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Abstract

In this paper we adapt the semi-supervised deep learning ar-
chitecture known as “Convolutional Ladder Networks”, from
the domain of computer vision, and explore how well it works
for a semi-supervised Named Entity Recognition and Classi-
fication task with legal data. The idea of exploring a semi-
supervised technique is to assess the impact of large amounts
of unsupervised data (cheap to obtain) in specific tasks that
have little annotated data, in order to develop robust models
that are less prone to overfitting. In order to achieve this, first
we must check the impact on a task that is easier to measure.
We are presenting some preliminary experiments, however,
the results obtained foster further research in the topic.

Introduction
In recent years, deep learning methods have provided very
powerful models for different kind of tasks, like computer
vision and natural language processing. An important as-
set for many of these deep learning models is the existence
of vasts amounts of labeled data to train them. Having the
power of a neural network with small amounts of data comes
with the burden of the model memorizing the inputs and
overfitting the data, which renders useless models.

Obtaining labeled data to improve these kind of deep
learning models is expensive and sometimes very difficult.
Depending on the task, it may require domain experts for
the annotation. Legal Named Entity Recognition and Clas-
sification (NERC) is an example of this case, where lawyers
are needed to, if not annotate, at least supervise the process.
On the other hand, however, we have large amounts of unla-
beled data available that is cheap and fast to obtain in large
pools. However, unlabeled data cannot be used directly to
train a regular deep learning model. In this scenario, a semi-
supervised deep learning model like “Convolutional Ladder
Networks” (Rasmus et al. 2015) is of high value.

In this work, by adapting Convolutional Ladder Networks
(CLadder) from image to text, we explore how the informa-
tion given by unlabeled data sources improves on the gen-
eralization of the model, making it less prone to overfitting.
We compare the use of unlabeled data by testing: (i) a purely
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supervised Convolutional Neural Network, (ii) the CLadder,
and comparing it with (iii) the Stanford CRF-NER as a refer-
ence tool for the NERC task. Even if CLadder does not reach
the same performance as the reference tool, results show
how unlabeled data contributes to reduce overfitting, by not
drastically dropping performance when changing from train-
ing to test data.

The rest of the paper is organized as follows. First we lay
down previous work and compare it with our approach. Then
we highlight the main idea behind Ladder Networks and ex-
plain how we adapted CLadder for text data. We continue
with a brief description of the dataset used for the experi-
mentation and the experimental work (with its correspond-
ing evaluation) done in this paper. Next, we analyze the re-
sults and end with some conclusions and future work.

Related work
Named entity recognition and classification (NERC) in the
legal domain have been recently explored in the works of
(Cardellino et al. 2017a) and (Cardellino et al. 2017b). In
their works, they explore Curriculum Learning (Bengio et al.
2009) to train a supervised classifier for different hierarchies
of the ontology. This work is based on their dataset, but as
we are only in early stages of research we limited ourselves
to the most abstract layer (i.e. the one with less classes).

Although convolutional neural networks (CNN) were
originally associated to computer vision tasks, in recent
years there have been a lot of different applications of con-
volutional networks in natural language processing. In par-
ticular, the network we base our architecture on is the one
of (Kim 2014). This work evaluates a CNN architecture
on various classification datasets, mostly comprised of Sen-
timent Analysis and Topic Categorization tasks, achieving
good performance for the different datasets. The network is
very simple, yet powerful, where the input is the sentence
comprised of concatenated word2vec (Mikolov et al. 2013)
embeddings, followed by a convolutional layer with multiple
filters, a max-pooling layer, and finally a SoftMax classifier.

In the area of NERC, one of the latest neural networks
architectures being used, which has reached state-of-the-
art performances, is the Bidirectional LSTM-CNN network
(Chiu and Nichols 2016). In this architecture, CNNs are
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used to extract character based features for the recurrent net-
work. Unlike them, we explore the CNNs on a word level
approach.

Ladder networks
This work adapts a semi-supervised deep learning technique
from the domain of computer vision. Ladder networks were
introduced in the work of (Rasmus et al. 2015), that extends
the original work by Valpola (Valpola 2015) which intro-
duces the concept of ladder networks for unsupervised learn-
ing.

