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ABSTRACT
Detached hydraulic jumps are major features of supercritical open-channel flows interacting with emerging obstacles. Such a flow pattern
exhibits strong similarities with shock waves detached in front of bluff bodies in supersonic aerodynamic flows. This paper aims at evaluating
the capacities of an analytical model, adapted from supersonic aerodynamics, to predict the hydraulic jump detachment length. The analytical
predictions are compared to the measured hydraulic jumps from two experiments: (i) a uniform supercritical open-channel flow that skirts a
mounted and emerging obstacle (with a horseshoe vortex) and (ii) a mounted and emerging obstacle moving at constant velocity in water at
rest (without a horseshoe vortex). Moreover, numerical calculations of supercritical flow skirting emerging obstacles are undertaken, with a
free-slip condition at the bed to remove the horseshoe vortex, while keeping the detached hydraulic jump. The comparison of the detachment
lengths of these experimental, analytical, and computed hydraulic jumps reveals that two types of detachment lengths can be defined. The
detachment length visible on experiments corresponds to the toe of the hydraulic jump, while the detachment length predicted by the ana-
lytical model rather corresponds to the location of flow regime transition from the supercritical to subcritical regime. The present work thus
validates the analytical model for predicting the location of flow regime transition (for configurations without a horseshoe vortex) but not for
predicting the toe of the hydraulic jump. We finally confirm the strong connections between two distinct phenomena: a hydraulic jump in
water flow and a shock wave in gas flow.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5085744

I. INTRODUCTION

Supercritical open-channel flows interacting with mounted
obstacles are common flow features in regions with steep slopes.
During urban floods, due to the limited bottom roughness, the flow
in the streets along the main slope can become supercritical (Mignot
et al., 2006 and Sturm et al., 2018) and interact with emerging urban
furniture such as trees, bus-stops and piles. In mountain areas, the
flow regime in rivers can also become supercritical, particularly fol-
lowing heavy rain conditions, and interact with bridge piles. Fish-
ways along dams are often steep and are sometimes covered by
impervious blocks that the flow must skirt (Cassan et al., 2014).
Jiang and Smith (2000) studied a supercritical free surface shal-
low water flow over an isolated bump. Finally following tsunamis,
the inland flow reaches a supercritical regime and interacts with

artificial (building, cars, etc.) and natural (hills, etc.) emerging obsta-
cles (Lukkunaprasit et al., 2009 and Wüthrich et al., 2018). All these
obstacles can then be seen as impervious obstacles mounted on the
bottom and emerging from the free-surface that the supercritical
inflow must skirt it on the sides. In such conditions, Riviere et al.
(2017) recently showed that two flow patterns can be observed as a
function of the Froude number and the ratio between the incom-
ing water depth and the obstacle typical size. For narrow obstacles
or large water depths, a so-called “bow wave like wall jet” forms
along the upstream face of the obstacle so that the flow skirts the
obstacle as a vertical jet above the water depth. Oppositely, for
wider obstacles or smaller water depths, a detached hydraulic jump
takes place upstream and on the sides of the obstacle. This detached
hydraulic jump was qualitatively described for a rectangular obstacle
by Defina and Susin (2006), and its detachment length was measured
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FIG. 1. Top-view sketch of the flow around the obstacle with OX being the symme-
try plane of the incoming flow and of the obstacle. Three streamlines are depicted:
streamline 1© is the barycentric streamline entering the subcritical zone at point
B and leaving it by crossing the critical line at point N; streamline 2© crosses the
hydraulic jump at point S (intersection of the critical line and the hydraulic jump);
and streamline 3© crosses the hydraulic jump further away from the obstacle
region and thus remains in the supercritical regime.

by Mignot and Riviere (2010) for smooth and fixed bed conditions.
Mignot and Riviere (2010) additionally revealed the presence of a
horseshoe vortex in the near bed region at the foot of the obstacle
where the flow regime is subcritical. Recently, Wüthrich et al. (2018)
observed the transient transition between the wall jet and detached
jumps around obstacles within transient flows reproducing tsunami
waves.

Research studies regarding hydraulic jump processes are still
going on, including velocity field (Misra et al., 2008) and air entrain-
ment (Witt et al., 2018) measurements and calculations. However,
these studies mainly concentrate on straight hydraulic jumps and
thus differ from the present flow configuration. Through a dimen-
sional analysis, Mignot and Riviere (2010) showed that three non-
dimensional parameters govern the detachment length (noted λ, see
Fig. 1) of the hydraulic jump in the symmetry plane upstream from
the rectangular obstacle: the Reynolds number Reh = 4U1h1/ν, the
Froude number Fr1 = U1/(gh1)0.5, and the normalized water depth
h1/R, with U1 and h1, respectively, being the inflow bulk velocity and
water depth of the uniform supercritical inflow, R being the obstacle
width (in a direction perpendicular to the inflow), and ν and g being
the water kinematic viscosity and gravity acceleration

λ
R
= f (Fr1, Reh,

h1

R
). (1)

These authors additionally showed that λ is unaffected by the
Reynolds number, slightly decreases as the Froude number
increases, and rapidly increases with the normalized water depth (see
Fig. 2). Mignot et al. (2016) also revealed that this detachment length
is unaffected by an increase in the bottom roughness coefficient but
is strongly affected by the scour and deposition pattern around the
obstacle in the case of a mobile bed.

