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Deep unsupervised state representation learning with robotic priors: a
robustness analysis

Timothée Lesort1, Mathieu Seurin1,2, Xinrui Li, Natalia Dı́az-Rodrı́guez and David Filliat

Abstract— Our understanding of the world depends highly on
our capacity to produce intuitive and simplified representations
which can be easily used to solve problems. We reproduce
this simplification process using a neural network to build a
low dimensional state representation of the world from images
acquired by a robot. As in Jonschkowski et al. 2015, we learn
in an unsupervised way using prior knowledge about the world
as loss functions called robotic priors and extend this approach
to high dimension richer images to learn a 3D representation
of the hand position of a robot from RGB images. We propose
a quantitative evaluation metric of the learned representation
that uses nearest neighbors in the state space and allows to
assess its quality and show both the potential and limitations
of robotic priors in realistic environments. We augment image
size, add distractors and domain randomization, all crucial
components to achieve transfer learning to real robots. Finally,
we also contribute a new prior to improve the robustness of the
representation. The applications of such low dimensional state
representation range from easing reinforcement learning (RL)
and knowledge transfer across tasks, to facilitating learning
from raw data with more efficient and compact high level rep-
resentations. The results show that the robotic prior approach
is able to extract high level representation as the 3D position
of an arm and organize it into a compact and coherent space
of states in a challenging dataset.

I. INTRODUCTION

The environment we live in is a complex mixture of
multiple physics laws and interactions, hard to fully describe
and understand. However, humans are likely to interact with it
without detailed knowledge of the whole environment and its
underlying functioning. For this, the human brain constructs
simple models of the world in order to come up with an easy,
though approximate, understanding of it that is sufficient to
perform tasks.

This paper aims at reproducing this behavior for robots.
We want to build a simple representation of the world that
retains enough information to make a machine able to use
it to interact afterwards, i.e., to perform an assigned task.
Finding such a minimal representation (e.g., the position of
an object extracted from an image) is the standard way to
implement behaviors in robots. However, this is most of the
time done in a task specific and supervised way. In this paper,
we want to learn such representation with no supervision,
based on generic learning objectives.
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This representation is trained with a deep neural network
using images and rewards gathered from robot actions in a
given environment and has to estimate, for each image, a
state which is the representation we want to learn. Instead
of using a ground truth as in supervised training, we make
use of an approach that ensures consistency between the
states’ representation and the rewards gathered by the robot
during exploration in the task. For this purpose, the states are
constrained by robotics priors [1], which are an expression of
the knowledge we have about physics. The rewards are used
in a way such that the representations learned are not bound
to learn a concretely specific task, but instead, are aimed
at serving to learn a broad variety of tasks. It is, however,
essential to include a task to learn the concept of causality.

The main contribution of this paper is the extension of the
use of the robotic priors approach with a siamese network
to train a deep convolutional neural network to learn 3D
representations of a robot’s hand position. The network is
trained with images from the robot head’s camera, information
on the actions performed by the robot, and rewards. The neural
network learns a state representation usable for the robot to
perform a reaching task defined by the reward. Moreover,
we propose a new quantitative evaluation of the learned
representation using nearest neighbors in the learned state
space and generate new settings simulation data with added
difficulty such as static and mobile distractors, and perform
domain randomization [2], [3] to test the scalability of the
robotic priors in more challenging domains. Furthermore,
we identify cases with partial degradation in the state
representation learned space and propose a new alignment
reference-point prior to improve it.