The idea of using unsupervised learning to help training
a neural network was proposed by Suddarth and Kergosien
(Suddarth and Kergosien 1990). Most of the methods that
use an auxiliary task to help the supervised learning are
only applied at pre-training, followed by normal supervised
learning (Hinton and Salakhutdinov 2006) (this is some-
times known in the literature as “disjoint semi-supervised
learning”). In contrast, with ladder networks representations
are learned jointly (this is sometimes called “joint semi-
supervised learning” in the relevant literature). Unsuper-
vised learning is implemented through an auxiliary task, for
example, reconstructing the input. In learning, the hidden
representations among supervised and unsupervised tasks
are shared, and thus the network generalizes better.

The key idea of ladder networks is to simultaneously train
a feed-forward neural network (whether it is fully connected
or convolutional) alongside an autoencoder, with shared
weights. The network is trained by learning two different
objectives: a supervised one, given by the prediction error
of the labeled data; and an unsupervised one, given by the
reconstruction error of the unlabeled data.

The model structure is an autoencoder with skip connec-
tions from the encoder to decoder and the learning task is
similar to that in denoising autoencoders but applied to ev-
ery layer, not just the inputs. The skip connections relieve
the pressure to represent details in the higher layers of the
model because, through the skip connections, the decoder
can recover any details discarded by the encoder. For a more
detailed description of the ladder network we refer the reader
to (Rasmus et al. 2015).

Convolutional ladder networks for text data
Convolutional ladder networks (CLadder) are a variation of
ladder networks that were also proposed by (Rasmus et al.
2015). In their work the convolutional layers and the max
pooling layers are stacked forming a deep convolutional net-
work. Each convolution window can have different sizes of
width and length, this also applies for the max pooling lay-
ers.

As we follow the approach by (Kim 2014), our Convo-
lutional Neural Network (CNN) network is not “deep” but
“wide”. It has a single convolution layer (that can be con-
sidered a wide convolution because of the different sizes),
a layer of global max pooling per convolution filter, and fi-
nally one fully connected layer with a SoftMax classifier.

For text, the convolution moves through one dimension
only, which represents the number of words that the window

Figure 1: Convolutional network with text input. There are
multiple windows sizes (2, 3 and 4 words for the colors blue,
red and green respectively) and for each there are multiple
number of filters. Each filter is then max pooled to get a con-
volved feature. The convolved features are concatenated to
form a feature vector that is later fed to the SoftMax classi-
fier.

will take into account to apply the filters. Sometimes this is
referred as “temporal convolution” in the literature. The max
pooling layer, on the other hand, is global to the feature map
(that is the convolved features obtained by the convolution
operation), thus giving only one feature per filter instead of
multiple features per filter region as is the case for CNNs
used in computer vision.

In this architecture there are different window sizes (i.e.
number of words covered by the convolution) applied di-
rectly to the word representation input (generally a word
embedding). This gives multiple feature maps, one per each
feature, which gives one convolved feature after applying
global max pooling. This is visualized in Fig. 1, where there
are three sizes for the sliding windows (taking 2, 3 and 4
words, represented by colors blue, red and green respec-
tively), as well as two filters per window (represented by
different color intensity), we get a total of 6 convolved fea-
tures map (the layers overlapped in the middle of the Figure.
Finally, the layer with global max pooling operation gives
a total of 6 features (3 sliding window with 2 filters each),
which is the “convolved features vector” that is then fed to
the SoftMax classifier.

Following this structure we defined the CLadder repre-
sented in Fig. 2. The ladder network has two encoder paths,
one corrupted (the one on the left, marked by the red arrows)
and one clean (the one on the right, marked by the green ar-
rows), and one decoder path (in the center, with the blue ar-
rows going from top to bottom). The corrupted encoder adds
Gaussian noise in each layer as a method of regularization.
The decoder, which works as an unsupervised learner, in-
verts the mappings of each layer of the encoder. It uses a de-
noising function to reconstruct the activations of each layer
given the corrupted version of the mirror layer (denoted by
the purple arrow going from left to right), and the previous
layer output (the blue arrow). The target at each layer is the
clean version of the activation (the dotted arrow going from
right to left) and the difference between the reconstruction
and the clean version serves as the denoising cost of that
layer. The denoising function used in these experiments is
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Figure 2: Convolutional ladder network: the corrupted en-
coder is the one on the left, connecting the layers by red ar-
rows. The clean encoder is the one on the right, connecting
the layers with the green arrows. The decoder path is the one
in the middle, connecting the layers with the blue arrows go-
ing from top to bottom. Each layer in the decoder is fed with
information of the previous layer (blue arrow) and the same
level layer of the corrupted encoder path (purple arrows on
the left). It uses a denoising function with that information
to try and reconstruct the input of each layer given by the
clean encoder (purple dotted arrows on the right).

the same one defined in the original paper of CLadders. In
the encoder paths, the bottom layer represents the inputs and
the top layer the outputs (predictions). In the decoder path,
the bottom layer is the output of the autoencoder (the recon-
struction of the original input).