Nevertheless, to the authors’ knowledge, no analytical method
was proposed to predict this detachment length λ. The aim of the
present work is then to adapt an analytical model proposed by
Moeckel (1949) to estimate the detachment length of a shock wave
upstream from a supersonic bluff body to the present hydraulic
configuration. When comparing the model’s predictions with

FIG. 2. Comparison of separation dis-
tance λ measured upstream from the
fixed obstacle in supercritical flow at
LMFA by Mignot and Riviere (2010)
(symbol) and predicted by the analytical
model (plain line) as a function of: (a)
h1/R (with Fr1 = 2.6 and Reh = 8000), (b)
Fr1 (with h1/R = 0.035 and Reh = 8000),
and (c) Reh (with h1/R = 0.046 and
Fr1 = 2.3).
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experimental aerodynamics measurements, Moeckel (1949) proved
the high accuracy of this model. Considering that a shock-wave in
aerodynamics is analogous to a hydraulic jump in hydraulics [see,
for example, the work of De Chant and Caton (1998) for more infor-
mation on such analogy], we aim at verifying if this model could
predict the detachment length of the hydraulic jump.

Section II is devoted to the adaptation of the model of Moeckel
(1949) to a hydraulic configuration and to compare its hydraulic
jump detachment length prediction with the data of Mignot and
Riviere (2010). Given the poor agreement between the experimen-
tal and analytical data, Sec. III introduces a novel experiment with
a mounted obstacle moving at constant velocity in water at rest
to suppress the horseshoe vortex. Section IV introduces a sec-
ond approach corresponding to numerical calculations of a super-
critical flow around a fixed obstacle, with a free-slip condition at
the bed permitting to remove the horseshoe vortex. In Sec. V,
the comparison of the hydraulic jump detachment length from
the novel experimental approach, the numerical calculation, and
the analytical model finally permits to conclude on the capacity of
the analytical approach to predict the hydraulic jump detachment
length.

II. ANALYTICAL MODEL
Consider a supercritical inflow along the X axis skirting a rect-

angular obstacle of half width R/2 (along the Y axis) and corner T,
forming a detached hydraulic jump as plotted in Fig. 1. The ana-
lytical model, adapted to hydraulics, is based on a first hypothesis
introduced by Moeckel (1949) that the shape of the hydraulic jump
skirting the obstacle is a hyperbola. Its tangent at Y = 0 is parallel to
the upstream face of the obstacle at the symmetry plane and forms
an angle α = arctan(1/

√

Fr2
1 − 1) = arcsin(1/Fr1) with the inflow

axis X far away on the sides of the obstacle (see Fig. 1). This geome-
try, faithful for detached shock waves, was confirmed for detached
jumps by Mignot and Riviere (2010). Moeckel’s second hypothe-
sis is that the flow is 2D, which is turned here in negligible verti-
cal velocities: the flow can be depth averaged and the hydrostatic
pressure assumption holds. Third hypothesis is that the region with
the subcritical flow regime (shown in gray in Fig. 1) is delimited,
on its sides, by a straight line TS where the flow regime is critical
(Fr = 1) with S being the intersection of the critical line TS with the
hydraulic jump (location of S is unknown a priori). This critical line
forms an angle with the upstream face of the obstacle noted η in the
following.

A. Geometrical considerations
In the frame axis (O, X, Y), with the location of O being

unknown a priori, the equation of the hyperbola reads

Y2
=
X2

− X2
0

M2 , (2)

where M =

√

Fr2
− 1 and X0 is the distance between O and the

detached jump along the symmetry plane. Deriving Eq. (2) with
regard to X reads

dY
dX

=
X

M
√

X2
− X2

0

=

√

M2Y2 + X2
0

M2Y
= tan(β), (3)

with β being the local angle between the detached jump and X axis,
so that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

Y =
X0

M
√

M2 tan (β)2
− 1

,

X =
MX0 tan(β)

√

M2 tan (β)2
− 1

= YM2 tan(β).
(4)

As λ = XT − X0 and XT = XS + (YS − R/2)tan(η), with (XT , R/2) and
(XS, YS) being the coordinates of points T and S, respectively, the
detachment length reads