II. RELATED WORK

Robotic Priors: The term of prior in Bayesian statistics
refers to the prior probability distribution, but as in the articles
[4],[5], [6] and [1], we use this term as a reference to an
a priori knowledge we have about the world and not to a
probability distribution. This knowledge comes from various
domains which define several kind of priors: Task-Specific,
Generic, and Robotic Priors.
These priors can be exploited to train neural networks in order
to learn physically plausible representations. Furthermore,
we believe, as in [4], that incorporating strong and diverse
priors into learning will bring the learning process closer
to intelligence. The priors we use (as in [1]) are similar to
those in [7] because they are physically grounded and aim
at building representations of the world that are consistent
with physics. Our approach can also be compared with [8],



which uses several kinds of robot interactions to train a
siamese neural network. The difference is that they retrieve
the executed actions from images to learn the representation,
while we use the executed actions to impose a constraint
on the representation. The final network they train is able
to produce different actions with a Baxter robot, such as
pushing, grasping or pocking, but in an open loop fashion.
On the contrary, our approach is able to extract information
from each image so as to produce closed loop controllers.

State Representation Learning The goal of state repre-
sentation learning [9] is to find a mapping from a set of
observations to a set of states that makes possible to describe
an environment with enough information, for example, to
fulfill a given objective. This state representation learning
can be viewed as searching a small set of hidden parameters
which explain the observation. In our approach we impose
a dimension on the state, and use the priors to guide the
neural network in learning task-specific state representations
in this given dimension. This is an alternative approach to
selecting a state representation from a set ([10], [11]), or
creating an autoencoder to compress information into a lower
dimensional state ([12], [13]), [14].

An important aspect of our approach compared to other
state representation works is the usage of representation
constraints based on both physics and a given task, that
is exploited to find relevant information, instead of trying
to encode all available information. This characteristic bears
some similarity with approaches such as Embed to Control
[15], which learns states that follow linear dynamics, or
the approach of [14], [16], [17] which learn states that
make possible to reconstruct the next observation with
models such as PSRs (predictive state representation) [18].
However, optimizing reconstruction is often a weak criterion
to learn state representations, as the learning process may
focus on the reconstruction of the most visible features and
ignore small but relevant parts of the observations. Another
approach related to ours is Time-Contrastive Networks, where
a constraint on time continuity coherence is used to learn
states from a dual camera setting using different points of
view [19]. Other works that learn representations for robotics-
related tasks other than control (scene recognition, odometry
and keypoint matching) that do not use reconstruction but
rather ego-motion equivariance include [20] and [21].

Model Architecture Several approaches rely on neural
networks with an autoencoder or variational autoencoder
architecture ([10], [11], [12], [13]). However, in our approach,
the priors are used as loss functions that encode constraints
between states, a configuration that we address using Siamese
networks (e.g., [22], [23], [8]), which use two (or more)
copies of a network with tied weights to process two (or
more) inputs whose relation has to be imposed. This strategy
constructs a coherent space of representations where each
state representation is learned depending on each other.

We follow the common approach of using pre-trained
convolutional networks on large image datasets and fine-tune
them on a robotic task. We use ResNet18 network [24] with
additional fully connected layers that constrain the output to

be low dimensional.

III. METHODOLOGY

A. Robotic Priors

Robotic priors are used to provide the model with basic
knowledge about the environment dynamical features. They
add constraints to make the learned representation altogether
consistent with simple, physical and task specific rules.
Each prior is formalized as a cost function implemented
through a siamese network. By minimizing them, the model
is trained according to the prior and can learn a task-specific
representation. The four priors we used are the ones presented
in [1]. We will use the following notations:
• I(t) is the image perceived at time t
• s(t) is the state at time t and ŝ(t) is its estimation.
• φ is a function where given an image I(t), it returns a

state s(t). φ̂ is its estimation
• r(t) is the reward at time t
• a(t) is the action performed a time t
• D is the input data (images, actions, rewards)
• ∆s(t) = s(t+ 1)− s(t)
The definitions of loss functions associated to the priors

and its related assumption are as follows:
Temporal coherence Prior: Two states close to each other

in time are also close to each other in the state representation
space.

LTemp(D, φ̂) = E[‖ ∆ŝt ‖2] , (1)

Proportionality Prior: Two identical actions should result
in two proportional magnitude state variations.

LProp(D, φ̂) = E[(‖ ∆ŝt2 ‖ − ‖ ∆ŝt1 ‖)2|at1 = at2 ] , (2)

Repeatability Prior: Two identical actions applied at
similar states should provide similar state variations, not
only in magnitude but also in direction.

