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ABSTRACT1

This work focuses on the application of accumulation-based and trip-based MFD approaches to2

real transportation networks and discusses the calibration of the MFD shape and trip lengths es-3

timation using a thorough validation of the network dynamics with micro-simulation data. This4

work not only investigates a classical unimodal approach to fit the production MFD, but also a5

bimodal MFD curve. Different methods of calibrating trip lengths in the reservoir are introduced6

to study the influence of trip lengths estimation on the accuracy of MFD models. MFD models are7

validated against micro-simulations that are carried out using the real OD matrix and demand that8

are estimated from the data of Lyon city in France. The proposed bimodal production MFD curve9

captures the hysteresis in the production MFD to a good extent. Following, it is shown that the10

refined description of trip lengths gives more accurate estimates of accumulation evolution for the11

trip-based approach. Finally, a case is presented with a modified OD matrix to study the effect of12

OD matrix changes on accuracy of MFD simulations.13

Keywords: Macroscopic Fundamental Diagram, production hysteresis, trip length estimation, accumulation-14

based model, trip-based model, micro-simulation, validation15
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INTRODUCTION1

There had been plenty of developments in employing Macroscopic Fundamental Diagrams (MFD)2

to predict the traffic state dynamics at the network level in the recent past. The MFD relates the den-3

sity of vehicles to the mean flow in the network. This relationship was first introduced by Godfrey4

(1) and then reintroduced by Daganzo (2) to formulate new urban model. The existence of MFD5

under certain regularity assumptions is verified by Geroliminis and Daganzo (3). Since then, sev-6

eral applications like traffic state estimation (see e.g. Knoop and Hoogendoorn, Yildirimoglu and7

Geroliminis, 4, 5), perimeter control (see e.g. Keyvan-Ekbatani et al., Haddad and Mirkin, Am-8

pountolas et al., 6, 7, 8), cruising-for-parking (see e.g. Cao and Menendez, Leclercq et al., 9, 10),9

etc. are proposed based on MFD approach.10

Even though Geroliminis and Daganzo (3) reported a well-defined MFD for the city of11

Yokohama, it is to be noted that the empirical data from the traffic network of Yokohama approx-12

imately satisfies the regularity requirements proposed in Daganzo and Geroliminis (11). Some of13

them are homogeneous link distributions, slow varying demand, etc. Buisson and Ladier (12) first14

reported a bimodal MFD curve for the city of Toulouse using the empirical data of the traffic net-15

work. A clockwise hysteresis-like loop is observed, which is characterized by higher flow during16

loading and lower flow during unloading. Gayah and Daganzo (13) provided a deeper analytical17

investigation into the phenomenon of clockwise hysteresis and concluded that uneven conges-18

tion and drivers inability to re-route during the congestion peaks can be possible reasons for the19

hysteresis-like loops in MFD. Geroliminis and Sun (14) showed a similar hysteresis-like loop in20

MFD based on the empirical data of freeway networks. Their work attributed the cause of hys-21

teresis phenomenon to the different degree of spatial heterogeneity in density during onset and22

offset of the congestion period. Ramezani et al. (15) proposed a parametrization model of pro-23

duction MFD (p-MFD) based on heterogeneity of link density in the network. Another factor that24

influences the shape of MFD is the demand pattern as shown in Leclercq et al. (16). Mahmassani25

et al. (17) showed that higher demand during congestion period results in the larger hysteresis26

loop in the MFD. Recently, Leclercq and Paipuri (18) proposed a deeper investigation of clock-27

wise hysteresis phenomenon in the p-MFD by deriving the LWR solutions to an arterial case with28

internal bottleneck. They showed that when the network state is close to saturation, the congestion29

dynamics caused by bottlenecks with unequal shockwave speeds triggers the hysteresis shape in30

p-MFD. Following the empirical and analytical findings on production hysteresis in the literature,31

the importance of including hysteresis phenomenon in p-MFD for accurate description of network32

state dynamics is evident. Hence, first contribution of the present work is to include the hysteresis33

phenomenon in MFD-based simulations.34

Another important question in formulating an accurate MFD simulator is definition of35

macroscopic trip lengths. Geroliminis and Daganzo (3) showed the existence of a linear relation36

between network production and trip completion rate and proposed the proportionality constant37

to be inverse of average trip length. However, Yildirimoglu and Geroliminis (5) compared the38

results of micro-simulation to the MFD-based simulations and concluded that using constant time39

invariant trip length to compute outflow has significant impact on the accuracy of the MFD-based40

simulation. Kouvelas et al. (19) also used constant trip length hypothesis in computing the out-41

flow for their multi-reservoir simulations in the context of perimeter control. However, the authors42

stated that this assumption needs further investigation as strong fluctuations in demand and route43

choices can have an affect on outflow approximation. Leclercq et al. (16) showed that the internal44

trip patterns not only depend on the OD matrix, but also vehicle routing strategy inside the reser-45