λ = XS + (YS − R/2) tan(η) − X0. (5)

Using Eq. (4), Eq. (5) finally reads

λ
R
=
YS

R
[M2 tan(βS) −M

√

M2 tan (βS)
2
− 1 + tan(η)] −

tan(η)
2

,

(6)
where angle η can be approximated by

η ≈
θS − θMAX

2
, (7)

with θS being the deflection angle of streamline 2© when crossing
the hydraulic jump at point S (Fig. 1) and θMAX being the maximum
deflection angle allowing an oblique jump, which value is given by
the formulas of Ippen (1951). For a given inflow (h1, U1) and obsta-
cle width (R), Eq. (6) then permits to compute λ as a function of
three unknowns: YS, βS, and θS.

B. Mass conservation
The next step is the application of the mass conservation prin-

ciple between the supercritical region upstream from the jump (for 0
< Y < YS) and line TS where the Froude number equals unity so that
the water depth and velocity are critical: h = hC and U = UC. This
reads

h1U1YS =
YS − R/2
cos(η)

hCUC. (8)

As FrC = 1, one can write

h1U1

hCUC
= Fr1(

h1

hC
)

3
2

(9)

so that Eq. (8) alternatively reads

YS

R
=

1/2

1 − cos(η)Fr1(
h1

hC
)

3
2

. (10)

YS/R in Eq. (10) can then be included in Eq. (6) where the three
remaining unknowns are hC, βS, and θS.

C. Head conservation
The subcritical flow approaching the obstacle converges toward

the critical line TS, which is a minimum section. It is reasonable,
following the model of Moeckel (1949), to assume (i) that the spe-
cific head and the water depth are constant along the critical line TS
and (ii) that, neglecting head losses downstream the jump, the mean
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specific head along TS equals the average specific head downstream
the hydraulic jump. Moeckel (1949) considered, moreover, (iii) that
this mean specific head along TS is accurately given by the head on
the barycentric streamline 1© at point B located immediately down-
stream from the detached jump. We verified that integrating numer-
ically the downstream specific head all along the jump confirms this
last assumption (not shown here). These three assumptions added
to the fact that Fr = 1 and the water depth is critical along the critical
line TS (h = hc) lead to

hB +
U2

B

2g
= hC +

U2
C

2g
=

2hC
3

(11)

so that
hB
hC

=
3

2 + Fr2
B

. (12)

On the other hand, the relation of Ippen (1951) for conjugated water
depths across the oblique jump along the barycentric line (at point B)
reads

h1

hB
=

2
√

1 + 8(Fr2
1 sin(βB)) − 1

. (13)

In Eq. (13), one can obtain βB as a function of βS and YS using Eq. (4)
and the fact that YB = YS/2 with

tan (βB)
2
= 4 tan (βS)

2
−

3
M2 . (14)

Combining Eqs. (12) and (13), one can then write

h1

hC
=
h1

hB
hB
hC

=
6

(2 + Fr2
B)[

√

1 + 8(Fr2
1 sin(βB)) − 1]

, (15)

with βB being estimated using Eq. (14) as a function of βS. When
including hC [from Eq. (15)] in Eq. (10) [itself included in Eq. (6)],
the three remaining unknowns are now βS and θS and FrB.

D. Determination of deflection and jump angles
at point S

According to the relations of Ippen (1951), β can be written as
a function of the conjugated flow conditions upstream and down-
stream from the jump by applying a momentum balance along the
direction normal to the jump. When applied at point S, it reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

βS = sin−1

⎛

⎜
⎜
⎜
⎜

⎝

¿

Á
Á
Á
ÁÀ

4(
1
2

+
hS
h1

)

2
− 1

8Fr2
1

⎞

⎟
⎟
⎟
⎟

⎠

,

θS = βS − tan−1
(
h1

hS
tan(βS)).

(16)

Including Eq. (16) in Eq. (15) permits to reduce the number of
unknowns to 2: hS (the water depth downstream from the jump at
point S) and FrB (the Froude number at point B downstream from
the jump along the barycentric line).