LRep(D, φ̂) = E[e−‖ŝt2−ŝt1‖
2

‖ ∆ŝt2−∆ŝt1 ‖2| at1 = at2 ] ,
(3)

Causality Prior: If two states on which the same action is
applied give two different rewards, they should not be close
to each other in the state representation space.

LCaus(D, φ̂) = E[e−‖ŝt2−ŝt1‖
2

| at1 = at2 , rt1+1 6= rt2+1] ,
(4)

This last prior is the only one giving information about the
task and helps discovering the underlying states which lead
to rewards.

B. New prior proposition

Thus far we described original priors in [1]. However,
our experimental section will show that these are often
not robust enough to learn a coherent state space when
(static and moving) distractors are present, or when domain
randomization occurs. In particular, we observed that when
multiple training episodes were used, each sequence was
often represented in its ”own” part of the representation space
instead of creating a larger space including all sequences.
This overfitting behavior is quite logical as none of the priors



tends to bring the sequences closer to one another. To bring
sequences together, we introduce a new reference prior:

Reference point Prior: Two states corresponding to the
same reference point should be close to each other

LRef (D, φ̂) = E[‖ ŝti − ŝtj ‖2| sti = stj = sRef ] (5)

where sRef is the embedded state of a reference point.
This prior aims at stabilizing the representation by adding

extra knowledge on some states of the system, with the
idea of giving the robot a signal when he reaches a certain
configuration, that acts as a reference or calibration coordinate.
In order to apply the 5th prior in our experiments, we need a
reference point that acts as an anchor for the representation,
and choose its location either 1) randomly (where the problem
of some sequences not containing this point may arise), or 2)
ad-hoc, where a point contained in each sequence is chosen.

C. Network architecture: Siamese Networks

The architecture of our network relies on a pre-trained
ResNet18 network [24], appended with a 512 neurons
fully connected layer and a final fully connected layer
representing the low dimensional state space (3 neurons in
our experiments).

Training using the priors needs the simultaneous estimation
of several states to perform the optimization process. This
is the main reason why our approach uses siamese networks
(Fig. 1). These neural networks use two copies of the same
network that share all their parameters. With this method the
cost functions can be applied on two states computed at the
same time on different images.

Fig. 1. Example of neural net architecture with two Siamese networks and
frozen feature extractors (ResNet).

The cost functions also require to choose the right set of
images as input for the siamese networks. This sampling
depends on the prior to be optimized, e.g., in order to use
the temporal prior, a set of two consecutive images should
be taken, while for the causality prior, we search for a
set composed of two images where the same action was
performed while giving different reward. Once the set of
image pairs is sampled, we can compute the states by forward
propagation on each siamese network. Then, given all outputs,
we calculate the prior loss and compute the gradient with
respect to the prior loss, and update the weights accordingly.
The ResNet18 and fully connected layers weights are shared
among both the siamese networks branches, while the first X

layers of the ResNet18 are frozen during training (X = 0 or
3 depending on the experiment).

For training, we used a batch size of 10, a learning rate of
10−4 with a decay of 3× 10−6 using the ADAM optimizer
for 15 epochs. During training, all priors show not to be
minimized the same way, as we observe the LCaus reaching
lower values than the rest. However, the final equilibrium is
only possible with the influence of all priors.

D. Assessment metrics
The best evaluation of the quality of the learned state

space would be the performance of a reinforcement learning
algorithm applied on the target task. However, this approach
is computationally very expensive and data-hungry, and we
therefore propose several more direct ways to assess the
learned state space.

