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Introduction

Location data are routinely collected on animals, e.g. with GPS tags, resulting in bivariate time series of coordinates. Statistical methods have been developed to combine location data with environmental data, to understand how an animal's use of space relates to the distributions of spatial covariates (e.g. vegetation type or resource density; see [START_REF] Manly | Resource selection by animals: statistical design and analysis for field studies, Second Edition[END_REF].

A common focus of such analyses is habitat selection, i.e. deviations from proportionality between habitat availability and habitat use by the animal [START_REF] Northrup | Practical guidance on characterizing availability in resource selection functions under a useavailability design[END_REF]. Habitat availability is derived from maps of the covariates, and habitat use from the location data. If the time that the animal spends in different habitats is not proportional to their prevalence in the study region, this suggests that it selects certain habitats over others, which is of great interest for conservation.

In habitat selection studies, the goal is to estimate a habitat selection function w(c(x)), which measures the strength of the selection for a habitat unit defined by the vector of covariates c(x) = (c 1 (x), . . . , c J (x)) at spatial location x. Habitat selection functions usually take the form w{c(x)} = exp{β c(x)},

where β = (β 1 , . . . , β J ) is a vector of unknown parameters. Each parameter β j reflects the effect of the covariate c j on the animal's use of space (i.e. apparent selection or avoidance).

Most commonly, the function w is called the "resource selection function" (RSF), and it is interpreted as the long-term habitat selection by the animal [START_REF] Boyce | Relating populations to habitats using resource selection functions[END_REF].

The RSF is used to model the stationary distribution π(x) of the animal's location in space, termed the utilization distribution, π(x) = w{c(x)}

Ω w{c(y)}dy

(2)

where Ω denotes the study region. For example, if we consider a categorical habitat variable, the utilization distribution π takes a different value over each habitat type. The utilization distribution can be viewed as a heatmap of the animal's usage of space, or as the probability density for its location at an arbitrary time.

The coefficients β j of the RSF link the utilization distribution to the distributions of covariates. They can be estimated from location data, e.g. using a logistic regression for use-availability data [START_REF] Aarts | Comparative interpretation of count, presence-absence and point methods for species distribution models[END_REF]. RSF models assume that the observed locations are an independent sample from the utilization distribution, and they often ignore the autocorrelation inherent in animal movement data [START_REF] Fieberg | Correlation and studies of habitat selection: problem, red herring or opportunity?[END_REF]. To define habitat availability, RSF analyses typically assume that any location within the study area (e.g.

home range, population range) is equally accessible to the individual at each time step [START_REF] Matthiopoulos | The use of space by animals as a function of accessibility and preference[END_REF]. However, ignoring the effect of movement can lead to misinterpretations, and the definition of the region of availability can have an impact on the estimated selection parameters and utilization distribution [START_REF] Beyer | The interpretation of habitat preference metrics under use-availability designs[END_REF].

Alternatively, to address these limitations of RSFs, habitat selection can be defined through a step selection function (SSF; [START_REF] Rhodes | A spatially explicit habitat selection model incorporating home range behavior[END_REF][START_REF] Fortin | Wolves influence elk movements: behavior shapes a trophic cascade in yellowstone national park[END_REF], which measures habitat selection at the time-scale of the individual observed movement steps. In an SSF model, the likelihood of an animal moving from a location x to a location y is

p(y|x) = φ(y|x)w{c(y)} Ω φ(z|x)w{c(z)}dz , (3) 
where φ(y|x) is the likelihood of a step from x to y in the absence of covariate effects, which describes the underlying movement model. Matched conditional logistic regression is typically used to estimate the parameters β j of a SSF from telemetry data [START_REF] Forester | Accounting for animal movement in estimation of resource selection functions: sampling and data analysis[END_REF]. The autocorrelation of the data is explicitly accounted for, with this joint model of animal movement and habitat selection. Habitat availability is specified by the movement model, which describes which spatial units are accessible to the animal within one time step, given its current location.