TRB 2019 Annual Meeting Original paper submittal



Paipuri, Leclercq and Krug 3

voir. Therefore, the second contribution is to study the importance of level of description of trip1

lengths in a single reservoir setting in MFD-based simulation.2

The accumulation-based MFD model is proposed by Daganzo (2) in the framework of sin-3

gle reservoir system. Later, this framework is extended to consider multiple trip lengths inside4

the reservoir in works of Geroliminis, Yildirimoglu et al. (20, 21). The main advantage of this5

model is being simple in terms of numerical resolution and computational complexity. Another6

MFD-based model, which gained significant attention in the recent past is the trip-based formu-7

lation. Originally based on idea proposed by Arnott (22), this approach is revisited by Leclercq8

et al., Daganzo and Lehe, Lamotte and Geroliminis (10, 23, 24). Mariotte et al. (25) refined this9

idea to propose the so-called event-based model for a single reservoir system in the framework of10

trip-based MFD models. The main assumption of this approach is that all the vehicles travel at the11

same mean speed given by the MFD at a given time and exit the reservoir after they finish their12

individually assigned trip lengths. This model is computationally more demanding compared to its13

counterpart. However, trip-based model addresses few limitations of accumulation-based model14

which can be found in Mariotte et al. (25). More recently, Mariotte and Leclercq (26) extended15

the trip-based framework to multiple reservoirs systems that can have multiple trip lengths in each16

reservoir. Their work proposed a novel way to model the congestion spill-backs in the trip-based17

formulation. However, Leclercq and Paipuri (18) showed that no model is perfect and the trip-18

based exhibits inconsistent outflow patterns close to saturation. This can be avoided by monitoring19

the outflow, however the travel times in the reservoir are no longer consistent with trip lengths and20

mean speed.21

There have been complex formulations proposed in the MFD-based simulation approaches22

in the literature. The inclusion the production hysteresis and definition the trip lengths inside the23

reservoir of MFD models are still ongoing research questions. Most of the MFD-based simulation24

approaches are applied to idealized networks and there are only very few detailed validations on25

real networks. Hence, the contribution of this study is two-fold namely, a detailed investigation26

into MFD calibration and trip length estimation and a thorough validation of the MFD-based sim-27

ulations on real network of 6th district of Lyon city (Lyon 6), France. A conventional unimodal28

MFD and a bimodal MFD with hysteresis patterns are computed from micro-simulation data. This29

work is the first to consider the clockwise hysteresis-like loop in the p-MFD for both accumulation-30

based and trip-based models. Another contribution of this work is to establish the importance of the31

level of description of trip length distributions in reservoir simulation. The individual trip lengths32

are known a priori from the micro-simulation data and therefore, an accurate model can be built33

by considering each individual trip length in the MFD simulators. Apart from the individual trip34

lengths, other definitions like single mean trip, trip based on OD, etc. are considered in the present35

work. The accuracy of different approaches of trip lengths are presented. The given OD matrix36

is modified artificially to study the sensitivity of MFD-based simulations on the changes in OD37

pattern.38

The paper is organized as follows: section 2 presents the Lyon 6 network description,39

section 3 discusses the calibration of p-MFD and trip length estimation methods, section 4 briefs40

about MFD simulator’s accuracy and finally section 5 presents the numerical results.41
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LYON 6 NETWORK DESCRIPTION1

Network characteristics2

Figures 1a and 1b show the map of Lyon 6 area and the link level description of the network,3

respectively. The district covers a total area of 3.77 km2. The area analyzed in micro-simulation4

comprises of Lyon 6, part of Lyon 3 and Villeurbanne (Lyon 6 3V) area, France as shown in Fig. 1c.5

The whole network is segregated into 75 origins and destinations of which 21 zones belong to Lyon6

6 area. This simulation set-up consists of transfer trips that start and finish outside Lyon 6 area by7

transversing through Lyon 6 and more importantly, internal trips that start and finish inside Lyon 68

network. Public transport, i.e., buses are also considered in the simulation setup. Hence, the total9

outflow corresponds to the sum of trip completion rate of internal trips including buses and flow of10

vehicles that cross border of Lyon 6 area.11

Three different scenarios, a free-flow case where peak demand is below the network sat-12

uration, a congestion case with peak demand close to network saturation and a congestion case13

with modified OD matrix, are considered in the present work for the morning peak hour case from14