According to Ippen (1951), the tangential component of the
velocity (parallel to the detached jump locally) remains unchanged
on both sides of the oblique jump: U t1 = U t2, which reads

Fr1
√

gh1 sin(β)
tan(β)

=

Fr2
√

gh2 sin(β − θ)
tan(β − θ)

(17)

so that

Fr2
1gh1sin2

(β)[
1

sin2
(β)

− 1]

= Fr2
2gh2sin2

(β − θ)[
1

sin2
(β − θ)

− 1], (18)

and finally

Fr2
1gh1(1 − sin2

(β)) = Fr2
2gh2 − Fr2

1gh1sin2
(β)(

h1

h2
)

2
, (19)

with indices 1 and 2 referring to the region just upstream and down-
stream from the oblique jump, respectively. Using Eq. (16) (replac-
ing, for the sake of generality, hS by h2 the water depth at any location
downstream from the jump), Eq. (19) reads

Fr2
2 =

h1

h2
[Fr2

1 −
1
2
h1

h2
(
h2

h1
− 1)(

h2

h1
+ 1)

2
]. (20)

Equation (20) permits to estimate the two remaining unknowns: (i)
Fr2 = FrB when setting h2 = hB and (ii) h2 = hS when setting Fr2S = 1
as point S belongs to the critical line.

Finally, Eq. (6) permits to predict λ, the detachment length of
the hydraulic jump along the symmetry axis.

E. Analytical vs experimental detachment length
Figure 2 reveals that the normalized detachment length of

the hydraulic jump along the symmetry axis predicted by the
analytical model only depends on the incoming Froude number
λ/R = f(Fr1). Figure 2 then compares the detachment lengths
measured by Mignot and Riviere (2010) and estimated by the
analytical model. While the orders of magnitude are similar for
the measurements and predictions, the quantitative agreement is
poor:

● The measured detachment length strongly depends on the
normalized water depth, while the analytical model does not
predict any influence of this parameter [Fig. 2(a)].

● The measurements exhibit a much smaller dependency with
regard to the Froude number than the analytical model
[Fig. 2(b)].

● Both do not exhibit any dependency on the Reynolds num-
ber, but a constant shift is observed in Fig. 2(c).

The discrepancies between the hydraulic jump detachment
length measured by Mignot and Riviere (2010) and predicted by the
analytical model are expected to be related to one (or both) of the
following potential reasons:

● Potential reason #1 (PR1). The analytical model predicts the
location of the transition from the supercritical to subcritical
flow regime. Oppositely, Mignot and Riviere (2010) mea-
sured the location of the toe of the hydraulic jump (loca-
tion where the flow starts to be affected by the obstacle
and the water depth starts increasing). Unlike for shock
waves, hydraulic jumps cannot be considered as infinitely
thin so that these two locations should differ. Measured and
predicted detachment lengths may not be comparable at all.

● Potential reason #2 (PR2). It is well known that, at the
foot of an obstacle, the boundary layer detaches from the
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bottom wall and generates a so-called “horseshoe vortex.”
Mignot and Riviere (2010) measured the detachment length
of this horseshoe vortex and revealed that it is actually of
the same order of magnitude as the detachment length of
the hydraulic jump, even if remaining of smaller magni-
tude. This horseshoe vortex is expected to strongly impact
the flow condition in the near-obstacle region and thus to
affect the flow conditions in the region downstream from the
hydraulic jump (at least in the region in front of the obsta-
cle) and to strongly affect the conjugated water depths. The
horseshoe vortex is finally expected to play a major role in
the detachment length of the jump upstream from the obsta-
cle. It should be reminded that the model of Moeckel (1949)
was devoted to a flow configuration with no bottom wall,
thus no boundary layer and thus no horseshoe-vortex. The
horseshoe vortex in the measured configuration could be the
cause for the discrepancies in Fig. 2.

To summarize, PR1 corresponds to a difference of defini-
tion between the measured and predicted detachment lengths;
PR2 rather corresponds to an oversimplification of the model
compared to the actual flow configuration. In order to identify
which of these two potential reasons is/are responsible for the
observed discrepancies, two complementary research studies were
undertaken:

● A novel experimental approach, described in Sec. III, aims at
verifying PR2 by measuring detachment lengths in front of
obstacles after suppressing the horseshoe vortex. The princi-
ple is to remove the boundary layer by setting the obstacle in
motion in water at rest, in a towing tank. The differences
between the detachment lengths acquired in these condi-
tions and those from Mignot and Riviere (2010) should be
attributed only to the absence/presence of the horseshoe
vortex.

● The numerical approach in Sec. IV aims at verifying at
the same time PR1 and PR2, by computing numerically a
supercritical open-channel flow skirting an obstacle (as for
Mignot and Riviere, 2010) but by removing the boundary
layer and subsequent horseshoe-vortex setting a free-slip
condition on the bottom wall. The easy access to the numer-
ical data should then permit to quantify both detachment
lengths: that of the toe of hydraulic jump and of the flow
regime transition.

III. NOVEL EXPERIMENTAL APPROACH
IN A TOWING TANK

The aim of the novel experimental configuration is to obtain
a detached hydraulic jump similar to that observed in front of
mounted and emergent obstacles in supercritical flows (as for
Mignot and Riviere, 2010) but in the absence of the horseshoe vor-
tex. The strategy is to suppress the boundary layer of the inflow by
considering an obstacle in motion, sliding on the bed and emerging
from the free-surface, within a water basin at rest.