The supervised cost between the predicted label and the
ground truth label is calculated from the output of the cor-
rupted encoder and the target label. The unsupervised cost
is the sum of the denoising cost of all layers scaled by a hy-
perparameter that denotes the importance of each layer. For
example, the first layers are more important than the last to
reconstruct the input. The final cost is the sum of the super-
vised and the unsupervised cost. Batch normalization (Ioffe
and Szegedy 2015) is applied to each preactivation including
the topmost layer to improve convergence (due to reduced
covariate shift) and to prevent the denoising cost from en-
couraging the trivial solution (encoder outputs constant val-
ues as these are the easiest to denoise). Beside this we also
decided to add regularization by L2 norm of the weights in
the encoder and decoder path, which proved to be useful for
better generalizations (we also tried dropout but without any
improvements on the task).

In the encoder paths, the first layer (from bottom to top)
represents the convolutions over the words, the different
sizes of the layers mean different sizes of the sliding win-
dow, and the multiple filters are represented by the rectan-
gles overlapped (in Fig. 2 there are 3 different sizes for con-
volution and 2 filters per convolution size, giving a total of
6 feature maps). The second layer represents the pooled fea-
tures of each filter and each convolution size (by global max
pooling). The final layer is a fully connected layer with a
SoftMax classifier.

In the decoder path, the first layer (from top to bottom)
is a “transpose” of the same layer of the encoder path (the
fully connected layer). The second layer (that corresponds

to the max pooling layer in the encoder) is an “upsampling”
layer that simply takes the input and repeats it to map the di-
mensions of the convolutional layers. Finally, the last layer
is a “transposed convolutional” layer (also know as “decon-
volutional layer”) that maps the convolutions to the original
input matrix (the one in Fig. 1). It is important to note that
the mappings (and reconstruction objectives) of the decoder
path to the encoder, in the case of the convolutional layer,
are for each of the different window slide sizes (that is there
is mapping between the convolution layer with 2-word win-
dows, 3-word windows, etc.), not between convolutions of
different window sizes.

Training dataset
As labeled data, we exploited Wikipedia links. To build
our corpus, we downloaded a XML dump of the English
Wikipedia1 from March 2016, and we processed it via the
WikiExtractor (of Pisa 2015) to remove all the XML tags
and Wikipedia markdown tags, but leaving the links. We
extracted all those articles that contained a link to an en-
tity of the WordNet- and Wikipedia-based YAGO ontol-
ogy2 (Suchanek, Kasneci, and Weikum 2007) that has been
mapped to the legal ontology presented in (Cardellino et al.
2017b). We considered as tagged entities the spans of text
that are an anchor for a hyperlink whose URI is one of the
mapped entities. We obtained a total of 4,5 million men-
tions, corresponding to 102,000 unique entities. Then, we
extracted sentences that contained at least one mention of a
named entity.

We consider the problem of Named Entity Recognition
and Classification as a word-based representation, i.e., each
word represents a training instance and is represented, in the
network, by the concatenation of all the words that precede
it. Then, words within the anchor span belong to one of the
NE classes, others to the O class (Outside a Named Entity).
The O class made more than 90% of the instances. This im-
balance in the classes results largely biased the classifiers,
so we randomly downsampled non-named entity words to
make them at most 50% of the corpus. The resulting corpus
consists of 10 million words, with words belonging to the
O-class already downsampled. The data was split in three
datasets: 80% for training, 10% for validation and 10% for
test. The test dataset is the one used for evaluation and is
held out until the final models were ready. The validation
dataset was the one used to tune the hyperparameters of the
different models.