06h30 to 13h30. Figure 2a presents the demand that is estimated from the loop-detectors data that15

is normalized by the total demand over 24hr for the three different scenarios. The free-flow de-16

mand (in blue) is used for free flow scenario, whereas the network saturation case (in red) is used17

for congestion scenario with original and modified OD matrices. Figure 2b shows the respective18

actual demand from all different trips aforementioned inside the Lyon 6 network for two different19

demand levels. Time-dependent OD matrix is estimated from the empirical data of the Lyon city20

network. The estimated demand is only applicable to cars and there is no reliable data available for21

trucks. Hence, the truck demand is assumed to be 5% of the car demand in the present simulations.22

Based on the OD matrix and route definitions, there are 19080 different trips using the original OD23

matrix and network saturation demand pattern inside the Lyon 6 network and their corresponding24

distribution is shown in Fig. 2c and mean trip length is 1505m. For the case of modified OD25

matrix, the trip length distribution is presented in Fig. 2d with mean trip length of 1652m.26

Micro-simulation settings27

A triangular fundamental diagram is assumed with identical parameters for each vehicle category.28

Two classes of vehicles are considered, namely cars and trucks. The parameters for cars used29

are: free-flow speed, u = 25m/s, wave speed, w = 5.88m/s and jam density, κ = 0.17veh/m,30

where as for trucks: free-flow speed, u = 22m/s, w = 5.88m/s and κ = 0.075veh/m. It is to31

be noted that the u is maximum free-flow speed and all vehicles will adjust the free-flow speed32

to the link speed limits, which are given by the network data. The traffic signal settings at the33

intersections are implemented based on the real data. The micro-simulations are computed using34

Symuvia platform that is developed within the research laboratory. The platform is based on the35

Newell’s car following law (see e.g. Newell, Leclercq et al., 27, 28). A static traffic assignment36

based on Logit’s model (see e.g. Dial, 29) is used for all OD pairs. The duration of the simulation37

is 7hr in all the results presented.38

CALIBRATION OF PRODUCTION MFD AND TRIP LENGTHS ESTIMATION39

Influence of aggregation period40

Firstly, a preliminary study is made to understand the influence of aggregation period in the cali-41

bration of p-MFD. A reference scenario with a peak demand close to network saturation is consid-42

ered. Different aggregation periods of {180,360,420,600,720}sec are considered. Some of the43
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(a) Map of the Lyon 6 ©Google Maps 2018. (b) Link level representation of the Lyon 6.

(c) Link level representation of Lyon 6, Lyon 3 and Villeurbanne networks. Lyon 6 is highlighed in blue.

FIGURE 1 : Lyon 6 network: map of the area, its link level description and whole network
considered in micro-simulation.
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(c) Trip lengths distribution in Lyon 6 network for original
OD matrix with network saturation scenario.
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(d) Trip lengths distribution in Lyon 6 network for modified
OD matrix with network saturation scenario.

FIGURE 2 : Lyon 6 network: map of the area, its link level description, demand for different
cases and trip lengths distribution.
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(c) p-MFD data with dynamic loading
and its bimodal fit.

FIGURE 3 : Lyon 6 network: influence of aggregation period, calibration of p-MFD with static
and dynamic loadings and their corresponding unimodal and bimodal MFD fits.

signal cycle settings in the network are in the order of 100sec and hence, an aggregation period1

of less than 100sec would not be consistent with MFD settings and would result in high scatter2

profile. The microscopic variables Total Traveled Time (TTT) and Total Traveled Distance (TTD)3

are aggregated over the considered periods and the corresponding vehicle accumulation (n) and4

production (P) are computed. Figure 3a presents the p-MFD with different aggregation periods5

considered. It can be noticed that the MFD is well-captured and it is quite independent of the6

aggregation period. Therefore, in the present work an aggregation period of 600sec is used in all7

computations.8

Unimodal and bimodal MFD fits9

Production MFD data is first calibrated by loading the considered network with different levels10

of static demand until a steady state is obtained in the micro-simulations. Figure 3b presents the11

data points on accumulation-production plane obtained for different demand levels. The network12

loading in the free-flow regime results in a good steady state approximation where changes in both13

production and accumulation are negligible with time. However, close to the network saturation14

scatter in the MFD data can be noticed, which is the consequence of pseudo steady states. A15

conventional unimodal fit is computed for the steady state MFD data which relates the mean accu-16

mulation with mean production in Fig. 3b. Note that the unimodal MFD fit cannot account for the17

scatter of MFD data close to network saturation. This computed unimodal fit can be expressed as18

