patterns characterized the overall structural 

transition from vesicles to sponge membranes in the studied lipid systems. It can be concluded 

that the incorporation of a -3 polyunsaturated fatty acid at increasing concentration causes 

swelling inhibition (dehydration) of the host liquid crystalline architectures.  
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Cryo-TEM images of composition-induced intermediate structural states upon  
a vesicle-to-sponge membrane transition 

 
 
 
 
 
 
 

Keywords  
 

 membrane curvature, 
 vesicle,  
 spongosome, 
 mesophase transition, 
 swelling inhibition, 
 BioSAXS 

 
 
 
 
 



 4

1. Introduction 
 

   The phase transitions between lyotropic liquid crystalline states [1-3] of synthetic lipid 

membranes have broad applications in many fields, for instance in the crystallization of 

proteins and other bioactive compounds, the encapsulation of genetic material, the 

development of drug delivery systems and carriers for the protection of instable dyes, 

diagnostic agents, or food ingredients [4-20]. Significant progress in the understanding of the 

involved structural mechanisms can be achieved by the small-angle X-ray scattering (SAXS) 

method [21-28]. The analysis of the synchrotron X-ray scattering patterns has seldom been 

accompanied by local inspection of the samples by direct cryo-TEM microscopy imaging [29-

34]. In several cases, coexisting or intermediate types of liquid crystalline structures have been 

detected among the lamellar, bicontinuous cubic, inverted hexagonal and sponge phases [7,22-

26,35-37].  
 

   Liquid crystalline phase transformations of membranous assemblies are triggered by lipid 

monolayer curvature changes due to (i) the modifications of the degree of lipid hydration 

(concentration-driven transitions), (ii) the incorporation of co-lipids and hydrophobic guest 

molecules in the lipid bilayers or binding of soluble peptides (or other substances) at the 

membrane surface (composition-driven transitions), (iii) the biochemical processes (e.g. lipid 

oxidation, lipid hydrolysis, and other enzymatic reactions), or (iv) the application of 

environmental stimuli (temperature jumps, exposure to light, pressure, electrostatic effects, pH, 

etc) [2-4,38-41]. The molecular compositions, determining the properties of the lipid and 

amphiphile mixtures (lipid molecular shape, chain length, chain saturation, asymmetry of the 

hydrophobic moieties, headgroup polarity and size), govern the interfacial curvature and the 

elastic properties of the obtained membrane assemblies. Intermediate phases of unusual 

topologies and/or hierarchical organizations have been observed in amphiphilic systems of 

multicomponent compositions [42-44]. For instance, "mesh" phases have been reported with 

ternary self-assembled systems consisting of a nonionic surfactant, oil, and water [44]. The 

mesh phase is an example of an intermediate phase built-up by perforated lamellas. 
 

   Lamellar-to-cubic and lamellar-to-sponge phase transitions present current interest from both 

theoretical and experimental view points [45-51]. Four major axes of previous research on the 

topology and the mechanism of such liquid crystalline phase transitions can be highlighted:  

 (a) Scaling of sponge phases as a function of the hydration level, which results in swelling 

of the aqueous channels and a solvent-dependent variation of the intermembrane distances [52-

55]. 
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 (b) Topology evolution and kinetic trapping of non-spherical, folded or fluctuating 

vesicular superstructures as a function of the sample preparation and the conditioning methods 

(extrusion, sonication, shaking, annealing, quenching, etc.) [56-60]. 

 (c) Pathway and kinetics of thermally-inducible liquid crystalline phase transitions between 

lamellar, cubic or sponge phases with a focus on the intermediate states [61-67].  

 (d) Composition-induced liquid crystalline phase transitions upon inclusion of curvature-

modulating agents at room temperature [68-72]. 

 

   Theoretical modelling studies of lipid vesicles of non-trivial topologies have considered the 

perforated vesicles as high genus topologies [73-75]. Scheme 1 displays the geometries 

corresponding to membrane linking pores (MLP), “necks” and enlarged pores. Shape 

transformations in high genus vesicles are assumed to occur through the proliferation of 

membrane linking pores (MLP). This assumption requires a direct experimental evidence for 

the case of multi-component synthetic lipid systems.  