Although the same notation is often used in resource selection and step selection analyses, the regression coefficients β j do not represent quite the same things in the two cases, and the methods described do not lead to the same estimates of the coefficients, or of the function w and the implied steady-state distribution. In an RSF, the coefficients are directly linked to the global distribution π(x) of space use through Equation 2. However, the coefficients of an SSF measure local habitat preference: their interpretation is tied to the choice of the movement kernel φ. Unlike the RSF, the SSF therefore does not capture the long-term utilization distribution. This discrepancy between the approaches has been demonstrated analytically [START_REF] Barnett | Analytic steady-state space use patterns and rapid computations in mechanistic home range analysis[END_REF], and empirically [START_REF] Signer | Estimating utilization distributions from fitted step-selection functions[END_REF]. The utilization distribution π is often of interest, and there have been efforts to derive it from the SSF. In particular, for a generalization of the SSF model given in Equation 3, [START_REF] Potts | Predicting local and non-local effects of resources on animal space use using a mechanistic step selection model[END_REF] described the evolution of the distribution of the animal's location between times t and t + 1. They iterated this calculation to evaluate the limiting utilization distribution π.

Alternatively, [START_REF] Signer | Estimating utilization distributions from fitted step-selection functions[END_REF] suggested using simulations from a fitted SSF to estimate its stationary distribution. Although their approaches offer a way to numerically evaluate the steady-state distribution of an SSF model, that distribution cannot be written as a simple function of the spatial covariates (as in Equation 1). [START_REF] Michelot | Linking resource selection and step selection models for habitat preferences in animals[END_REF] introduced a new model of step selection, in which both the shortterm movement rules and the long-term utilization distribution π arise from the same habitat selection process. Here, we extend that approach to a much wider class of movement models.

We show how likelihood-based inference can be used to simultaneously estimate habitat preference and movement characteristics from movement data, and present a simulation study to investigate the performance of the method (in the online supplementary material).

Finally, we illustrate the application of our approach with the analysis of a movement track of plains zebra (Equus quagga), and we discuss model selection and model checking in this framework.

Animal movement models based on MCMC

MCMC step selection model

First, we briefly summarize the approach of [START_REF] Michelot | Linking resource selection and step selection models for habitat preferences in animals[END_REF]. By construction, a Markov chain Monte Carlo (MCMC) algorithm describes step selection rules, determined by the transition kernel p(x t+1 |x t ), such that the long-term distribution of {x 1 , x 2 , . . . } is a given distribution, termed the target distribution [START_REF] Gilks | Markov chain Monte Carlo in practice[END_REF]. As such, it can be considered as the basis for a model of animal movement: the transition kernel defines the movement rules of the animal, and the target distribution is the utilization distribution π (i.e. the long-term distribution of the animal's space use). To link the animal's movement to the distribution of the covariates of interest, we model the utilization distribution with a (normalized) RSF, as

given in Equation 2. The resulting model describes an animal's movement in response to its environment, similarly to SSF models, but it explicitly delivers the utilization distribution π. We call it an "MCMC step selection model".

The MCMC step selection model has two sets of parameters. The parameters of the transition kernel p(x t+1 |x t ), i.e. the tuning parameters of the MCMC algorithm, are movement parameters. The parameters of the target distribution π, i.e. the β j in Equation 1, are habitat selection parameters. Our goal is to estimate those parameters jointly from movement and habitat data. Our approach provides a framework for joint inference about short-term movement, habitat selection, and long-term space use by animals.

In this framework, the choice of the MCMC sampler determines the choice of a movement model. Some MCMC algorithms may not provide a realistic description of animal movement, if the transition kernel is a poor representation of the animal's step selection rules. In the following section, we extend the algorithm introduced by [START_REF] Michelot | Linking resource selection and step selection models for habitat preferences in animals[END_REF] to a much more flexible family of movement models. The sampler that they described is a special case of the algorithm presented here, but we keep the "local Gibbs" name that they coined.

The local Gibbs sampler

In the context of the approach proposed in Section 2.1, our aim is to define a flexible MCMC algorithm, with transition rules that resemble the step selection process of an animal. Following this idea, the local Gibbs sampler uses local information about the target distribution to take steps in its parameter space, similarly to an animal using local information about its environment to choose where to move.

