Jasmin Christian Blanchette
email: j.c.blanchette@inria.fr

Daniel El Ouraoui
email: daniel.el-ouraoui@inria.fr

Pascal Fontaine
email: pascal.fontaine@inria.fr

Cezary Kaliszyk
email: cezary.kaliszyk@uibk.ac.at

Machine Learning for Instance Selection in SMT Solving

SMT solvers are among the most suited tools for quantifier-free first-order problems, and their support for quantified formulas has been improving in recent years. To instantiate quantifiers, they rely on heuristic techniques that generate thousands of instances, most of them useless. We propose to apply state-of-the-art machine learning techniques as classifiers for instances on top of the instantiation process. We show that such techniques can indeed decrease the number of generated useless instances. We envision that this could lead to more efficient SMT solving for quantified problems.

Satisfiability-modulo-theories (SMT) solvers are among the best backends for verification tools and "hammers" in proof assistants. When proof obligations contain quantified formulas, SMT solvers rely on instantiation, replacing quantified subformulas by sets of ground instances. Three main techniques have been designed: enumerative [START_REF] Reynolds | Revisiting enumerative instantiation[END_REF], trigger-based [START_REF] De | Efficient E-matching for SMT solvers[END_REF], and conflictbased [START_REF] Reynolds | Finding conflicting instances of quantified formulas in SMT[END_REF] instantiation. Among these, only conflict-based instantiation computes instances that are guaranteed to be relevant, but it is incomplete and is normally used in combination with other techniques. Enumerative and trigger-based techniques are highly heuristic and generate a large number of instances, most of them useless. As a result, the search space of the solver explodes. Reducing the number of instances could improve the solver's efficiency and success rate within a given time limit.

We propose to use a state-of-the-art machine learning algorithm as a predictor over the generated set of instances to filter out irrelevant instances, and thus decrease the number of instances given to the ground solver. The predictor is invoked after each instantiation round to rate the potential usefulness of each generated instance. Several strategies are then used to build a subset of potentially relevant instances that are immediately added to the ground solver. Adding the other instances is postponed.

We conducted our experiment in veriT [START_REF] Bouton | veriT: an open, trustable and efficient SMT-solver[END_REF], an SMT solver that implements all three instantiation techniques described above. We chose as predictor the XGBoost gradient boosting toolkit [START_REF] Chen | XGBoost: a scalable tree boosting system[END_REF] with the binary classification objective. This configuration had already been used successfully in the context of theorem proving [START_REF] Jakubuv | ENIGMA: efficient learning-based inference guiding machine[END_REF][START_REF] Piotrowski | ATPboost: Learning premise selection in binary setting with ATP feedback[END_REF].

Choosing a suitable set of features is crucial for effective machine learning. The features determine how precise the representation of the problem is. Previous works already investigate features for theorem proving [START_REF] Allamanis | Learning continuous semantic representations of symbolic expressions[END_REF][START_REF] Irving | DeepMath-deep sequence models for premise selection[END_REF][START_REF] Jakubuv | ENIGMA: efficient learning-based inference guiding machine[END_REF][START_REF] Kaliszyk | Efficient semantic features for automated reasoning over large theories[END_REF][START_REF] Loos | Deep network guided proof search[END_REF][START_REF] Piotrowski | ATPboost: Learning premise selection in binary setting with ATP feedback[END_REF]. Our features are more specifically inspired by ENIGMA [START_REF] Jakubuv | ENIGMA: efficient learning-based inference guiding machine[END_REF] and RLCoP [START_REF] Kaliszyk | Reinforcement learning of theorem proving[END_REF]. They are basically term symbols and term walks with symbol sequences projected to features using Vowpal Wabbit hashing. Term variables and Skolem constants are translated analogously to constants. The model is further enriched with abstract features such as term size, term depth, and the number of instances.

To encode our problem into sparse vectors, we use three kinds of information available to the solver: the ground part of the formula (set of literals l 1 , . . . , l m), the quantified formula In the learning phase, to discriminate useful instances from others in the run of the solver, we consider the pruned proof with only the relevant facts. An instance produced in the run is tagged as useful if it also occurs in the pruned proof. To train the predictor, we used the SMT-LIB benchmarks in the UF category. We ran veriT on 1866 SMT formulas randomly divided into two sets: 560 for the test set (30%) and 1306 for the training set (70%). One run of the solver generates many more useless instances (99%) than useful ones (1%). Consequently, we used undersampling to obtain a balanced data set for learning.

Figure 1 compares the numbers of generated instances for two versions of the veriT solver: with instance selection (x-axis) and without (y-axis). The fewer instances, the better. The left-hand side shows the results of the solvers on the entire data set (training and test), whereas the right-hand side shows the results only on the test set. In both plots, a cluster of points is forming along the line corresponding to the equation f (x) = 2x. On average, instance selection allows veriT to find proofs with about half the number of instances. On the other hand, a time comparison would not look good for instance selection, because the current prototype relies on extremely time consuming external calls to the predictor.

These results show that our approach seems to be suitable to substantially reduce the number of generated instances. The implementation of this first prototype is suboptimal. We are now working on an implementation of the predictor inside veriT, hoping to make the prediction cost close to negligible. We hope that the good results in terms of number of instances required will eventually translate into strong performance.

Figure 1 :

 1 Figure 1: Comparison of veriT configurations on UF SMT-LIB benchmarks

Acknowledgement The work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 713999, Matryoshka). Experiments were carried out using the Grid'5000 testbed (https://www.grid5000.fr/), supported by a scientific interest group hosted by Inria and including CNRS, RENATER, and several universities as well as other organizations.