 

 
 

Scheme 1. Top and side view of membrane linking pores (MLP) and models of “necks” and 

enlarged pores formed by bilayer lipid membranes.   

 

 

   In the present work, we focus on the vesicle-to-sponge membrane topological transition, 

which is triggered by tuning of the lipid monolayer curvature in mixed liquid crystalline 
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structures of the nonlamellar lipid monoolein (MO) and the -3 polyunsaturated fatty acid 

EPA (eicosapentaenoic acid, 20:5). We use synchrotron small-angle X-ray scattering (SAXS) 

to assess the internal nanostructure transformation in the mixed lipid assemblies dispersed by 

sonication. Cryogenic transmission electron microscopy (Cryo-TEM) reveals the nanoscale 

features of the vesicle-to-sponge liquid crystalline phase transition, and in particular, the 

kinetically trapped intermediate stages of the self-assembly process.  
 
 
2. Materials and methods 
 

2.1. Materials and sample preparation 
 
   Powder of 1-monooleoyl-rac-glycerol (MO) [C18:1c9, MW 356.54, purity 99.5%], cis-
5,8,11,14,17 eicosapentaenoic acid (20:5, EPA), and D-α-tocopherol polyethylene glycol 1000 
succinate (TPGS1000) were purchased from Sigma-Aldrich (France). The phospholipid 1,2-
dioleoyl-sn-glycero-3-phosphoethanolamine-N-(methoxy(polyethyleneglycol)-2000) 
ammonium salt (DOPE-PEG2000) (MW 2801.51 g/mol) was purchased from Avanti Polar Lipids 
(Coger, Paris, France). A phosphate buffer solution (NaH2PO4/Na2HPO4, 1.10-2M, pH 7, p.a. 
grade, Merck) was prepared using Milli-Q water (Millipore Co.). It contained a small quantity 
of the antioxidant butylated hydroxytoluene (BHT).  

   Self-assembled bulk MO/EPA mixtures were dispersed into liquid crystalline nanoparticles 
by the method of hydration of a dry lipid film followed by physical agitation. First, chloroform 
solutions of MO and EPA were mixed at different ratios from 85/15 to 30/70 (mol/mol). The 
PEGylated lipid component was added at a constant percentage (3 mol.% with regard to MO). 
After mixing of the amphiphiles, the solvent was evaporated from the MO/EPA/DOPE-
PEG2000 and MO/EPA/TPGS1000 samples under a gentle stream of nitrogen gas in order to 
obtain fine and homogeneous lipid films. The latter were lyophilized overnight. The hydration 
of the mixed lipid layers was performed by incubation with a BHT-containing phosphate buffer 
solution at room temperature. Nanoparticulate dispersions were obtained in 95wt.% excess 
aqueous phase by vortexing and agitation in an ice bath. Ultrasonic cycles with a total duration 
of about 20 minutes (Branson 2510 ultrasonic bath, "set sonics" mode, power 60W) were 
performed.  
 
2.2. Synchrotron SAXS measurements 
 
    Synchrotron SAXS experiments were performed at the P12 BioSAXS beamline [76] of the 
European Molecular Biology Laboratory (EMBL) at the storage ring PETRA III of the 
Deutsche Elektronen Synchrotron (DESY, Hamburg, Germany) at 20 °C using a Pilatus 2M 
detector (1475 x 1679 pixels) (Dectris, Switzerland) and synchrotron radiation with a 
wavelength λ = 0.1 nm. The sample-to-detector distance was 3 m, allowing for measurements 
in the q-range interval from 0.1 to 4.4 nm-1. The q-vector was defined as q = (4π/λ) sin θ, 
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where 2θ is the scattering angle. The q-range was calibrated using the diffraction patterns of 
silver behenate. The experimental data were normalized with respect to the transmitted beam 
intensity and corrected for non-homogeneous detector response. The background scattering of 
the quartz capillary and the aqueous buffer was subtracted. The aqueous buffer scattering was 
measured before and after every sample scattering in order to control for eventual sample 
holder contamination. Twenty consecutive frames (each 0.05 sec) comprising the 
measurements for the sample and the solvent were acquired. No measurable radiation damage 
was detected by the comparison of the frames. The final scattering curve was obtained using 
the program PRIMUS [77] by averaging the scattering data collected from the different frames. 
An automatic sample changer adjusted for sample volume of 20 μL and a filling cycle of 60 sec 
was used.  
 