The local Gibbs algorithm for the target distribution π is defined as follows on the domain Ω. We choose φ : Ω → R the density function of a symmetric distribution, i.e. such that ∀x, y ∈ Ω, φ(y|x) = φ(x|y). We start from x 1 ∈ Ω; then, for t = 1, 2, . . . ,

(1) Generate a point µ from φ(•|x t ).

(2) Define the distribution π on the domain Ω by

π(x) = φ(x|µ)π(x)
z∈Ω φ(z|µ)π(z)dz .

(3) Sample the next point x t+1 from π.

At each iteration, π represents the local information about the target distribution π over a neighborhood of x t defined by φ. The sampled points {x 1 , x 2 , . . . } have π as their stationary distribution. This is verified in Web Appendix A. The local Gibbs sampler is thus a valid MCMC algorithm for any symmetric density φ, with target distribution π. Note that it is a rejection-free sampler, as it does not need an acceptance-rejection step to preserve the correct stationary distribution.

In the framework described in Section 2.1, the target distribution π can be written as a normalized RSF, with parameters β, and the local Gibbs sampler defines a model of animal movement and habitat selection. The choice of the density φ determines the shape of the movement kernel. In the following, we consider the case where φ is a parametric function,

and we explicitly denote it φ(•|x, θ), where θ is a vector of movement parameters. We discuss two useful special cases of φ, the normal kernel model and the availability radius model, in Section 2.3. The intermediate point µ sampled in step 1 of the local Gibbs algorithm does not have a biological interpretation; it is a stepping stone in the construction of a valid transition kernel.

In the general case, the step density of the model from x t to x t+1 is given by the transition kernel of the algorithm,

p(x t+1 |x t , β, θ) = π(x t+1 ) µ∈Ω φ(x t+1 |µ, θ)φ(µ|x t , θ) z∈Ω π(z)φ(z|µ, θ)dz dµ. ( 4 
)
The steps of the derivation are similar to the proof of the detailed balance condition, given in Web Appendix A. Note that, although the algorithm is rejection-free, the step density p(x t+1 |x t , β, θ) is typically positive at the point x t+1 = x t , and this model therefore does not preclude movement steps of length zero. (See also the zero-inflated case below.)

In the absence of covariate effects (i.e. if ∀x ∈ Ω, π(x) = k), each step is the sum of two φ-distributed increments, and we therefore call φ the half-step density of the model. The habitat-independent movement kernel of the local Gibbs model is given by the convolution

p 0 (x t+1 |x t , θ) = µ∈Ω φ(x t+1 |µ, θ)φ(µ|x t , θ)dµ.
In step 2 of the algorithm given above, the integral z∈Ω φ(z|µ)π(z)dz cannot generally be evaluated analytically, unless the covariates follow a tractable parametric form. In practice, we can use Monte Carlo integration to sample from the transition density, as follows. At each iteration, a large number of points {z 1 , z 2 , . . . , z K } is sampled from φ(•|µ), and x t+1 is selected from the z k , with probabilities given by π(z k )/ j π(z j ). With this procedure, we can simulate movement tracks on a given utilization distribution; see Web Appendix E for an example. The local Gibbs algorithm would usually not be an interesting choice for the general purpose of sampling from a probability distribution (e.g. in Bayesian inference). Indeed, although there are no rejections, the numerical integration requires many evaluations of the target distribution for each iteration, which renders the procedure more computationally intensive than, say, standard Metropolis-Hastings sampling. In the following, we consider the local Gibbs algorithm only for the purpose of modeling animal movement.

We discuss the links between the local Gibbs algorithm and conventional Gibbs sampling in Web Appendix C. We explore relevant special cases of the local Gibbs model in Section 2.3, and present extensions in Section 2.4.

Special cases of the local Gibbs model

An interesting special case of the local Gibbs model is obtained when the half-step density φ is taken to be a bivariate (circular) normal density centered on the origin x t . We will call this formulation the normal kernel model. In the absence of covariate effects, if φ is a normal distribution with variance σ 2 I, where I is the 2×2 identity matrix, then the habitatindependent movement kernel is also a normal distribution, with variance 2σ 2 I. In this case, the distance between x t and x t+1 (the "step length") follows a Rayleigh distribution with scale parameter √ 2σ. The parameter σ of this model can thus be linked to the speed of movement of the animal. It also determines the extent of the region over which the animal can perceive its habitat.