A. Experimental setup
The experiments are performed in the 35 m long, 0.9 m wide,

and 1.2 m high towing tank of the LOMC, at the University of Le

Havre Normandie (France). In the measurement region, three hor-
izontal plates of 3 m long each, made of black polyvinyl chloride
(PVC), are laid one next to the other on the flume’s bottom in order
to reduce the roughness of the bed. The obstacles are translated hor-
izontally by a carriage driven by a 600 V AC motor, located above
the flume, at a selected velocity in water at rest with a constant depth
h1 (see Fig. 3). For each test, the water depth h1 is measured with a
micrometer gauge at a fixed location.

The obstacles are made of several 2 or 10 mm thick rectangu-
lar plates of PVC fixed together with a rod, to be able to regularly
increase the obstacle width R. A thin wipe is fixed beneath the obsta-
cle to reduce friction, and a weight is added above in order to ensure
a permanent contact of the lower obstacle face with the bed. A verti-
cal mast is finally rigidly fixed to the carriage. To limit the transmis-
sion of the carriage vibrations to the obstacle, the latter is attached to
the mast through two 0.715 m long flexible transparent rods.

For each measurement, an acceleration protocol is established:
the velocity is increased linearly over a 1 m long reach, the obstacle
is then translated at a constant speed U1 over 7 m, and the velocity
is decreased linearly over the last 1 m. As the obstacle moves with
constant velocity, the free-surface deformation in front of the obsta-
cle is recorded from the top by using a 1280 × 720 px Nikon camera
at 24 fps with a 28 mm lens. The camera is fixed on the carriage
at about 1.6 m above the obstacles such that the spatial resolution
equals about 1.6 px/mm. Given the negligible image distortion, the
exact image calibration is performed for each test by clicking on the
upstream obstacle edges, thus detecting the width of the obstacle in
pixels. A mirror is additionally placed at 45○ on the side of the visu-
alization zone and attached to the obstacle, in order to observe the
vertical section of the hydraulic jump (see top left region of both
photographs in Fig. 4).

B. Parameter range
The range of investigated parameters is strongly limited by the

width of the flume, the conditions of occurrence of the detached
hydraulic jump and the carriage maximum velocity. Indeed, for a
Froude number Fr1 < 3, the toe of the hydraulic jump reaches the
side walls of the tank on the side of the obstacle (rather than down-
stream) and propagates upstream leading to a straight jump in front
of the obstacle; this process was explained in detail by Defina and
Susin (2006). The Froude number is thus taken larger than 3 for all
experiments (see Table I). Besides, the non-dimensional water depth
h1/R has to be kept small enough to prevent any wall-jet-like bow

FIG. 3. Photograph and sketch of LOMC towing tank experiments with the obstacle
moving at constant velocity in water at rest.
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FIG. 4. Towing tank: photograph of the free-surface defor-
mation facing the obstacle (a) and hydraulic jump detection
method applied at 15 different times (colored dashed lines)
(b). The top-left part of the image shows a side view of the
hydraulic jump through the mirror.

TABLE I. Experimental series measured with the moving obstacle in water at rest in a towing tank (bold text refers to range
of the studied parameter).

h1 (mm) U1 (m/s) R (mm) Fr1 h1/R Reh

Series 1 9.4–14.3 1.06–1.31 94–143 3.5 0.1 40 000–75 000
Series 2 12.3 1.22 88–176 3.5 0.07–0.14 60 000
Series 3 6.45 0.75–1.51 142 3–6 0.045 19 470–35 690

wave, described by Riviere et al. (2017), from occurring instead of
a detached hydraulic jump. Moreover, in all the experiments, the
blockage ratio between the obstacle dimension R and the width of
the tank is kept smaller than 0.2.

Given these constraints, three series of experiments are per-
formed and detailed in Table I: (i) series 1 at constant non-
dimensional water depth and Froude number and varying Reynolds
number, (ii) series 2 at constant Froude and Reynolds numbers and
varying non-dimensional water depth, and (iii) series 3 at constant
non-dimensional water depth and varying Froude number (also
varying the Reynolds number for experimental limitation purposes,
after verifying in series 1 that the Reynolds number hardly affects the
detachment lengths, see further below).