follows,19

Pum(n) =−0.0024n2 +5.9160n, (1)

where Pum(n) is unimodal fit of the p-MFD.20

Besides the conventional unimodal fit, this work proposes the bimodal MFD fit to distin-21

guish between network loading and recovery phases. To accomplish the task, a micro-simulation22

with dynamic demand corresponding to network saturation shown in Fig. 2b is carried out and the23

corresponding p-MFD data is plotted in Fig. 3c in blue circles. It can be observed that the values24

of production in network loading and recovery are different owing the phenomenon of hysteresis.25
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Hence, in the present work a bimodal MFD is computed using the hysteresis loop of the dynamic1

simulation and as stated earlier, unimodal p-MFD fit is estimated from static demand loadings.2

It is noticed that until n≤ 540veh, the scatter of the MFD data in dynamic loading case is3

very low and hence, it is possible to represent this data by a unique parabolic fit. For n > 540veh,4

two parabolic curves are fitted that follow the loading and recovering MFD points as shown in5

Fig. 3c. The relation between production and accumulation can be expressed as follows,6

Pbm(n) =


−0.0021n2 +5.72n n≤ 540

−0.0020n2 +5.89n n > 540 &
∆n
n
≥ 0 (Loading)

−0.0025n2 +5.55n n > 540 &
∆n
n

< 0 (Recovery).

(2)

In order to avoid the discontinuity at n = 540, the curves are joined using a smoothening function.7

In the present work, the trigonometric function tanhx is used to join the curves. Therefore, during8

the loading of the network, loading fit in Fig. 3c is used to maximize the network performance.9

Similarly, during unloading phase, recovery fit is used to reproduce the hysteresis phenomenon10

observed in micro-simulations. The critical accumulation, nc, and the corresponding critical pro-11

duction, Pc, are 900veh and 3680vehm/s, respectively. Using the data points on the conges-12

tion part of the MFD, jam accumulation, n j, is extrapolated to 3300veh. In the implementation,13

∆n(t) = n(t)−n(t−60), where t is time in seconds and a tolerance is used for
∆n(t)
n(t)

to avoid local14

oscillations.15

Trip lengths estimation16

The total number of trip lengths vary depending on the demand pattern and OD matrix. There17

are a total of 22226 trips in the Lyon 6 network corresponding to the free-flow demand pattern18

shown in Figs. 2a and 2b. As stated earlier, there are total of 19080 and 26120 trips for the case of19

network saturation scenario with original and modified OD matrices, respectively. The reason for20

having more trips in free-flow scenario than the network saturation with original OD matrix is that21

demand is kept at nominal level after the peak in the case of free-flow, while demand is reduced to22

a low value in the case of network saturation as shown in Fig. 2b.23

In order to demonstrate the importance of level of description of trip lengths, four different24

methods of trip length estimation is proposed in this work.25

Mean trip: Only one trip length value is considered inside the reservoir for all trips. It is26

defined as arithmetic mean of all trip lengths. Hence, the mean trip length depends on the27

scenario under consideration.28

OD trips: Depending on the origin and destination of each trip with respect to Lyon 6 area,29

four different types of trips can be identified: Trips starting outside and ending outside,30

Trips starting inside and ending inside, Trips starting outside and ending inside and Trips31

starting inside and ending outside. The mean trip length per trip type is computed and given32

as length to the respective trip.33

Similar trips: Several trips are clustered into bins based on the range of trip lengths. The34

mean trip length inside each bin is given as trip length to the corresponding trip.35
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Individual trips: Each individual trip is considered and the corresponding trip length is1

assigned to each trip in the MFD simulations.2

Hence, from the aforementioned definition of trip length estimations methods, it can be observed3

that the level of description of trip lengths increases from single mean trip to individual trips. In4

other words, trip lengths are exact in case of individual trips and least accurate in case of single5

mean trip. In the numerical results, different methods of trip length estimation are compared to6

demonstrate the influence of trip lengths description on accuracy of traffic state dynamics in MFD7

approaches.8

MFD-BASED SIMULATION TECHNIQUES9

Accumulation-based model10

The following expression governs the dynamics in a single reservoir context with multiple trip11

lengths based on the conservation equation (see e.g. Daganzo, 2),12

dni

dt
= qin,i(t)−qout,i(t) for i = 1, . . . ,ntrips, (3)

where ni is the partial vehicle accumulation for the trip i, qin,i and qout,i are the inflow and outflow,13

respectively. The computation of effective inflow and outflow is discussed in-detail in (26, 30).14