As said before, Ladder Networks rely on a big quantity
of unlabeled data to obtain a good representation of the uni-
verse. For these experiments, we use the same Wikipedia
corpus as unlabeled data, because it is big enough. However,
the autoencoder part of the ladder network captures other as-
pects of the same instances, obtaining a different representa-
tion that improves the representation obtained in the super-
vised task. In some of the experiments, the labeled data is
limited to a percentage of the total labeled data, however the

1https://dumps.wikimedia.org/
2https://www.yago-knowledge.org/
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unlabeled data is still the same amount. That is a more real-
istic scenario, because CLadder can take advantage of much
unlabeled data for its training objective.

Experimental setting
In this paper we want to assess how the unsupervised objec-
tive of the ladder network helps improve the generalization
of the model. We measure this by as the reduction in over-
fitting of the CLadder as compared to supervised methods.
Moreover, we want to explore how the amount of labeled
training data affects the overfitting tendency of a model. In
order to do that, we carry out two sets of experiments.

First we compare: (i) a purely supervised Convolutional
Neural Network (CNN) for NERC, (ii) the same architec-
ture in a semi-supervised environment given by the ladder
networks, and, to have a point of comparison with a more
standard algorithm, (iii) we use the reference given by the
Stanford CRF-NER tool (Finkel, Grenager, and Manning
2005).

As we want to assess the impact provided by unlabeled
data in the final task, we train two sets of classifiers, one us-
ing the whole corpus and one using only 10% of the labeled
corpus.

Finally, for the case of the CNN and the CLadder, we in-
spect how the model’s supervised cost progresses as differ-
ent epochs occur while augmenting the number of unlabeled
examples (one epoch is one pass of the mini-batch stochastic
gradient descent algorithm through the whole corpus).

The neural networks were trained using backpropaga-
tion and the ADAM optimization (Kingma and Ba 2014).
The sizes of the sliding windows were 2 to 5 words, with
32 filters each (which gives a total of 448 convolved fea-
tures). The hyperparameters (learning rate, regularization
rate, noise of the corrupted encoder, weights of the recon-
struction costs, number of filter, sizes of the windows, etc.)
were chosen by random hyperparameter optimization and
evaluated on the validation data.

Each instance is the sequence of words up to the word that
is being classified. The words are represented by a concate-
nation of their dense vector and the dense vector of the part-
of-speech tag of that word. Both the word and part-of-speech
tags vectors were calculated previously with word2vec on
the legal Wikipedia corpus. Originally we only used the
word vector alone, but after some experiments we found out
that the use of a PoS tag embedding improved the final over-
all performance. The PoS tags were obtained through the
Stanford Parser (Klein and Manning 2003).

Evaluation
The evaluation of the experiments that compare the different
networks and the Stanford NER were done on the training
dataset, after the model finished training, as well as the held-
out test set described previously.

Our idea is to measure the overfitting of different mod-
els when comparing the results of the training and test sets.
An indicator of model overfitting is the difference in perfor-
mance between training and test. The metrics we measure
are three: accuracy, F1-score macro average (i.e. unweighted

mean) and F1-score weighted average. The idea of showing
both these averages is to also see how biased the models are
toward the most frequent class, as a higher difference be-
tween these results (i.e. a very low value in macro average
and very high value in weighted average) shows the algo-
rithm is more biased towards the most frequent class.

In order to assess the evolution of the supervised cost
(i.e. the prediction error) for training and validation data, we
show the learning curves of 5 different experiments: (i) us-
ing only supervised CNN (i.e. no unlabeled data), and using
CLadder with (ii) 25%, (iii) 50%, (iv) 75%, and (v) 100% of
the unlabeled data (in all but (v), the unlabeled data is ran-
domly sampled from the unannotated corpus). For these dif-
ferent experiments we split the supervised training data into
10-folds, train a model with 9 folds and evaluate it on the
remaining fold (i.e. the “validation data”, in this scenario, is
really part of the training data). This is done for each fold.

We record the training and validation supervised cost on
each epoch on a run of 10 epochs and use the information
to calculate the mean and the standard deviation of the loss.
The idea is to see how the proportion of unlabeled data in
the ladder network affects the model generalization as well
as the “error due to high variance” (Manning, Raghavan, and
Schütze 2008) the models have. This type of error is defined
as the variation of the prediction of learned classifiers: it
measures how inconsistent the predictions are from one an-
other, over different datasets, not whether they are accurate
or not.

Analysis of results
Evaluation of models’ overfitting tendency
For the first set of experiments, described in the previous
section, we show the results in Table 1. The table displays
Accuracy, F1-score macro average, and F1-score weighted
average on training and test data.