1) K-Nearest Neighbors quality evaluation criterion: The
assessment for ŝt should point out that there exists a bijection
between it and st. However, the transformation from st to
ŝt can be quite arbitrary and it is not easy to estimate if
the transformation keeps all the required structure of the
original state space. We therefore use an assessment of
the representation’s quality which is based on a Nearest-
Neighbors approach as in [19] for example. Since the priors
want to impose local coherence (especially the temporal
prior), a good representation should have local coherence,
and therefore, the associated ground truth states should be
close. While the nearest neighbor coherence can be assessed
visually, we derive a quantitative metric from this information.
Using the ground truth value for every image, we compute
the distance between the value of the original image and the
value on the nearest neighbor images retrieved in the learned
state space1.

For an image I , this criterion is computed as follows:

KNN-MSE(I) =
1

k

∑
I′∈KNN(I,k)

||φ(I)− φ(I ′)||2 (6)

where KNN(I, k) returns the k nearest neighbors of I in
the learned state space and φ(I) gives the ground truth (s)
associated to I.

2) NIEQA: NIEQA [25] is a more complex evaluation that
measures the local geometry quality and the global topology
quality of a representation. NIEQA local part checks if the
representation is locally equivalent to an Euclidean subspace
that preserves the structure of local neighborhoods. NIEQA
objectives are therefore aligned with our goal. If KNN-MSE is
correlated with NIEQA, it means that KNN-MSE could also
be a good measure to assess the quality of the representation,
especially locally. The global NIEQA measure is also based on
the idea of preserving original structure in the representation
space, but instead of looking at the neighbors, it samples
”representative” points in the whole state space. Then, it
considers the preservation of the geodesic distance between
those points in the state space. We refer the reader to [25]
for more detail on its implementation.

1A low distance means that a neighbor in the ground truth is still a neighbor
in the learned representation, and thus, local coherence is conserved



We also experimented with distortion [26], but this measure
was found to bring no more information and we therefore
omit these results.

IV. EXPERIMENTS

A. Task and Environment Description

Fig. 2. Left: Baxter’s camera view for Static-Button-Distractors dataset 2.
Right: Baxter’s left hand ground truth position and its coded reward

The data acquisition environment is produced by a sim-
ulation of a Baxter robot being in front of a table (Fig. 2)
with ROS Gazebo simulator. We generate image sequences
taken with the robot’s head camera. Images thus contain a
front view of what the robot is able to see with its camera
(i.e., a table with objects and the robot arms).

We consider a ”reaching” (pushing button) task with a
static button on the table. We record (640x400 pixels) RGB
images taken by the static head camera of the robot. Three
rewards are recorded: 0 when the left gripper is not touching
the button, 1 when touching it, and -1 when the robot gripper
is out of the field of view of the frame. The goal of this
task is to learn a representation consistent with the actual
robot’s left hand position. In this context, actions are defined
by elementary movement of the hand in the operational space
between timestamps t and t+ 1.

The input images are resized to 224*224 pixels and
normalized per channel as in [24]. We record for each image,
its timestamp, the associated reward and which action has
been made between image at time t and image at time t+1.
The actions are computed on the fly as position deltas in
the cartesian space while the arm is moving. With these
actions we can find pairs of images where the same action is
performed, and therefore, compatible with proportionality and
repeatability priors. Furthermore, with the reward information
we can find which images generate a reward with which
action. Those images are then gathered to constitute an image
set compatible with the causality prior’s cost function.

It should be emphasized that, in this work, the goal is
not to solve a robotic task (i.e learning a policy that reaches
a certain goal) but to learn a mapping from the raw input
images to a compressed representation. This representation
should not take into account noise in the input (for example,
randomly moving objects, or noise in the pixels) and needs
to be relevant to the task at hand (i.e could be used by a
policy gradient method to solved the task, for example, but
we leave this to future studies).

B. Datasets
We used several datasets (Fig. 3) to validate our approach.

These are designed to show the robustness of the robotic

priors by changing the level of noise (distracting objects,
changing background) and demonstrating the generality of
those priors (2 different tasks are considered):
• Dataset 1: 2D Navigation Mobile Robot: baseline re-

producing [1], top-down view of a robot moving in a
colored empty squared room, 11 sequences, 99 frames
long2. This simulation environment and data generator
is open source and as well available as part of the S-RL
Toolbox [27].