The outflow of the accumulation model is governed by outflow demand function, Oi(ni,n), which15

is defined as,16

Oi(ni,n) =


ni

n
P(n)

Li
n < nc

ni

n
Pc

Li
n≥ nc,

(4)

where n is total accumulation on all trips, i.e., ∑
ntrips
i=1 ni, Li is the trip length of trip i and P(n) is the17

production computed from MFD. In accumulation-based model, outflow or trip-completion rate,18

G(n), is approximated as
P(n)

L
and hence, it is also referred as PL (production over trip length)19

model.20

Hence, the conservation equation (3) can be rewritten using eq (4) as follows,21

dni

dt
= qin,i(t)−Oi(ni,n) for i = 1, . . . ,ntrips. (5)

The Ordinary Differential Equation (ODE) in eq (5) is numerically resolved using first-order ex-22

plicit Euler method as follows,23

nt+∆t
i −nt

i
∆t

= λ
t
i −O(nt

i,n
t), (6)

where λ t
i is the demand and ∆t is the time step. In the present work, a time step of 1sec is used in24

all computations. Depending on the demand level for a given route, there can be as few as 1veh per25

trip during whole simulation time. Considering each individual trip in accumulation-based model26

can add significant numerical diffusion into the scheme. Hence, the case of individual trips is not27

considered for accumulation-based model.28
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Trip-based model1

The trip-based approach (see e.g. Arnott, 22) is based on the principle that all vehicles travel at the2

same speed at any given time. The vehicles leave the reservoir once they finish their assigned trip3

length. If a vehicle entered at time t traveled a distance L in time T (t), the trip-based model can be4

mathematically expressed as,5

L =
∫ t

t−T (t)
V (n(s))ds. (7)

The mean speed V (n) is computed from p-MFD, i.e., V (n) = P(n)/n. In the present work, event-6

based resolution proposed in Mariotte et al., Lamotte and Geroliminis (25, 31) is used in the7

trip-based formulation. In the event-based formulation, the entry and the exit of each vehicle is8

considered as an event and network variables like accumulation, mean speed etc., are updated9

for each event. As mentioned earlier, entry times of each vehicle is known a priori from micro-10

simulation and hence, it is an input to event-based formulation. Each vehicle travels with mean11

speed that evolves based on traffic dynamics. Once the vehicle finishes its assigned trip length, the12

considered trip is completed and vehicle is removed from the reservoir. As proposed in Leclercq13

and Paipuri, Mariotte and Leclercq (18, 26), the outflow (or trip completion rate) is bounded by14

the maximum capacity and to sustain the outflow to maximum capacity when network reaches15

saturation to avoid causality effect (see e.g. Merchant and Nemhauser, Friesz et al., 32, 33). The16

maximum capacity of the reservoir is computed from the micro-simulation results. Even though17

different trip lengths are considered, a single queue of vehicles is monitored during the simulation18

and maximum outflow limitation is applied to the single queue. This avoids the need of defining the19

maximum outflow for each trip length defined. Owing to the formulation of event-based scheme, it20

is possible to take all the different trip lengths into account while computing the traffic dynamics.21

Hence, along with other cases of trip lengths described earlier, individual trip lengths are also22

considered for event-based formulation.23

VALIDATION RESULTS FOR THE REFERENCE SCENARIOS24

Free flow traffic state scenario25

Firstly, a free flow scenario is considered where the peak demand is less than that of the network26

saturation state. Figure 4 shows the different state variables like accumulation, mean speed, out-27

flow, etc. The normalized demand curve shown in Fig. 2a (in blue) is given to each OD matrix28

in micro-simulation. Since, the flow between an OD pair that transverse through Lyon 6 with29

origin/destination outside Lyon 6 cannot be predicted a priori, demand is computed from micro-30

simulation data rather than the actual OD matrix data. In the case of trip-based approach, the start-31

ing times of each trip is the input and therefore, the micro-simulation data can be used directly.32

However, in the case of accumulation-based approach, the demand per each trip is computed by33

taking the first derivative of cumulative curve of entering vehicles per trip. Since the exact trip34

starting times are known a priori from the micro-simulation data, entry supply function is not con-35

sidered in the present work. This is done to avoid the discrepancies from the entry flow function,36

as the primary objective of the work is to study the accuracy of models with respect to p-MFD and37

trip lengths calibration. However, in the context of multi-reservoir settings, entry supply function38

must be defined and it is out of the scope of present work.39

Figure 4a shows the evolution of accumulation with time for both MFD simulators with40

unimodal p-MFD fit along with the comparison to micro-simulation data. Bimodal p-MFD fit is41