The model described by [START_REF] Michelot | Linking resource selection and step selection models for habitat preferences in animals[END_REF] is another special case of the local Gibbs model. In their approach, the half-step density φ is uniform over a disc of radius r centered on the origin. At each iteration, the point µ is sampled from a uniform distribution over D r (x t ), where D r (x) denotes the disc of radius r and center x. Then, the endpoint x t+1 is sampled from π truncated to D r (µ). We will refer to r as the "availability radius", drawing a parallel with the availability radius model of [START_REF] Rhodes | A spatially explicit habitat selection model incorporating home range behavior[END_REF]. Figures 1(A) and (B)

show the shapes of the habitat-independent transition densities of the local Gibbs model when the half-step density φ is normal, and when it is uniform on a disc, respectively. These two examples illustrate the flexibility of the underlying movement model.

[Figure 1 about here.]

The local Gibbs model can also be extended to include a discrete component in the half-step distribution. In particular, it would be possible to define a zero-inflated version of φ as the combination of a continuous symmetric distribution and some probability mass at the origin.

This model would allow for steps of length zero with positive probability, corresponding to time steps over which the animal does not move.

Mixture of local Gibbs steps

A mixture of MCMC algorithms, all with stationary distribution π, defines a valid MCMC algorithm for π. Tierney (1994) calls these mixtures "hybrid" algorithms. In our application, an MCMC movement model can be defined by a combination of several transition kernels.

We consider three hybrid algorithms, to extend the local Gibbs movement model.

2.4.1

Local Gibbs with random parameters. An extension of the local Gibbs algorithm can be obtained by considering that the parameters θ of the half-step density φ are themselves random, and are drawn independently at each iteration from a probability distribution p(θ|ω). This results in a hierarchical model, formulated in terms of the hyperparameters ω. In this case, the step density is obtained by integrating over θ, and Equation 4becomes

p(x t+1 |x t , β, ω) = π(x t+1 ) θ p(θ|ω) µ∈Ω φ(x t+1 |µ, θ)φ(µ|x t , θ) z∈Ω π(z)φ(z|µ, θ)dz dµdθ. ( 5 
)
This extension is convenient to define more general movement models. For example, the radius parameter r of the availability radius model of [START_REF] Michelot | Linking resource selection and step selection models for habitat preferences in animals[END_REF] could be treated as random rather than fixed, to capture the variations in the scale of perception and movement of an animal through time. The radius parameter takes positive values, and could be modelled with a gamma distribution with shape parameter α and rate parameter ρ. In this example, θ = r, ω = (α, ρ), and p(θ|ω) is the gamma pdf. the animal, such as "foraging" or "exploring" [START_REF] Blackwell | Random diffusion models for animal movement[END_REF][START_REF] Blackwell | Bayesian inference for Markov processes with diffusion and discrete components[END_REF][START_REF] Morales | Extracting more out of relocation data: building movement models as mixtures of random walks[END_REF].

The target distribution of the local Gibbs sampler does not depend on the movement parameters θ. It only depends on the habitat selection parameters β. In this multistate formulation, the movement process switches between N local Gibbs models, all with the same parameters β and utilization distribution π. The utilization distribution of the stateswitching model is therefore also π. The underlying MCMC algorithm can be seen as a hybrid algorithm, based on N transition kernels. [START_REF] Roever | The pitfalls of ignoring behaviour when quantifying habitat selection[END_REF] showed that ignoring animal behavior in habitat selection studies could lead to incorrect conclusions. They argued for a two-stage modeling approach, in which tracks would first be classified into behavioral states using a state-switching correlated random walk model [START_REF] Morales | Extracting more out of relocation data: building movement models as mixtures of random walks[END_REF], and a separate set of habitat selection parameters would then be estimated for each behavioral state. The state-switching local Gibbs model that we suggest here is different, because it estimates only one set of habitat selection parameters for all states. This is a limitation of our approach, because the habitat selection cannot be estimated separately in the different states, and the estimated parameters may capture the averaged effects of habitat selection over all behavioral states. However, the scale of perception and movement can differ among the states, if they are characterized by different parameters θ (j) . Then, the state-switching local Gibbs model does account for the behavioral heterogeneity in the scale of habitat selection.

