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Abstract—Omni-directional images are characterized by their
high resolution (usually 8K) and therefore require high com-
pression efficiency. Existing methods project the spherical content
onto one or multiple planes and process the mapped content with
classical 2D video coding algorithms. However, this projection
induces sub-optimality. Indeed, after projection, the statistical
properties of the pixels are modified, the connectivity between
neighboring pixels on the sphere might be lost, and finally,
the sampling is not uniform. Therefore, we propose to process
uniformly distributed pixels directly on the sphere to achieve
high compression efficiency. In particular, a scanning order and
a prediction scheme are proposed to exploit, directly on the
sphere, the statistical dependencies between the pixels. A Graph
Fourier Transform is also applied to exploit local dependencies
while taking into account the 3D geometry. Experimental results
demonstrate that the proposed method provides up to 5.6%
bitrate reduction and on average around 2% bitrate reduction
over state-of-the-art methods.

Index Terms—omnidirectional image, compression, prediction,
graph transform

I. INTRODUCTION

Omnidirectional or 360◦ videos are visual contents defined
on the 2D sphere. To compress these spherical contents, a
classical approach consists in first projecting the content onto
one or multiple 2D planes, and then sampling uniformly the
projected content. This allows to benefit from the efficiency
of conventional block-based 2D plane video coders. Examples
of such projections are equirectangular [1], cube map [2], [3],
rhombic dodecahedron [4], and dyadic [5]. Then, to achieve
good compression performance, a 2D projection must satisfy
the three following properties. First, (i) the projection should
lead to the same distortion and the same image statistics as the
ones induced by perspective projection, such that the projected
images have the characteristics which the conventional video
coders have been optimized for. Second, (ii) the sampling
should be uniform on the sphere, to achieve fair rate-allocation.
Finally, (iii) the connectivity between neighboring samples
on the sphere should be preserved after projection, to better
exploit spatial dependencies.

However, all the 2D projections listed above [1]–[5] fail to
meet simultaneously these three requirements (see Table I for
more details). For these reasons, there is the need to redesign
conventional video coders to adapt to the characteristics of
spherical contents.

One approach to design compression algorithms for spheri-
cal contents is to extend the 2D plane compression algorithm
and take into account the 3D geometry. For instance, new
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TABLE I
CHARACTERISTICS OF DIFFERENT 2D PROJECTIONS OF 360◦ CONTENTS

projection cube map
[2], [3]

rhombic
[4]

equirect.
[1]

dyadic
[5]requirement

(i) same statistics as
perspective projection almost Yes No* No No

(ii) uniform sampling
on the sphere No almost Yes No approx. Yes

(iii) connectivity preservation No No No No
* Due to fitting rhombi to rectangles

Fig. 1. Uniform sampling of the sphere.

motion compensation predictions are proposed in [6]–[8] to
utilize sphere geometry in block matching technique. Another
example is the transform proposed in [9], which is defined for
equirectangular projected content. This graph transform com-
pensates for the non-uniform sampling by weighting the graph
with the geodesic distance between samples. Still, all these
methods rely on a 2D projection. Therefore, these methods
compensate for some of the drawbacks of the projection but
do not handle all of them. In [10], by proposing a dictionary
of atoms living on the 2D sphere, the geometry of the data
is taken into account, but it focuses mostly on the transform
coding of the images and no prediction is used to further
remove the spatial correlation within the image.

In this paper, we propose to compress the spherical content
and perform all processings directly on the sphere. The goal
is to avoid projecting the data onto 2D planes. Requirements
(ii) and (iii) are hence fulfilled, and the property (i) is no
more required. Moreover, the focus of the paper is on intra
coding, where images are coded independently of the others
to allow resynchronization. Intra coding is a key element in



video compression, as the bitrate devoted to intracoded frames
represent a significant portion of the coded video bitrate.
Therefore, reducing the compression rate of intra coded frames
will have a significant impact on the overall video compression
performance.

The proposed approach rely on a quasi-uniform sampling
of the sphere (as illustrated in Fig. 1) to get a pixelization of
the spherical content, called HEALPix [11]. Then, a complete
image coder is built. This coder follows the key steps of 2D
plane image compression but are defined on the sphere. More
precisely, from the obtained discrete representation of the
spherical content, a partitioning of the content into spherical
blocks (S-blocks) is performed. Both pixelization and S-block
partitioning are presented in Section II. Then, a scanning
order is proposed on the sphere. This order induces the causal
information that can be used to process the current S-block.
Then, prediction on a S-block level is proposed in order to
exploit redundancies between S-blocks. Scanning order and
prediction are presented in Section III. Finally, the output of
the prediction is further processed to remove within the S-
block redundancies. To do so, a graph transform is used (see
Section III), similar to the transform used in [12].