not considered in this case as the considered demand peak is not high enough to produce hysteresis42
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FIGURE 4 : Results of MFD-based approaches and micro-simulations corresponding to free flow
demand scenario. OD trips estimation method is used in MFD-based models.
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pattern. Since the case of individual trip lengths is not considered for accumulation-based model,1

for the sake of comparison, four different trip lengths based on origin and destination is considered2

to present results for both accumulation-based and trip-based models. It should be noted that all3

the variables from MFD simulations are aggregated for 600sec in order to be able to compare4

with micro-simulations. It can observed that both approaches of MFD simulators provide a good5

approximation compared to micro-simulation. The absence of significant hysteresis in production6

is evident from Fig. 4d. The absence of hysteresis is in-line with the conclusions of the previous7

work Leclercq and Paipuri (18) and it is due to the smaller drop in the demand profile. The L28

norms of the error in accumulation compared to micro-simulation for trip-based and accumulation-9

based are 0.0241 and 0.0273, respectively. The outflow in this case is defined as the trip completion10

rate of all the vehicles that travel in Lyon 6. The outflow of the micro-simulation is computed11

based on the trip ending times of each vehicle inside in Lyon 6. This method of computation of12

outflow includes all trips irrespective of origins and destinations. Hence, trip completion rate can13

be estimated accurately from micro-simulations. As observed in the case of accumulation, outflow14

is also well captured by the MFD simulations as shown in Fig. 4c. Hence, it can be concluded that15

both accumulation-based and trip-based models are verified in the free-flow regime using micro-16

simulation data. The results of the present free-flow scenario with different trip length estimation17

methods have not exhibited any significant differences. Therefore, accuracies of MFD models with18

respect to p-MFD fits and trip length estimation methods are discussed in the following section with19

a peak demand close to network saturation.20

Network saturation traffic state scenario21

In this section, a demand profile is considered such that the network is loaded close to the sat-22

uration. Figure 2a shows the normalized demand (in red) given to each OD pair in the micro-23

simulation. As explained earlier, demand for MFD simulators is computed from the inflow cumu-24

lative curve of micro-simulation in Lyon 6 area. Figure 5a shows the accumulation evolution with25

time for accumulation-based, trip-based with both unimodal and bimodal p-MFD fits and micro-26

simulation data. It can be noticed that the peak accumulation exceeds the critical value (nc = 900)27

and network is saturated. The trip-based unimodal p-MFD approach over-predicts the peak accu-28

mulation by 91 veh as presented in Table 1. This is due to use of mean p-MFD fit, which results29

in lower mean speeds and higher accumulation. Note that the accuracy of the unimodal trip-based30

approach improves both in L2 and L∞ norms as the description of trip lengths is refined. On the31

other hand, accumulation-based model with unimodal p-MFD fit yields results that are closer to32

micro-simulation ones than the bimodal case. Using the unimodal p-MFD, production is estimated33

incorrectly in accumulated-based model, however outflow is well predicted, see Figs. 5d and 5c.34

Since, the key element of the accumulation-based model is outflow, accumulation evolution is well35

captured as shown in Fig. 5a. The comparison of L2 norms of accumulation-based and trip-based36

models with unimodal fit for corresponding trip length estimation infers that the models are very37

close in terms of accuracy. Besides, the evolution of mean speed and outflow presented in Figs. 5b38

and 5c, respectively, are very similar for both MFD models with unimodal approach. As shown39

in Fig. 5d the hysteresis phenomenon cannot be reproduced using unimodal p-MFD fits for both40

MFD models. In the case of accumulation-based approach with unimodal fit, errors increase as41

the trip length description is refined. However, errors in outflow are very similar for all trip length42

estimation methods, which suggests that there is significant error in production compared to trip43

lengths. The L2 norms of mean speed and outflow for both accumulation-based and trip-based44
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FIGURE 5 : Results of MFD-based approaches and micro-simulations corresponding to saturation
flow demand scenario. OD trips estimation method is used in MFD-based models.
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with unimodal p-MFD fits are comparable for all trip length estimation methods without a specific1

trend. As stated already, this can be due to larger error in p-MFD estimation.2

Now comparing the bimodal accumulation-based and trip-based approaches, from Fig. 5a,3

it can be observed that trip-based approach with bimodal fit is more closer to micro-simulation than4

its counterpart. The most accurate solution is obtained using the clustered trip lengths estimation5

method using trip-based approach with bimodal p-MFD fit. Using a single trip with mean trip6

length gives the least accurate estimation of accumulation in the case of trip-based approach with7

bimodal fit. Figure 2c presented earlier shows that the trip lengths vary from 1m to 4500m. By8

taking a single trip with mean trip length, vehicles may travel longer distances, which results in9

higher accumulation. This can be improved by taking a weighted mean of all trip lengths based on10

demand per each trip. However, this data will not be readily available in the practical applications.11