2.4.3

Local Gibbs over irregular intervals. A movement model based on an MCMC algorithm is generally formulated in discrete time, where a time step of the model corresponds to an iteration of the algorithm. This is in particular true of the local Gibbs sampler: the parameters of the half-step density are tied to a particular time scale. We can relax this constraint, by making an assumption on the relationship between the time interval and the scale of the half-step density. In this section, we consider irregular time points (t 1 , . . . , t n ), and the corresponding locations x j = x t j , j = 1, . . . , n.

There is no general scaling property for the parameters of the half-step density, but we can use the assumptions of Brownian motion to express this time dependence in the special case of the normal kernel model. The variance of the transition density of the Brownian motion is proportional to the length of the time interval [START_REF] Einstein | Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen[END_REF]. Based on this assumption, we consider the local Gibbs model with half-step density φ(•|x j ) = ϕ(•|x j , ∆ j σ 2 I), where ϕ is the normal pdf, ∆ j = t j+1 -t j is the length of the time interval, and I is the identity matrix. The step density of this model can thus be written

p(x j+1 |x j ) = π(x j+1 ) µ∈Ω ϕ(x j+1 |µ, ∆ j σ 2 I)ϕ(µ|x j , ∆ j σ 2 I) z∈Ω π(z)ϕ(z|µ, ∆ j σ 2 I)dz dµ. (6) 
In the absence of covariate effects, the step density between t j and t j+1 is p 0 (x j+1 |x j ) = ϕ(x j+1 |x j , 2∆ j σ 2 I), the transition density of the Brownian motion with diffusion rate 2σ 2 . This can be viewed as a hybrid algorithm, with the transition kernel changing as a function of the time interval. This formulation can be used to model movement data collected at irregular time intervals, because the scale parameter σ 2 is not tied to a particular discrete time step.

Inference

The parameters of an MCMC step selection model can be estimated, to carry out inference about the effects of environmental covariates on the animal's movement and space use.

The local Gibbs likelihood

In the local Gibbs model, our aim is to estimate the habitat selection parameters β (parameters of the utilization distribution π), and the movement parameters θ (parameters of the half-step density φ), from observed animal movement and habitat data. In the following, we consider T locations x 1 , . . . , x T , observed without measurement error. The likelihood of a step from x t to x t+1 , under the local Gibbs model, is given by the transition kernel p(x t+1 |x t , β, θ) of the algorithm (Equation 4) and, for T observed locations, the full likelihood is obtained as the product over observed steps, L(β, θ|x 1 , . . . ,

x T ) = T -1 t=1 p(x t+1 |x t , β, θ).
Estimates of the model parameters can be obtained by maximizing the likelihood with respect to β and θ, as here, or by using it in a Bayesian framework.

The likelihood of a step under the normal kernel and the availability radius models, presented in Section 2.3, can be derived by substituting the corresponding expressions of the half-step density φ in the transition kernel of Equation 4. Similarly, for the local Gibbs model with random parameters and the local Gibbs model with irregular intervals, the likelihood is given by the step densities derived in Sections 2.4.1 and 2.4.3, respectively. In

Web Appendix B, we present the derivation of the likelihood for the models considered in the simulation studies and analyses of the next sections.

In this framework, it is straightforward to account for missing location data in the likelihood: missing steps (i.e. with missing start point or end point) have no contribution. If several independent movement tracks are collected, possibly on several different animals, their joint likelihood may be calculated as the product of the likelihoods of the individual tracks, to obtain pooled parameter estimates.

Likelihood-based model selection criteria, such as the AIC and BIC, can be derived to compare competing MCMC movement model formulations. In Section 4, we suggest predictive checks to assess goodness-of-fit for the local Gibbs model.