C. Detachment length measurement techniques
Although the constant carriage velocity regime is reached at

the end of the acceleration phase, some oscillations of the hydraulic
jump detachment length and elevation are observed. These are partly
due (i) to the vibrations of the carriage and slight variations in the
bed elevation as the obstacle is translated and (ii) partly to the intrin-
sic oscillations of the detached hydraulic jump, already reported by
Mignot and Riviere (2010). Thus, for each test, 15 non-consecutive
images of the same experiment are selected throughout the record-
ing process [Fig. 4(b)]. For each image, the position of the hydraulic
jump is detected using a computer-aided manual detection method,
similar to the one used by Mignot and Riviere (2010). This opti-
cal technique is validated with manual measurements of detach-
ment lengths performed in the symmetry plane along the flume
axis. The detachment length is then defined as the average over the
15 measurements of the distance from the obstacle upstream face
to the toe of the hydraulic jump in the streamwise symmetry plane
[Fig. 4(b)].

The uncertainty on the water depth h1 is estimated to be±2 mm
due to the non-perfect bottom topography. The uncertainty on the
velocity is estimated to be 1 mm/min. Finally, the uncertainty on
the detachment length is estimated as the root mean square of 15
independent measurements and is included in the graphs in Sec. V,
leading to a maximum error estimate of 7%.

IV. NUMERICAL CALCULATIONS
The present section is devoted to evaluate PR1 and PR2 by

means of numerical calculations which offer the possibility, at the
same time, to remove the horseshoe-vortex (PR2) and to evaluate the
difference in detachment length based on both definitions (PR1): the
toe of the hydraulic jump (noted λ2) and the location of flow regime
transition (noted λ1).

A. Numerical method
The numerical domain is slightly simplified in the sense that

only half of it is computed, on one side of the inflow symme-
try plane (see Fig. 5). Moreover, the obstacle length (along x) is
extended up to the downstream boundary (to avoid computing a
complex and costly wake downstream the obstacle). These simplifi-
cations do not introduce any specific error or uncertainty regarding
the detachment length of the hydraulic jump. The 3D Unsteady-
Reynolds-Averaged-Navier-Stokes (URANS) equations are solved

FIG. 5. Sketch of the numerical domain and boundary conditions.
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FIG. 6. Velocity field in the water volume (arrows, which color stands for velocity
magnitude) along the symmetry plane (y = 0) for the configuration with Fr1 = 2.5
and h1/R = 0.035. The plain lines correspond to the free-surfaces, estimated as
hα=0.5 (thin black line) and as hα=0.01 (thick gray line).

with a constant time step of 0.01 s, using a typical k-ε turbulence
model and the Volume of Fluid (VOF) method to estimate the loca-
tion of the air/water interface (i.e., the free-surface). Along the inlet
boundary, a fixed water depth h1 and a uniform streamwise veloc-
ity U1 are imposed as boundary conditions. The obstacle and lateral
boundaries are walls, the top surface is a plane of symmetry, the
outlet considers a hydrostatic pressure distribution, and finally the
bottom wall is set with free-slip conditions to avoid any boundary
layer development and avoid the horseshoe vortex at the foot of the
obstacle.

The mesh is made of about 350 000 parallelepiped cells aligned
with the walls and axes directions, refined along the z axis in the
water volume (lower region), with cell sizes equal to ∆x ∗ ∆y ∗ ∆z
≈ 7.5 ∗ 7.5 ∗ 1.8 mm. To verify the dependency of the computed
flow pattern to the grid size, some calculations were repeated using

a mesh comprising 900 000 cells, refined in the water volume with
∆z = 1 mm. The difference in detachment length using this refined
mesh remained limited to about 3%.

Apart from the 3D velocity and Reynolds stress component
fields computed by the numerical model, the VOF method estimates
the ratio between water and total volume (noted α) in each cell i:
αi = Vwater/(Vwater + Vair). Considering a small (respectively high) α
threshold value permits to identify the regions where the water/air
mixture is mainly composed of air (respectively water). Follow-
ing analysis considers two distinct threshold values (see Fig. 6):
α = 0.01 represents the location of the highly aerated air/water mix-
ture with only 1% of water and 99% of air (corresponding water
depth is noted hα=0.01); α = 0.5 represents the usual free-surface (i.e.,
mean interface) between both phases (corresponding water depth is
noted hα=0.5).

B. Definition of computed detachment lengths
Figure 7 reveals that the horizontal water depth field follows a

typical hyperbolic curve wrapping around the obstacle, in agreement
with measurements from Mignot and Riviere (2010). The approach-
ing streamlines start deflecting from their initial axis (along x) when
crossing the hydraulic jump, where the velocity magnitude sud-
denly decreases and the water depth hα=0.5 suddenly increases. From
upstream to downstream, hα=0.01 and hα=0.5 exhibit different behav-
iors (Fig. 6): hα=0.01 starts increasing at a distance noted λ2 from the
obstacle and then oscillates until reaching the obstacle, while hα=0.5
suddenly increases at a shorter distance from the obstacle, noted λ1.
In fact, λ1 appears to be the location where the flow regime changes
from super- to subcritical, i.e., where Fr = 1 (see Fig. 7). Figure 6
additionally reveals a flow recirculation in the air/water mixture just
downstream from λ2.