This conclusion complies with the formulation of trip-based approach when the trip lengths are12

distributed over wide range. Just like in the case of unimodal p-MFD, the accuracy of trip-based13

solutions with bimodal fit improves as trip length description is refined except for the case of14

individual trip lengths. The L2 and L∞ error norms of trip-based model with bimodal fit with15

individual trip length case are larger than clustered trips. This might be due to errors from mean-16

speed approximation is the dominant compared to trip-length distribution in the case of individual17

trip lengths. A similar trend is observed in both outflow and mean speed for the case of trip-18

based approach with bimodal fit. On the other hand, error in accumulation in the case of bimodal19

accumulation-based approach increases as the trip-lengths are refined. It can be concluded that in20

the case of bimodal accumulation-based approach, considering a single trip with mean trip length21

produces satisfactory results. However, it is worth noting that the errors of outflow decreases with22

increasing the refinement in trip lengths. It suggests that production is well estimated and dominant23

errors in outflow are due to the approximation of trip lengths. It infers that refining the trip lengths24

results in better estimation of outflow. The reason for the opposite trend in accumulation might25

be due to the presence of numerical dissipation in inflow computations. The L2 norm of error26

for inflow cumulative curve between accumulation-based model and micro-simulation for mean27

trip case is 6.1×10−4, which is two orders lower than errors obtained in accumulation. However,28

as the number of trip lengths increase with fewer trips on each trip length in the reservoir, the29

error in inflow cumulative curve can influence the error in accumulation evolution. Finally, Fig. 5d30

shows that the clock-wise hysteresis pattern is obtained by both accumulation-based and trip-based31

models. The size of the hysteresis loop in accumulation-based is smaller than the micro-simulation32

one because of the under-prediction of peak accumulation.33

Overall, comparison of different models infers that trip-based with bimodal fit, similar trips34

and accumulation-based with unimodal p-MFD fit, mean trip models are very close to the micro-35

simulation results and gives a good estimation of accumulation evolution for the real network of36

Lyon 6.37

Validation when changing the OD matrix38

The next part of the study is to compare the MFD models to the micro-simulation when OD ma-39

trix is modified, which changes the internal trip patterns. The estimated trip lengths from micro-40

simulation is now shown in Fig. 2d. As stated earlier, the micro-simulations are carried out using41

static assignment by predefining the routes and their corresponding assignment coefficients. The42

OD matrix of Lyon 6 is changed artificially by increasing the flow between OD pairs which have43

longer trip lengths (2000m−3000m) and decreasing the same amount of flow between OD pairs44
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which have smaller trip lengths (1000m− 2000m). The idea is not to obtain a realistic scenario,1

but to create enough modifications in the trip patterns to have a significant differences from the2

reference scenarios. The accumulation-based MFD is applied with a unimodal p-MFD fit, while3

the trip-based is applied with a bimodal one.4

Without re-calibration of p-MFD fit and trip lengths5

In this part, the results are presented using the same p-MFD fits and trip lengths proposed for the6

original OD matrix. Such a situation arises when the modeler does not consider the OD matrix7

changes and uses the previous calibration settings. The normalized demand pattern is same as8

the network saturation case as shown in Fig. 2a, however the actual demand is slightly different9

from the case of original OD matrix as shown in Fig. 2b. The results of accumulation-based with10

unimodal p-MFD fit, mean trip and trip-based with bimodal fit, OD trips are presented. Figure 611

presents the results of MFD models and micro-simulation. It can be observed that evolution of12

accumulation and mean speed are inaccurate for MFD models, especially during the network re-13

covery phase. The hysteresis loop obtained in the p-MFD from micro-simulation is comparatively14

bigger than MFD models as shown in Fig. 6d. Figure 6c shows that both accumulation-based15

and trip-based models estimate the outflow evolution with a good accuracy. Since, the inflow for16

both models are equal, albeit the numerical errors, the difference in the accumulation is due to the17

inconsistencies in p-MFD fits and trip lengths.18

With re-calibration of only trip lengths19

This part shows the results with re-calibration of trip lengths according to the modified OD ma-20

trix, however using the same p-MFD fit for the original scenario. Figure 7 presents the results21

for different state variables for both MFD and micro-simulation models. The first noticeable dif-22

ferent between previous results in Fig. 6 and the present one is that the peak accumulation in the23

accumulation-based model is over-predicted by about 50%. The reason is that the mean trip length24