2.3. Cryogenic Transmission Electron Microscopy (Cryo-TEM) 

 
    For cryo-TEM studies, a sample droplet of 2µL was put on a lacey carbon film covered 
copper grid (Science Services, Munich, Germany), which was hydrophilized by glow discharge 
(Solarus, Gatan, Munich, Germany) for 30s. Most of the liquid was then removed with blotting 
paper, leaving a thin film stretched over the lace holes. The specimen was instantly shock 
frozen by rapid immersion into liquid ethane and cooled to approximately 90 K by liquid 
nitrogen in a temperature-and humidity controlled freezing unit (Leica EMGP, Wetzlar, 
Germany). The temperature and humidity were monitored and kept constant in the chamber 
during all sample preparation steps. The specimen was inserted into a cryo transfer holder 
(CT3500, Gatan, Munich, Germany) and transferred to a Zeiss EM922 Omega energy-filtered 
TEM (EFTEM) instrument (Carl Zeiss Microscopy, Jena, Germany). Examinations were 
carried out at temperatures around 90 K. The TEM instrument was operated at an acceleration 
voltage of 200 kV. Zero-loss-filtered images (DE = 0 eV) were taken under reduced dose 
conditions (100-1000 e/nm2). The images were recorded digitally by a bottom-mounted 
charge-coupled device (CCD) camera system (Ultra Scan 1000, Gatan, Munich, Germany) and 
combined and processed with a digital imaging processing system (Digital Micrograph GMS 
1.9, Gatan, Munich, Germany). The sizes of the investigated nanoparticles were in the range or 
below the film thickness and no deformations were observed. The images were taken very 
close to focus or slightly under the focus (some nanometers) due to the contrast enhancing 
capabilities of the in-column filter of the employed Zeiss EM922 Omega. In EFTEMs, deep 
underfocused images can be totally avoided.  
 
 
3. Results and discussion 
 

3.1. Small angle X-ray scattering (SAXS) patterns revealing structural intermediates of 

the vesicle-to-sponge nanoparticle transition  
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   The SAXS patterns of the diluted MO/EPA nanoparticle dispersions are presented in Figure 

1a. They reveal that the -3 polyunsaturated fatty acid EPA modifies the organization of the 

MO lipid membranes and their propensity for ordering into periodic 3D assemblies 

(cubosomes or multilamellar lipid particles). Neither well-defined Bragg diffraction peaks nor 

scattering of a unique single population of vesicles were detected under the investigated 

dispersion conditions of the self-assembled mixtures. The observed scattering from the diluted 

MO/EPA/TPGS1000 mixture, which involves a low EPA molar percentage (Fig. 1a, blue plot), 

may arise from coexisting double bilayer vesicles, unilamellar vesicles, and precursors of 

cubosome or spongosome particles with inner liquid crystalline structures [70].  

   Figure 1b presents a theoretical SAXS plot obtained with a scattering model for double 

membrane vesicles characterized by a random distribution [78] of the thickness of the aqueous 

compartments. A best match with the shape of the experimental SAXS curve (Figure 1a, blue 

plot) was found for the double-bilayer-vesicle model shown in Figure 1b (inset), for which the 

inner vesicle radius, R, was 100 nm and the lipid bilayer thickness was 2.3 nm. Thus, the bump 

centred at a scattering vector q  0.3 nm-1 can be ascribed to the form factor resulting from a 

mixture of double bilayer vesicles with a random distribution of the aqueous domain thickness 

(i.e. the thickness of the aqueous buffer solvent, tsol, between the membranes). The qualitative 

comparison of the modelled SAXS pattern (Figure 1b) with the experimental one (Figure 1a) 

indicated that the bumps observed at q  0.16 and 0.3 nm-1 are common main features for both 

the experimental and the modelled scattering curves. Lipid nanoparticle topologies of a double-

bilayer membrane type are shown in Figure 2 (top left panel) and Figure 3 (left panel) below.  