State-switching local Gibbs model

In the state-switching model presented in Section 2.4.2, the parameters of the half-step density φ can take N values {θ (1) , . . . , θ (N ) }. An underlying state process (S t ) determines which of the N densities is active at each time step t. If (S t ) is chosen to be a Markov chain, this defines a hidden Markov model, and the associated inferential machinery can be used:

the likelihood can be calculated with the forward algorithm, which provides an efficient way to sum over all possible state sequences [START_REF] Zucchini | Hidden Markov models for time series: an introduction using R, Second Edition[END_REF]. In the present context, it can be written L(β, {θ (j) }|x 1 , . . . ,

x T ) = δ (1) P (x 1 , x 2 )ΓP (x 2 , x 3 ) • • • ΓP (x T -1 , x T )1, where δ (1) is the initial distribution of the Markov chain, Γ = (γ ij ) N i,j=1 is its transition probability matrix, P (x t , x t+1 ) is the N × N diagonal matrix with elements {p(x t+1 |x t , β, θ (j) )} N j=1 ,
and 1 is a N -vector of ones. Maximum likelihood can be used to obtain estimates of all model parameters, including habitat selection parameters (β), movement parameters (θ (j) ), and transition probabilities (Γ). The Viterbi algorithm can be implemented to derive the most likely sequence of underlying states, given the data and a fitted model [START_REF] Zucchini | Hidden Markov models for time series: an introduction using R, Second Edition[END_REF]. This approach is used in animal movement analyses to classify observed locations into behavioral phases, described by different movement characteristics [START_REF] Michelot | moveHMM: An R package for the statistical modelling of animal movement data using hidden Markov models[END_REF].

Monte Carlo approximation of the likelihood

The integrals in the likelihood expression given in Equation 4cannot generally be evaluated analytically. Monte Carlo sampling can be used as follows to approximate the likelihood of a step from x t to x t+1 .

For i ∈ {1, . . . , n µ }, sample µ i from φ(•|x t , θ) and for j ∈ {1, . . . , n z } sample z ij from φ(•|µ i , θ). Then the likelihood of a step from x t to x t+1 , given in Equation 4, can be approximated by

p(x t+1 |x t , β, θ) = π(x t+1 ) n z n µ nµ i=1 φ(x t+1 |µ i , θ) nz j=1 π(z ij ) . ( 7 
)
In the case where θ is random, the likelihood is written with one additional integral (Equation 5), which must also be approximated. As an example, the approximate likelihood of the random availability radius model is given in Web Appendix D.

The approximation in Equation 7 can be made arbitrarily accurate by choosing large sizes of Monte Carlo samples (n µ and n z ). Latin hypercube sampling can be used to reduce the number of samples needed in the approximation of the likelihood [START_REF] Mckay | Comparison of three methods for selecting values of input variables in the analysis of output from a computer code[END_REF]. In

Web Appendix D, we describe the practical implementation of the local Gibbs approximate likelihood for the normal kernel model and the random availability radius model.

In Web Appendix E, we investigate the performance of the method to estimate the RSF and the movement parameters from simulated movement data. The simulations confirm that all model parameters can be recovered, by numerical optimization of the approximate likelihood.

Application: zebra case study

We consider a track of GPS locations of one plains zebra, acquired every 30 minutes from January to May 2014 in Hwange National Park (Zimbabwe). The track consists of 7246 locations, regularly spaced in time, with 125 missing observations. The habitat layer used to estimate the habitat selection process is a vegetation map, with four categories: grassland, bushed grassland, bushland, and woodland. A map of the habitat and of the track is shown in Figure 2(A). The code and data used in the case study are provided in the supplementary material.

Normal kernel model

We fitted the local Gibbs model with normal half-step density to the track, using the function optim in R to numerically optimize the (approximate) log-likelihood function. We chose n µ = n z = 50 for the Monte Carlo samples in the approximation of the likelihood function (Equation 7), which was sufficient in the simulation study of Web Appendix E.

A numerical optimizer is susceptible to becoming stuck in a local maximum of the likelihood function, and failing to find its global maximum. To circumvent this problem, we fitted the model 50 times, starting from randomly-chosen initial parameter values, and we selected the parameter estimates leading to the best (largest) maximum likelihood. Each model fit took about 8 minutes on a 2GHz i5 CPU. For the best fitting model, we numerically evaluated the Hessian matrix of the log-likelihood function at the maximum likelihood estimate, and we derived standard errors for the estimated parameters.