II. SPHERE PIXELIZATION AND S-BLOCK PARTITIONING

Uniform sampling of the sphere is obtained with the Hi-
erarchical Equal Area isoLatitude Pixelization (HEALPix)
scheme [11], a popular sampling scheme used in cosmology
and astrophysics. The process starts with a tessellation of
the sphere into 12 equal-area regions (base resolution). This
tesselation is shown in Fig. 2a. Each region is a quadrilateral
with curvilinear non-geodesic boundaries. The centers of the
12 regions are located on only three iso-latitude circles. Then,
to increase the resolution, each region is further divided into
4 equal-area regions, see Fig. 2b. Finally, the partitioning is
repeated to reach the desired resolution, see Fig. 2c. Once
the desired resolution has been achieved, the pixelization is
obtained by assigning one pixel to the center of each region.

The first and principal property of the HEALPix pixelization
is to yield uniform sampling of the sphere. Second, the iso-
latitude property allows fast and efficient processing of huge
size data. These properties were the original requirements that
motivated the construction of HEALPix and are also important
in the context of image compression. Moreover, HEALPix
offers other properties, which are of great interest in our
context. First, the hierarchical division of pixels into 4 equal-
area pixels to obtain higher resolution can be used to define
blocks. More specifically, as conventional 2D coders, pixels
can be gathered into blocks of pixels, where the number of
pixels in each side is a power of two. The blocks are called
spherical blocks (S-blocks) as they differ by construction from
planar 2D blocks (see Fig. 3). Second, the iso-latitude property
allows to define S-blocks which are spread on iso-latitude
circles i.e. with horizontal neighbors. This is a figure of merit,
as the correlation between neighboring horizontal S-blocks is
greater than between vertical ones.

(a) (b) (c)

Fig. 2. HEALPix hierarchical pixelization of the sphere. (a) Base-resolution
decomposition into 12 pixels. (b) Second decomposition into 48 pixels. (c)
Third decomposition into 192 pixels.

Fig. 3. Partitioning of the sphere into S-block of 8x8 pixels. An example is
shown with a resolution of 12288 pixels. Pixel centers are depicted by red dots,
and base-resolution tessellation is shown with black boundaries. S-blocks of
8x8 pixels which correspond to the third decomposition of the base-resolution
tessellation are depicted in yellow or violet.

III. PROPOSED CODER

Prediction and transform are two key steps in image
compression. Their goals are to exploit the short and long
range spatial redundancies of an image. More precisely, the
prediction exploits the redundancies between S-blocks whereas
the transform rather exploits local redundancies i.e., within a
S-block. In this section, we present a novel image coder, where
these two types of redundancy are exploited directly on the
sphere, and not in a projected domain as classically done.

A. Intra-prediction and scanning order

From the partitioning of the sphere into S-blocks presented
in Section II, one can define a block-based prediction algo-
rithm to remove redundancies between adjacent S-blocks. The
principle is to predict the current S-block from neighboring
S-blocks that have already been encoded/decoded and are
therefore available at the decoder. This requires to define a
scanning order of the S-blocks.

One property of omnidirectional images is that the cor-
relation between S-blocks with the same latitude is higher
than between S-blocks with the same longitude. Therefore,
we propose a horizontal scanning order, where the S-blocks



are processed ring by ring. Moreover, at the beginning of the
compression, less neighboring S-blocks are available. So it is
important to start the compression with smooth S-blocks for
which directional prediction is not needed. This motivates to
start the scanning at the north pole since, in 360◦ content,
smooth scenes such as sky or ceiling are usually depicted at
the north pole. In a nutshell, the coder starts scanning at the
north pole, then it moves down from the north pole to the
south pole along each iso-latitude ring (Fig. 4). It is worth
noting that the proposed scanning order is fixed and therefore
does not require any signalization.
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Fig. 4. Proposed scanning order for the case when S-blocks are 2x2 and sphere
is pixelized into 192 pixels. S-blocks are processed ring by ring starting from
the north pole. Red lines are the border of the S-blocks and black thin lines are
the border of the pixels. (a) S-blocks on the sphere. (b) Cylindrical projection
of S-blocks and pixels.

The prediction consists in predicting the current S-block
from neighboring S-blocks. The neighboring S-blocks are the
closest (to achieve reliable prediction) and already decoded
(to avoid error propagation) S-blocks. We adapt the intra
prediction that exists in conventional 2D coders [13] with
the difference that the neighboring S-blocks participate in
producing the prediction are the ones placed north-east, north,
and north-west of the current S-block (these blocks are already
decoded based on our proposed scanning order). For instance,
the S-block with index 13 is predicted from the S-blocks with
index 4, 0 and 5, whereas the S-block with index 5 is predicted
from the only already decoded neighboring S-block 0 (see
Fig. 4a and Fig. 4b). Note that since the neighboring S-blocks
are defined directly on the sphere, the connectivity between

S-blocks is preserved. This is different from the compression
methods based on a 2D projection followed by the classical
2D plane intra prediction algorithm [14].

B. Residual coding with graph transform

The residual signal is generated by subtraction of the pre-
diction signal from the current S-block. To further decorrelate
the residual signal, a transform is applied to the residual signal.
When the signal is defined on a 2D-regular grid, the 2D-
Discrete Cosine Transform (DCT) [14] is very efficient to
exploit local dependencies. In our context, the signal is defined
on the sphere. Therefore, we propose to apply a transform
that takes the sphere geometry into account. Indeed, a Graph
Fourier Transform (GFT) [15] is defined based on the geodesic
distance between pixel samples.