To summarize: λ2 can be defined as the detachment length of
the “toe of the hydraulic jump” where the air/water mixture starts to
rise above h = h1. On the other hand, λ1 is defined as the detach-
ment length of the sudden flow regime transition from Fr > 1 to
Fr < 1, somehow hidden from optical access in the experiments by
the air/water mixture. The relative uncertainty regarding these two
detachment lengths is estimated, through estimations by different
experts, to about 2% during the post-processing of the computed
water depth field.

FIG. 7. Computed normalized water depth (hα=0.5/h1 obtained with α = 0.5, left), Froude number (Fr, center) upstream from the obstacle, and velocity field at z = h1/2 for the
configuration Fr1 = 2.5 and h1/R = 0.035. The white line in the Froude number map corresponds to Fr = 1; in the velocity field map, the blue line are projections of streamlines
and the dashed line is the location of the maximum hα=0.5 gradient.
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TABLE II. Computed flow series.

h1 (mm) U1 (m/s) R (mm) Fr1 h1/R Reh

Series A 4-5 0.46-0.51 120-140 2.3 0.033-0.036 7300-10 200
Series B 4 0.516 60-160 2.6 0.025-0.067 8200
Series C 4-4.7 0.49-0.57 120-130 2.3-2.9 0.035 8500-10 100

C. Computed flow series
Numerical calculations are performed for three flow series by

varying one of the non-dimensional parameter [Eq. (1)] at a time
(Table II). Both detachment lengths (λ1 and λ2) are extracted from
each calculation. The main limit in the selection of these parame-
ters is related to the flow configurations with high Froude numbers
(Fr1 > 3), for which the unsteadiness of the flow makes it very
difficult and uncertain to estimate the time-averaged detachment
lengths. The selected upstream Froude numbers are thus taken as

high as possible below this limit, i.e., in the range 2.3–2.9; they
remain lower than for the experiment by Mignot and Riviere (2010)
and the novel towing tank experiment. The normalized upstream
water depth is taken in the range of measurements by Mignot
and Riviere (2010) and the towing tank measurements (i.e., 0.03-
0.07). The Reynolds number is taken in the range of measure-
ments by Mignot and Riviere (2010) but remains lower than that
in the towing tank. Table II summarizes the flow patterns computed
numerically.

FIG. 8. Comparison of hydraulic jump
detachment lengths λ: measured in the
towing tank (LOMC), numerically com-
puted and predicted analytically, as a
function of the inflow Froude number (a),
of the normalized water depth [(b) and
(c)], and of the Reynolds number [(d)
and (e)].
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FIG. 9. Ratio between empirical length for ordinary straight
hydraulic jumps L∗ and measured or computed detachment
length λ2 with similar upstream (supercritical) conditions as
a function of the Froude number [(a) series C from Table II
and series 3 from Table I] and the normalized upstream
depth [(b) series B from Table II and series 2 from Table I].

V. RESULTS
Figure 8 compares the detachment lengths of the hydraulic

jump along the symmetry plane (i) measured in the towing tank
(Table I), (ii) computed numerically (Table II), and (iii) predicted
by the analytical model [Eq. (6)]. Unfortunately, as discussed above,
the towing tank measurements could only be performed for flows
with Fr1 > 3, while numerical calculations could only be performed
for flows with Fr1 < 3. Consequently, the following analysis does not
comprise any common configuration among the three approaches.
Still, Figs. 8(a), 8(b), and 8(d) reveal that the detachment lengths
measured in the towing tank in front of the moving obstacle strongly
exceed the analytical values but fairly agree with the computed val-
ues corresponding to the toe of the hydraulic jump (λ2). Besides,
Figs. 8(a), 8(c), and 8(e) reveal that the computed detachment
lengths corresponding to the flow regime transition (λ1) fairly agree
with those predicted by the analytical model. This confirms the
following:

● The detachment lengths measured in the towing tank corre-
spond to that of the toe of the hydraulic jump. They are thus
noted λ2 in Fig. 8. They are in agreement with the computed
λ2 values.

● The analytical model [Eq. (6)] accurately predicts the flow
regime transition detachment lengths from the super- to
subcritical regime. These are thus noted λ1 in Fig. 8. Remind
that this is only valid in cases where no boundary layer, i.e.,
no horseshoe vortex, affects the development of the detached
hydraulic jump.