In order to evaluate the limits of the robotic priors, we
generate different datasets on our reaching task:
• Dataset 2: Static-Button-Distractors: Small moving dis-

tracting objects are present in the scene, but not relevant
for the task: 2 colored cubes and 1 lever; no data
augmentation occurs. The amplitude of the actions can
either be 0.05, -0.05 or 0 for all 3 axes (26 different
actions possible), and the dataset contains 53 sequences
of 90 frames length.

• Dataset 3: Complex-3D-Data: In this case, we make the
second (right, non operative) arm visible as well (having
different position in each recorded sequence) and acts
as a static distractor. We added more actions: instead of
using a fixed amplitude of 0.05, it now ranges between
0.068 and -0.068 for all 3 dimensions. This database is
made of 26 sequences of 200 frames each.

• Dataset 4: Colorful75: We added domain randomization
[2], [3], i.e., every object and the table changes color
from sequence to sequence. We used the same action
amplitude as in dataset 3. It contains 75 sequences of
250 frames length each.

A sample of each dataset is shown in Fig. 3.

Fig. 3. A sample of each dataset (1-4), created for our benchmark

C. Baseline models

In order to have a baseline on which to compare our models,
we used a convolutional denoising autoencoder (DAE) and a

2In this case there are 16 actions; the robot gets -1 reward if it touches a
wall, +10 when it is in the top left corner (close to the yellow and red wall)
and otherwise, no reward



supervised learning approach, where the later uses the same
network as the priors-based model, but trained using the
ground truth (GT) states of the arm, i.e., the hand’s real
position. We used a batch size of 10, a learning rate of 10−4

with a decay of 3× 10−6 using the ADAM optimizer.
For autoencoders [28], we used the same network as the

priors for the encoding part (i.e., a pretrained ResNet18
with the same inner dimension as the priors (3)). For the
decoding part we used 5 deconvolutional layers (no ResNet
features/residual connections). We used a batch size of 20,
with a Gaussian noise on the input image, a learning rate of
10−4 with a decay of 3× 10−6 using the ADAM optimizer.

D. Results

We successfully replicated 2D state results in [1] with
sataset 1 (see Table I). Compared to Autoencoders, priors
improve quantitative performance no matter the metric
used, which seems coherent since we feed the model more
information. No matter the choice of location of the reference
point (including choosing random points and despite the
point being not always present in all sequences), the 5th prior
slightly improves the results. In addition, fine tuning all the
ResNet layers (0f experiment) slightly improves the results.

TABLE I
Mobile Robot (DATASET 1) RESULTS. xF MEANS X RESNET FROZEN

LAYERS, GT: GROUND TRUTH (ROBOT POSITION)

Criterion GT Superv 4Priors
3f

5Priors
3f

AE 5Priors
0f

KNN-MSE 0.172 0.185 0.253 0.217 1.7 0.205
NIEQA local 0 0.076 0.32 0.18 0.67 0.15

NIEQA global 0 0.003 0.09 0.04 0.87 0.019

Results in 2D extrapolated similarly to 3D (dataset 2, see
Table II) as we obtain equally satisfying results on the button
pushing task with moving distractors.

TABLE II
Static-Button-Distractor 3D (DATASET 2) RESULTS. xF MEANS X RESNET

FROZEN LAYERS, GT: GROUND TRUTH (HAND POSITION)

Criterion GT Superv 4Priors 5Priors AE 5Priors
0f

KNN-MSE 0.024 0.03 0.079 0.053 0.099 0.047
NIEQA local 0 0.239 0.66 0.50 0.599 0.52

NIEQA global 0 0.048 0.41 0.20 0.465 0.21

Fig. 4 shows the corresponding learned state space; one
can clearly see the button area represented by the cluster of
red dots (positive reward) and in gray (negative reward) the
border of the field. These quantitative results show the bad
quality of the state space learned by the autoencoder. The
original robotic priors give better results, but some of the
rewarded positions are still badly represented (red points on
the left of the blue cloud). Finally, the 5 priors succeed in
representing the overall shape of the state space correctly.
Fine tuning the whole ResNet gives contrasted results: a
small improvement in KNN-MSE, but a slight degradation
in NIEQA.