    The broad scattering maximum at q  1.55 nm-1 (Fig. 1a, red plot) can be ascribed to the 

formation of sponge lipid nanoparticles as the major nanoparticles population in the EPA-rich 

dispersion (MO/EPA ratio 30/70 mol/mol). Such topologies are shown in Figure 3 (right 

panel). The corresponding correlation distances at q = 2π/d  1.55 nm-1 were estimated to be d 

 4 nm. Such distances are typical for oil-rich sponges with a low hydration domain between 

the bilayer membranes. The scattering detected at the lower q-values indicates that the sponge 

assemblies coexist with precursor-type objects, for instance folded vesicles (Figure 2, middle 

panel). They represent kinetically trapped long-lived intermediates of the vesicle-to-sponge 

nanoparticle transition.  
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Figure 1. (a) Small-angle X-ray scattering (SAXS) patterns of diluted dispersions of 
monoolein-eicosapentaenoic acid assemblies (MO/EPA/DOPE-PEG2000 and 
MO/EPA/TPGS1000) comprising 5 wt% lipid phase and 95 wt% water phase. The 
MO/EPA molar ratio is 85/15 (blue plot) and 30/70 mol/mol (red plot). The percentage 
of the PEGylated lipid is constant (3 mol.%) with regard to MO. Aqueous phase: 1.10-2 
M phosphate buffer containing BHT. (b) Model SAXS curve fitted for random 
multilamellar vesicles involving two bilayers (double membrane vesicles), an inner 
radius R, and an intermembrane thickness of the aqueous buffer solvent, tsol. 
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3.2. Cryo-TEM imaging revealing the proliferation of membrane linking pores (MLP) 

upon the vesicle-to-sponge nanoparticle transition 

 

   Experimental cryo-TEM data and a schematic model, characterizing the vesicle-to-sponge 

nanoparticle transition through the proliferation of membrane linking pores (MLP), are shown 

in Figure 2. The presented images demonstrate the development of sponge nanoparticle 

architectures of mixed compositions when the MO/EPA ratio changes from 85/15 (Fig. 2 left) 

to 30/70 (mol/mol) (Fig. 2 right) in the MO/EPA/DOPE-PEG2000 system. The lipid bilayers 

rearrange from spherical vesicles (Fig. 2 left) into 3D architectures of nanochannel topologies. 

This occurs through intermediate stages in a sequence of proliferation of pores. The density of 

the pores increases upon increase of the EPA fraction in the MO/EPA/DOPE-PEG2000 system 

(i.e. at MO/EPA ratio 30/70). In this sequence, the density of aqueous channels gets higher 

when the number of pores increases, respectively. Figure 2 (bottom panel) schematically 

presents a model of the transformation process of proliferation of pores. Correspondingly, the 

sizes of the aqueous channels decrease in the shown transition sequence. The insets present 

direct Fourier Transforms (FT) of (i) a cryoTEM image of the developed sponge organization 

and (ii) of the corresponding modeled pattern.  
 
 

 
 

Figure 2. Vesicle-to-sponge nanoparticle transition through the proliferation of membrane 
linking pores (MLP). Top panel: Cryo-TEM images of dispersed vesicular and sponge lipid 
particles with different degrees of membrane perforation. The density of pores increases 
from left to right. The presented sequence of increasing density of aqueous channels (pores) 
demonstrates the stages of the vesicle-to-sponge transition. They comprise progressive 
perforation of the vesicle membranes into nanosponges of mixed compositions (middle), 
weakly hydrated spongosomes (right), and non-swollen (rich in EPA) particles of dense 
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inner organization (most right). The mixed MO/EPA/DOPE-PEG2000 assemblies (85/15 and 
30/70 (mol/mol) ratios) are dispersed and stabilized using a DOPE-PEG2000 corona. The 
aqueous medium contains the antioxidant BHT ensuring the oxidative stability of the 
formulations. Bottom panel: Schematic modeling of the pathway of the vesicle-to-sponge 
transition via the proliferation of membrane-linking pores (top view of the MLPs). The 
insets represent the Fourier transforms (FT) of the corresponding Cryo-TEM image and the 
model pattern of MLP. 