in the modified OD matrix case is 1652m compared to 1505m in the original OD matrix sce-25

nario. Hence, by using the same p-MFD fit as the original OD matrix case results in the smaller26

outflow and higher accumulation. The reduction of outflow can be observed in Fig. 7c for the27

accumulation-based model. On the other hand, the accuracy of the trip-based model is improved28

close to the peak accumulation using the re-calibrated trip lengths. However, the production hys-29

teresis in the trip-based model is still not close to micro-simulation.30

With re-calibrated p-MFD fit and trip lengths31

Figure 8 shows the evolution of accumulation, mean speed, outflow with time along with p-MFD32

obtained from MFD models and micro-simulation using re-calibrated trip lengths and p-MFD fits.33

It can be noticed that the hysteresis loop in the p-MFD is improved for the trip-based model com-34

pared to Figs. 6d and 7d. The p-MFD during the recovery phase of network in trip-based model is35

following the micro-simulation results. The consequence of this can be noticed in the evolution of36

accumulation, where accumulation values are higher during the recovery phase in Fig 8a compared37

to Fig. 7a. This highlights the importance of re-calibrating the p-MFD fit to accurately predict the38

transient state, especially during the network recovery. It can also be noticed that the evolution39

of accumulation during loading phase with both re-calibrated p-MFD fit and original p-MFD fit is40

very close. Even though, the peak accumulation in both accumulation-based model with unimodal41

fit and bimodal trip-based models are very close, it can be observed that the accumulation-based42
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(a) Evolution of accumulation with time. Relative L2 error
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(c) Evolution of outflow with time. Relative L2 error norm
of acc-based is 0.1600 and trip-based is 0.1071
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FIGURE 6 : Results of MFD-based approaches and micro-simulations corresponding to saturation
flow demand scenario with modified OD matrix and without re-calibration of p-MFD fit and trip
lengths. OD trips estimation method is used in MFD-based models.
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FIGURE 7 : Results of MFD-based approaches and micro-simulations corresponding to saturation
flow demand scenario with modified OD matrix and with re-calibration of only trip lengths. OD
trips estimation method is used in MFD-based models.
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FIGURE 8 : Results of MFD-based approaches and micro-simulations corresponding to saturation
flow demand scenario with modified OD matrix and with re-calibration of p-MFD fit and trip
lengths. OD trips estimation method is used in MFD-based models.
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model’s inability to estimate the production hysteresis accurately results in huge discrepancies of1

accumulation and mean speed in the network recovery phase as shown in Figs. 8a and 8b, respec-2

tively.3

Hence, it can be concluded from this discussion that it is crucial to re-calibrate the p-4

MFD fits and trip length distributions when the OD matrix is changed. The results infer that5

changes in OD matrix do not effect the network loading significantly, as noticed in Fig. 7d, where6

original p-MFD fit with calibrated trip lengths captured micro-simulation trend quite reasonably.7

However, re-calibration is necessary during the network recovery, as changes in OD matrix can8

have significant impact on the network unloading.9

CONCLUSIONS10

This work presents the calibration of p-MFD shape and trip length estimation of MFD-based ap-11

proaches using validation of micro-simulation results on real network of Lyon 6. A reference12

free flow scenario and a network saturation scenario are presented to validate the MFD-based ap-13

proaches. In addition, an additional case by changing the OD matrix is considered to study the14

impact of changes of OD matrix on accuracy of MFD simulations.15

In the first case of free flow scenario, both accumulation-based and trip-based approaches16

gave satisfactory results using a unimodal p-MFD. Since, the network is largely in free flow regime17

and network unloading is slow, production hysteresis is negligible in this scenario. This test case is18

only used to benchmark the MFD-based approaches using micro-simulation data. In the following19

case of network saturation, clockwise hysteresis in the p-MFD is noticed from micro-simulations.20

The importance of considering a bimodal fit for p-MFD to capture the hysteresis pattern is demon-21

strated for the trip-based model. In the case of accumulation-based model, a good estimation of22

outflow and accumulation evolutions is obtained with unimodal p-MFD fit. The comparison of23

MFD-based approaches to micro-simulation results suggests that the MFD simulations can esti-24

mate the evolution of accumulation, mean speed and outflow to a good accuracy. It is concluded25

that the trip-based approach with bimodal p-MFD gives good estimates of state variables, however26

a more refined description of trip lengths results in more accurate results. Finally, the influence of27

changing OD matrix on the MFD simulations is studied. It is concluded that the re-calibration of28

p-MFD fit and trip lengths are required to accurately predict the dynamics of the network.29
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