More precisely, for each S-block we construct a weighted
undirected graph G = (V, E ,W), where the set of nodes in
the graph V represents the set of pixels, E is the set of edges
which represents the connectivity between pixels, and W is
the weighted adjacency matrix. We use 8-connected neighbors
(except for the boundary pixels of the S-block which have
fewer neighbors) to define E . We use the weighted adjacency
matrix W suggested in [12]

Wij =

{
exp
(
− d(xi,xj)

2

ρ2

)
if pixels i and j are neighbors

0 otherwise,

where d(xi, xj) represents the geodesic distance between
pixels i and j, and

ρ =
1

|E|
∑

(vi,vj)∈E

d(xi, xj)

is the average geodesic distance over all connected pixels in
the S-block.

Following [15], the combinatorial graph Laplacian L =
D−W can be used to define a Fourier basis on the graph. The
degree matrix D is a diagonal matrix where Dii =

∑
jWij .

By construction, L is symmetric positive semi-definite and has
a complete set of orthonormal eigenvectors U = [u1, ...,uN ]
with non-negative eigenvalues λ1, ..., λN where N is the
number of pixels in the S-block. The graph Fourier basis is
defined as the Laplacian eigenvectors. The GFT of a signal
s ∈ RN is its projection on the eigenvectors given by U

ŝ = UT s.

The coefficients are then quantized and compressed using an
arithmetic coder.

Finally, to avoid error propagation, a Differential Pulse-
Code Modulation (DPCM) encoder scheme [16] is performed
as in all classical compression schemes [14]. More precisely,
encoded S-blocks are decoded and used as a reference to
predict next S-blocks.
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Fig. 5. RD curves of 4 images for different coding methods. (a) Image Exhibition. (b) Image Pool. (c) Image workshop. (d) Image Plaza.

IV. EXPERIMENTAL RESULTS

In this section, we compare the proposed spherical coder
with several baselines. In the following, the rate of each coding
scheme corresponds to the amount of bits that are necessary
to describe the compressed image. Computing the quality loss
due to 360◦ image compression is less straightforward since
the input images differ between different coding schemes. We
adopt the strategy proposed in [5]. Since 360◦ images are
aimed to be partly visualized by users, the compression loss is
estimated on the viewport images. For that purpose, we take
four high-resolution 360◦ images from [17] named Exhibition,
Pool, Workshop, Plaza. These images are in equirectangular
format. We generate several ground-truth viewports. Then, to
perform a fair comparison of the compression performances
of the schemes, we follow the recommendations of [5]. In
particular, we down-sample the input equirectangular to a
lower resolution such that each method has the same number
of input pixels to process. Hence no method is favored over
another. Then the same viewports are generated from the
compressed images and the Peak signal-to-noise ratio (PSNR)
is calculated on each of them. The final given PSNR value
corresponds to the PSNR averaged over all viewports.

We compare our proposed spherical coder with two
mapping-based baselines: the equirectangular and the rhombic
dodecahedron [4]. The number of pixels for the three methods
have been set to be almost identical (equal to 3145728
pixels). For the equirectangular-based coder we keep the
aspect ratio of the down-sampled equirectangular image to
be equal to the ground truth. The rate-distortion plots are
displayed in Fig. 5. We can see that our spherical coder clearly
outperforms the equirectangular-mapping based coder. More
interestingly, the proposed spherical coder also outperforms
rhombic-dodecahedron mapping-based coder which uses sim-
ilar HEALPix pixelization technique. The main difference
between our proposed coder and the rhombic-dodecahedron
is that in rhombic-dodecahedron the sphere is mapped to four
planar rectangular images which introduces distortion and dis-

continuities, but our coder performs everything directly on the
sphere. In particular, Table II shows that the proposed method
allows to reduce the rate by 2% on average, and up to 5.6%,
with respect to the method based on a 2D mapping of the
spherical content onto the faces of the rhombic dodecahedron
[4]. Whereas both approaches rely on the same HEALPix
pixelization technique, we can conclude that processing the
data directly on the sphere is more efficient than mapping and
perform 2D processing. This validates the intuitions brought
by our spherical coder.

TABLE II
BD-RATE GAIN OF THE PROPOSED METHOD WITH RESPECT TO THE

RHOMBIC-DODECAHEDRON APPROACH [4].

Exhibition Pool Workshop Plaza Average
BD-rate gain -5.63 % -2.89 % 0.20 % -0.12 % -2.11 %

V. CONCLUSION

In this paper, we have proposed a new coder for 360◦ images
which performs the compression directly on the sphere. Based
on a uniform sampling of the sphere, our coder extends the
regular tools of image compression to the spherical domain.
Experiments demonstrate the benefits of such an approach, in
particular with respect to conventional non-uniform sampling
methods, and also based on a uniform sampling method which
is mapped to several 2D image planes for compression.
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