 
 

   It is distinguishable in the images in Figure 2 (top panel) that the lipid bilayers fold upon the 

progression of the membrane perforation. The morphological change, associated with the 

membrane rearrangement, comprises nucleation of membrane linking pores (MLP). The latter 

generate ruptures of the lipid membranes. "Necks" are formed between the lipid bilayers as a 

demonstration of the occurring fluctuations of the curvature of the mixed lipid membranes. In 

the projected planes of the cryo-TEM images, the formation of the aqueous channels is 

observed as membrane pores (MLP) (Fig. 2, top panel). One observes a gradient of the 

distribution of pores from the center to the periphery of the lipid nanoparticles. The density of 

the pores varies because the dispersed objects can involve interfaces with uneven distributions 

of membrane curvature. This may be explained by differences in the composition distribution 

in the inner region of the particles as compared to their surface regions [29]. 
 

   The tendency toward a formation of a 3D sponge phase is evident at increasing fractions of 

the -3 polyunsaturated fatty acid component. The degree of proliferation of the pores (i.e. the 

concentration of the MLP) augments with the increase of the EPA fraction. Thus, the 

topological transition occurs from a less perforated state to a more perforated state. The 

resulting texture of high density of pores (MLP) corresponds to weakly hydrated sponge 

membrane assemblies. The degree of hydration, respectively the sizes of the aqueous 

compartments, correlate with the fraction of incorporated PUFA in the mixed lipid membrane. 

It is evident that the -3 polyunsaturated fatty acid leads to swelling inhibition of the MO 

liquid crystalline structure as well as to more enhanced pore formation of the mixed 

membranes, which triggers a phase transition to a 3D sponge phase topology.  
 

    Regarding the effect of the PEGylated lipid added to the MO/EPA mixtures, it should be 

noted that the TPGS1000 amphiphile resulted in a cauliflower nanoparticle topology (Fig. 3), 

whereas the double chain phospholipid DOPE-PEG2000 is involved in the formation of pored 

membrane architecture (Fig. 2). These differences require further structural studies of the 

lyotropic lipid polymorphism in these mixtures in order to better understand the involved 

interfacial curvature mechanisms.  
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Figure 3. Cryo-TEM images showing a perforated vase-like double bilayer membrane 
vesicle (left), a folded vesicle (middle), and a sponge nanoparticle with a cauliflower inner 
membrane architecture of a in the self-assembled MO/EPA/TPGS1000 dispersion system. 
The scale bar is 200 nm.  

 
 
 

4. Conclusions 
 

   The performed investigations by synchrotron small-angle X-ray scattering (SAXS) and 

cryogenic transmission electron microscopy (Cryo-TEM) evidenced the intermediates of the 

vesicle-to-sponge transition that is triggered by composition variations in the self-assembled 

MO/EPA lipid mixtures. The dispersion of the four component liquid crystalline 

MO/EPA/DOPE-PEG2000/water systems through sonication in excess aqueous phase was 

characterized by the formation of nano-objects with uneven distributions of the interfacial 

monolayer curvature. The presence of the -3 polyunsaturated fatty acid EPA (20:5) at high 

concentrations in the mixed assemblies provoked a higher density of membrane linking pores 

(MLP) and the formation of well-defined sponge particles (spongosomes). Swelling inhibition 

was established at increasing fraction of EPA in the mixed membranes, which corresponded to 

nanochannels of smaller sizes. Therefore, dehydration of the overall self-assembled sponge 

structure and a phase separation of the polyunsaturated fatty acid may be expected upon further 

increase of the EPA content. 
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