TABLE III
Complex 3D Data (DATASET 3) RESULTS. xF MEANS X RESNET FROZEN

LAYERS, GT: (HAND POSITION) GROUND TRUTH

Criterion GT Superv 4Priors 5Priors AE 5Priors
0f

KNN-MSE 0.035 0.071 0.28 0.078 0.148 0.082
NIEQA local 0 0.07 0.75 0.39 0.55 0.45

NIEQA global 0 0.003 0.99 0.05 0.58 0.10

To further test the robustness of the priors, we learn states
on dataset 3, where a distractor (the right arm) is static, but
in different position from sequence to sequence. From the
quantitative point of view (see Table III), the main result
worth noticing is the original priors [1] failing (and even
performing worse than autoencoders). As is illustrated in Fig.
6, it generates 26 clusters of data points. In fact, each sequence
is clustered into its own small subspace. This behavior is
due to the fact that the distractors are mostly static and are
more difficult to filter out than the distractors of the previous
dataset that were moving randomly and were therefore easier
to identify as not related to the task. The 5th prior (when using
a reference point close to the button) succeeds in solving
this problem, by forcing the model to bring closer state
representations that correspond to the same reference point
and reaching performances closer to the supervised learning
ones.

TABLE IV
Colorful75 3D (DATASET 4) RESULTS. xF MEANS X RESNET FROZEN

LAYERS, GT: (HAND POSITION) GROUND TRUTH, RP: REFERENCE POINT

(BUTTON AND BEGINNING POINT, RESPECTIVELY)

Criterion GT Superv AE 5Priors
RP:But.

5Priors
RP:Beg.

KNN-MSE 0.022 0.04 0.267 0.196 0.230
NIEQA local 0 0.08 0.74 0.72 0.72

NIEQA global 0 0.004 0.98 0.78 0.70

Finally, we tested the priors on the most complex data-
augmented Colorful75 dataset 4 (see Table IV). The problem
faced by this benchmark is similar to the one faced by the
Complex-3D dataset: sequences are not brought together but
stay apart from each other (see 6. However, in this case, the
reference prior was not able to solve the problem. While being
better than autoencoders, their performance remained far from
supervised learning. Qualitatively, even though the problem
is less obvious because of the sample density, the issue is
illustrated in the left plot of Fig. 6 where we use as reference
point the position of the button. Instead of having a gray
barrier around that corresponds to the limits of the playground
for the robot, gray states are scattered everywhere. Using a
fixed starting position of the arm as a reference point, the
right plot of Fig. 6 shows even worse performance, meaning
that the further from the reward position the reference point
is chosen, the more disturbed the representation gets.

Qualitative results, however, show that the 5 priors approach
achieves results that are richer and more task-representative
than autoencoders, and closer to those achieved with super-



Fig. 4. Learned state space on Static-Button-Distractors (dataset 2): Left: Denoising Autoencoder. Middle: 4 Priors. Right: 5 Priors. The scale of each
dimension is not indicated on the plots because they are irrelevant (i.e., if all dimensions range between (0,1) or between (-1e5,1e5), the end goal is to have
dimensions that are coherent with the task

Fig. 5. Effect of static distractors in dataset 3 on the 4 priors approach
learned state space. As we can see, for every type of distractor, there is a
different cluster of points; it means that the original 4 priors are not able to
bring together states that should be close in the representation space.

Fig. 6. Results of applying the 5 priors on colorful75 (dataset 4). Left: 5
priors using button position as ref. point. Right: 5 priors using starting hand
position as ref. point. The 5th prior tames the overfitting effect exhibited in
6.

vised learning (on the real hand position). Fig. 7) shows
an example of the nearest neighbor images retrieved in the
dataset for each learned state space. It can be seen that the
autoencoder focuses on the color of the background and the
right arm position to retrieve the closest state, while the 5
priors and the supervised learning effectively focus on the
robot hand position, and discard these distractors.