The estimates of the habitat selection parameters and the Hessian-based (Wald) 95% confidence intervals are given in Table 1 ( [Table 1 about here.]

[Figure 2 about here.]

The standard deviation of the half-step density was estimated to σ = 0.20. Under this model, in the absence of covariate effects (e.g. in a large patch of uniform habitat), the step lengths of the animal follow a Rayleigh distribution with scale parameter λ = √ 2σ. The estimate of the scale parameter is λ = 0.28, and the mean of the (habitat-independent) step length distribution can be derived as π/2 λ = 0.35km. This gives an estimate of the scale of movement and perception of the zebra over 30 min time intervals.

To assess this movement model, we simulated 10 4 locations from the fitted model, on the same habitat map as the observations. We compared the distribution of step lengths observed in the zebra data set to the distribution of simulated step lengths (Figure 3). There is a clear discrepancy between the two distributions: the model fails to capture very short and very long step lengths, and overestimates the density of intermediate step lengths. The empirical distribution of step lengths has a mode at zero, and a long tail, which cannot be appropriately modelled by this formulation. We then considered the random availability radius model for more flexibility.

Random availability radius model

We fitted the local Gibbs model with random availability radius, described in Section 2.4.1, to the same track. We modelled the availability radius with a gamma distribution, and estimated its shape and rate parameters. We used Monte Carlo samples of sizes n r = 20 and n µ = n z = 40, following the simulation study of Web Appendix E. As in Section 4.1, we ran the numerical optimization 50 times with random initial parameter values, and kept the model fit with the largest likelihood, to avoid numerical convergence issues. Each model fit took about 1.5 hour on a 2GHz i5 CPU. We evaluated the Hessian matrix of the log-likelihood at the maximum likelihood estimates, and derived standard errors for the parameters.

The estimates of the habitat selection parameters, and the 95% confidence intervals, are given in Table 1 (under "Model 2"), and a map of the RSF is shown in Web Appendix I.

The parameter values are quite similar to those obtained with the normal kernel model, and the results confirm that the selection is stronger for open habitats (i.e. grassland and bushed grassland). The estimated shape of the gamma distribution of the availability radius was α = 0.78, and the rate was ρ = 3.57. The estimated gamma distribution of the availability radius therefore had mean Ê(r t ) = α/ρ = 0.22km, and 95th percentile P0.95 = 0.72km, for 30 min intervals.

To assess the random availability radius model, we simulated a track of length 10 4 from the fitted model, on the same habitat map. We compared the distributions of observed and simulated step lengths (Figure 3). The distribution of the simulated steps resembles that of the observed steps much more closely than with the normal kernel model. This indicates that the model was able to capture the speed of the zebra's movement. This is remarkable, as the step lengths or the speeds are never directly modelled: instead, we estimated the distribution of the unobserved radius of the relocation region.

[Figure 3 

about here.]

There is a trade-off between realism of the movement model and computational speed: the random availability radius model was 15-20 times slower than the normal kernel model in this analysis, due to the additional nested integral in its likelihood (Equation 5). Here, the habitat selection estimates βj were very similar using both models. This suggests that the simpler one (normal kernel model) is sufficient to capture the RSF, even if the movement component is not flexible enough to capture the zebra's step lengths. However, we could not have known this before fitting the random availability radius model and, generally, model checking methods should be used to verify that features of the movement are appropriately captured by the model. In this analysis, the AIC for the normal kernel model was -141, and the AIC for the random availability radius model was -8906. This criterion thus strongly favored the latter, more complex, model.

In the local Gibbs algorithm, the half-step density φ is required to be symmetric, to satisfy the detailed balance condition (Section 2.2). As a consequence, the local Gibbs model does not include directional persistence. This can be a problem to analyse high-resolution movement data, which typically feature strong persistence. To investigate the effect of this misspecification on the estimates of the habitat selection parameters, we fitted the normal kernel model to data simulated from a step selection model with directional persistence. The simulations are presented in Web Appendix H. We found that, for moderately persistent movement (similar to the zebra's), the local Gibbs model could still accurately recover the utilization distribution. However, for simulated data with strongly autocorrelated directions, the estimates of habitat preference were biased. This suggests that the local Gibbs model may not be appropriate to analyse very persistent movement, e.g. collected at a high temporal resolution.