● The detachment length of the toe of the hydraulic jump is
strongly affected by the presence of a horseshoe vortex in
front of the obstacle. Indeed, when comparing Fig. 2 (mea-
sured data—with a horseshoe vortex) and Figs. 8(a), 8(c),
and 8(e) (computed λ2 without a horseshoe vortex—with
similar Froude number and h1/R), the horseshoe vortex (in
Fig. 2) strongly reduces this detachment length. As already
mentioned by Mignot and Riviere (2010), it is expected that
the horseshoe vortex acts as a forward facing step which
modifies the subcritical backwater curve upstream from the
obstacle and thus highly affects the conjugated depths of the
hydraulic jump.

On the other hand, these results confirm that λ1 (location of
transition from the super- to subcritical regime) decreases with the

inflow Froude number [Fig. 8(a)] but is unaffected by the normal-
ized water depth [Fig. 8(c)] and Reynolds number [Fig. 8(e)]. This
observation is in agreement with that of the shock wave detachment
in aerodynamics (see Moeckel, 1949).

Figure 8(a) also reveals that λ2 (the detachment length of the
toe of the hydraulic jump) decreases with the Froude number, in a
similar tendency as for λ1, with a ratio λ2/λ1 ranging from 1.5 to
2. Moreover, λ2 appears to be unaffected by the Reynolds number
[Figs. 8(d) and 8(e)] but increases with the normalized incoming
water depth [Figs. 8(b) and 8(c)]. This tendency is in fair agree-
ment with the empirical length of ordinary straight hydraulic jumps
(noted L∗) which, for a given upstream Froude number, linearly
increases with the upstream water depth h1 (Chow, 1959). However,
Fig. 9 reveals that λ2 can be lower or larger than L∗ with similar
upstream conditions (h1, Fr1) with L∗/λ2 increasing with both Fr1
and h1/R. There exists a strong analogy of this ratio L∗/λ2 with the
ratio L∗/Lg for an impact jump with Lg being the distance from the
toe of the hydraulic jump to the gate: Hager (1994) showed that this
ratio governs the impact jump processes. Oppositely, in the present
flow configurations with a mounted obstacle that the flow must skirt
from the sides, no qualitative difference in the flow pattern can be
observed as a function of L∗/λ2.

VI. CONCLUSIONS
The present work aimed at evaluating the capacities of an ana-

lytical model, initially applied to aerodynamics and adapted herein
to hydraulics, to predict the detachment length of hydraulic jumps
in front of mounted and emerging obstacles in supercritical open-
channel flows. This work permitted to clearly distinguish between
two different flow structures, characteristic of detached jumps: the
classical toe of the hydraulic jump (which detachment length is
noted λ2) and the location of flow regime transition from the super-
to subcritical regime (with a shorter detachment length noted λ1).
The visible detachment length, frequently reported on experiments,
corresponds to the toe of the hydraulic jump (λ2) where a vertical
flow recirculation takes place at the free-surface. It thus differs from
the detachment length predicted by the analytical model (λ1), which
corresponds to the location of flow regime transition from the super-
critical to subcritical regime, with a sudden water depth increase and
velocity and Froude number decrease.

When comparing the measured and computed detachment
lengths, the paper revealed that the present analytical model is
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unable to predict the detachment lengths of the toe of the hydraulic
jump, in the presence or absence of a boundary layer (and thus of
a horseshoe vortex in front of the obstacle). Additional work is then
required before being able to predict such detachment length. Oppo-
sitely, the present work assesses that the analytical model predicts
with high accuracy the location of transition from the super- to sub-
critical flow regime along the symmetry plane, in the absence of a
boundary layer (and thus of a horseshoe vortex). Note, however,
that the analytical model was validated against numerical calcula-
tions [Figs. 8(a), 8(c), and 8(e)] but could not be compared to mea-
surements due to the lack of experimental data concerning the flow
regime transition location. These data should be obtained by mea-
suring the water depth field with ultrasonic probes and the velocity
field within the hydraulic jump, using particle image velocimetry,
laser Doppler anemometry (LDA), or more advanced measurement
methods; they, however, remain quite challenging due to the air
entrainment and limited optical access.

Finally, both hypotheses proposed above are valid: the analyti-
cal model fails at predicting the location of the toe of the hydraulic
jump in a supercritical open-channel flow skirting a mounted and
emerging impervious obstacle due both to the width of the hydraulic
jump and the presence of the horseshoe vortex.

From an engineering point of view, the location of flow regime
transition corresponds to a sudden velocity decrease, water depth
increase, and Froude number decrease (below 1). This sudden tran-
sition strongly affects the flow characteristics in the water column
as well as the shear stress at the bed. It is then expected to be of high
interest for applications such as the drag force acting on the obstacle,
the scour occurring at the toe of the obstacles below the hydraulic
jump, and the capacity of fishes to go through steep fishways with
emerging obstacles. Nevertheless, in its present form, the analytical
model is not yet able to predict this location for configurations with
a boundary layer and a horseshoe vortex.
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