Fig. 7. Nearest neighbors retrieved for each of the models on the Colorful75
Dataset 4. The neighbors should represent the same button-hand relative
position. Performance is shown in a left-right decreasing performance for
the supervised (hand position) learning, 5 robotic priors and the autoencoder
(better seen in video material). We can see that Supervised learning and
Robotic Priors are very close (in terms of hand position), whereas the auto-
encoder matches the color of the table but misses the hand position (its
representation doesn’t encode the relevant information)

V. DISCUSSION

Our results show that robotic priors are an effective way of
learning state representations with fast convergence (less than
15 epochs in all tests). Generally, robotic priors outperform
autoencoders, but they also have limits worth remarking,
concerning their reproducibility. The first remark is the
sensibility of priors to distractors. While the original priors
gracefully ignore distractors in settings where they are moving
within a data sequence (as in dataset 2 and in [1]), this does
not equally generalize to the case where distractors are static
but their position changes from one recorded sequence to
another (as the right arm in dataset 3). The original priors
are not robust either to domain randomization, and fail to
bring sequences together when the context changes too much
from sequence to sequence (resulting in the per-sequence
”clustered” results on Complex-3D and Colorful75 datasets
-Figs. 6 and 6-). It is in such cases, where the proposed 5th

reference point prior shows its two main advantages over
using only four. Using the fixed point prior, representations
are not only better, but they help avoiding the ”one cluster



per data sequence” problem by coherently shaping the state
space. However, any setting (4 or 5) of priors usage greatly
helps at sculpting the geometry of the task, specially the
positive reward space (see middle and right images red states
in Fig. 4), with respect to the DAE’s representation.

A downside to the priors approach is the need to select
relevant image pairs with associated rewards in every batch
for the priors to work, which adds extra computation and
attention required. Nonetheless, the idea of having a kind of
reference point, or something that tells the robot ”this context
is the same” can be very useful in representation learning,
and in future work, is something worth exploring.

Our benchmarks used NIEQA and the proposed KNN-MSE
metrics. KNN-MSE seems to agree on the same ranking as
NIEQA (both local and global) and when they did not agree,
the scores were still close to each other. However, NIEQA3

is computationally intensive as compared to KNN-MSE and
is therefore of limited interest for future work.

We also show that, despite having learned representations
of states that are consistent with the task via a qualitative
evaluation in terms of the closest nearest neighbors and
the geometry of the space represented, visualizing Nearest-
Neighbors is not sufficient to assess the quality of the
representation: despite the nearest neighbors looking very
close to the original image in 7, the first plot in 6 shows that
the representation is not clean nor representative for the task
(rewards are mixed together, no global shape, etc.).

VI. CONCLUSION

In this paper we extend the approach from [1] to prove its
scalability to different vision based tasks, to static and dy-
namic distractors and to domain randomization. Furthermore,
we propose a new assessment method called KNN-MSE. It
shows coherent scores and leads to results very similar to the
more computationally complex NIEQA approach.

However, we show that there is room for future exploration
with robotic priors. To mitigate the vulnerabilities of the
original priors, we proposed a new prior that enhances results
on the Static-Button-Distractors dataset and helps fixing the
clustered sequence problem, but found its limits facing strong
domain randomization. The presented approach, nevertheless,
provides evidence that a deep network trained on generic
robotics priors can learn meaningful state representations
without using labeled input images.

Future work should explore the coupling of the priors
with other state learning paradigms, such as learning simple
forward and reward models to learn a state space [29],
perform a more controlled investigation on the effect of
different distractor objects and tackle more complex tasks,
with different environments and several moving goals [27].
It also remains to evaluate the transferability of the learning
approach from learning in simulated environments to learning
with real robots, including the application to solving the task
with reinforcement learning.

3We used the implementation provided by the authors of [25]
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