Discussion

We showed how a new class of step selection models, based on the same underlying concept as MCMC algorithms, can be used to estimate an animal's habitat selection and movement characteristics. In this framework, short-term step selection gives rise to the long-term utilization distribution. This approach connects standard RSF and SSF models, because the equilibrium distribution of the movement model is guaranteed to be proportional to the underlying RSF. We described maximum likelihood estimation for the local Gibbs sampler, a flexible family of MCMC algorithms which can be used to model animal movement.

Parameters of movement and habitat selection can be estimated jointly.

In the case study of Section 4, we compared two local Gibbs models with different half-step densities, and we found a trade-off between the flexibility of the movement model and the computational cost of inference. Our framework is not limited to the special cases described here, however, and it may be possible to find a local Gibbs formulation that combines the computational speed of the normal kernel model and the flexibility of the random availability radius model. For example, we could define the half-step density φ as the combination of a uniform distribution of turning angles and a given distribution for the distance to the origin. The uniform angles ensure that the half-step density is symmetric, and the shape of the distance distribution determines the habitat-independent movement model. It may be possible to achieve a distribution of step lengths with a mode close to zero, as in the zebra data set, with an exponential or Weibull distribution of distances.

An important feature of the local Gibbs model is that the size of the region of availability does not need to be defined a priori. In habitat selection analyses based on use-availability designs, the choice of the spatial extent of the availability region is challenging, and can lead to biased selection estimates [START_REF] Beyer | The interpretation of habitat preference metrics under use-availability designs[END_REF]. Instead of choosing it, we estimate it from the observed tracking data, with a movement model based on a symmetric half-step density.

The scale of availability is for example measured by the variance of the normal kernel model, and by the radius in the availability radius model. One limitation of this method is that the scale of availability jointly captures the accessibility and the local information that the animal has about the habitat (e.g. through perception, memory, shared information). The half-step density of the algorithm therefore describes both the distance that the animal is likely to cover over one time interval, and the size of the region over which it knows the habitat. This is a strong assumption, that is made in most step selection models [START_REF] Forester | Accounting for animal movement in estimation of resource selection functions: sampling and data analysis[END_REF], in which habitat selection is considered to take place at the scale of the movement kernel.
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  Figure 1(C) shows the habitat-independent step density of this random availability radius model. 2.4.2 State-switching local Gibbs model. The local Gibbs model has two sets of parameters: the parameters β of the utilization distribution π, and the movement parameters θof the half-step density φ. For example, the movement parameters are the variance σ 2 in the normal kernel model, and the availability radius r in the availability radius model. This framework can be extended by considering that the animal switches between N discrete states through time, each associated with a set of movement parameters {θ (1) , . . . , θ (N ) }. We can model the switching behavior with a latent process (S t ) defined on {1, . . . , N }, which indicates which state is active at each time step t (e.g. a Markov chain). Multistate models like this one are very popular in movement ecology, to describe animal movement as the consequence of behavior. The states are usually treated as proxies for behavioral states of

  under "Model 1"), and a map of the fitted RSF is shown in Figure 2(B). The estimated habitat selection parameters indicate that this zebra selects open habitats more strongly than wooded areas, which is consistent with the natural history of the species. Zebras prefer more open areas that provide more forage and greater visibility. This result is also consistent with an analysis based on a standard RSF, conducted by Courbin et al. (2016) on many individuals in the same area, albeit with a different vegetation map.

Figure 1 .

 1 Figure 1. Slices through the two-dimensional habitat-independent step densities in three different MCMC movement models. (The step densities are symmetric around the origin.) (A) Normal kernel model. (B) Availability radius model. (C) Availability radius model, with time-varying radius r t drawn from a gamma distribution. Analytical formulas can be obtained for the step densities (A) and (B), but (C) is obtained numerically.
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