There are two sets of experiments, one with the full la-
beled dataset and one with only 10% (in the case of the
CLadder, the unlabeled data remains total since it is a real
case scenario with the availability of unlabeled information).

When using the full labeled dataset we see that, on train-
ing data, the two supervised approaches overcome the CLad-
der in all three metrics. However, on test data, accuracy and
F1-score drop drastically for both supervised approaches,
while performance is roughly maintained at the same level
for CLadder. Moreover, CLadder’s performance is much
better than the performance of the supervised CNN. This
tendency is even more visible if only 10% of the corpus is
used for training, as in that case, the supervised CNN over-
fitting is even bigger, since the difference between training
and test data performance increases.

Compared with the Stanford CRF, CLadder is not so far
behind in performance on the test data. In future work, we
will explore the impact of adding a Recurrent Layer or CRF
to the top of the CLadder, as this kind of architecture has
been successful for a variety of sequential NLP tasks, in-
cluding NERC.

Regarding the F1-score averages, it is noticeable that,
while in all cases drops significantly, for the macro average
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Training Size Algorithm Training Data Test Data
Acc F1 M F1 W Acc F1 M F1 W

Stanford CRF 0.99 0.98 0.99 0.83 0.51 0.82
Full Supervised CNN 0.80 0.60 0.79 0.72 0.45 0.71

CLadder 0.78 0.58 0.74 0.77 0.48 0.76
Stanford CRF 0.99 0.99 0.99 0.75 0.44 0.73

10% Supervised CNN 0.84 0.63 0.82 0.61 0.40 0.60
CLadder 0.79 0.58 0.73 0.72 0.43 0.7

Table 1: Table of results for Stanford CRF-NER, supervised CNN and ladder CNN. It shows the Accuracy (Acc), F1-score
Macro Average (F1 M) and F1-score Weighted Average (F1 W) for both training and test data and for training data using the
full training dataset and only 10% of the training dataset

(the one that is the most susceptible to changes in classes
with less instances), it is for CLadder that also drops the
least, while maintaining the weighted average. This means
that in general, the unlabeled data, besides helping in the
model generalization, it makes it more robust to the less fre-
quent classes, something that is very problematic in unbal-
anced datasets (very common in natural language processing
tasks).

From these results it is clear that unsupervised data is in-
deed helpful to obtain a better generalization in the model,
as the fact that the model cannot fit so well the training data
(as the supervised models do) doesn’t affect how well the
model works with unseen examples of the test data.

Learning curves
Figure 3 shows the results of the second experiment we de-
scribed in the previous section. The plot consists of 5 dif-
ferent plots, one for each experiment using different sizes
of the unlabeled corpus to train the CLadder. The leftmost
graphic shows the case for the supervised CNN, and as we
move to the right we have more unlabeled data available for
the CLadder. It is interesting to see how using only 25% of
the unlabeled data to train the network affects the learning
curve as a whole.

In all cases, for the CLadder, the training cost in the first
epoch begins higher than for Supervised data (in which prac-
tically stays the same) and decreases after some epochs. Spe-
cially, the more unlabeled data there is for each epoch, the
more the training cost decreases. This is a symptom of the
unlabeled data affecting the weights of the encoder path (by
trying to optimize the reconstruction) and thus making it
more difficult the model overfitting training data. However,
the most important result in this graphic is shown in the case
of the validation data. For supervised CNN, there is a high
gap between training and validation data throughout all the
iterations, but for the case of CLadder this gap decreases as
the model fits the training data better. Moreover, the more
unlabeled data there is available, the more similar are the
training and validation learning curves and the better results
we obtain for validation data. Also, there is the error due
to high variance, shown by the width of the shade (i.e. the
standard deviation for the folds), which is higher for Super-
vised CNN than for CLadders. This means fully supervised
models suffer from higher variance, thus making them more
prone to overfitting when there is no presence of unlabeled

data that helps the model generalize.

Conclusions and future work
In this paper we adapted a semi-supervised deep learning
technique from computer vision into a natural language pro-
cessing task of named entity recognition and classification
in the legal domain. We wanted to assess how unlabeled
data affects a model. By doing some experiments with this
adapted technique we have shown the importance of unla-
beled data and the impact it can have on better model gener-
alization. The results we achieved, even if not state-of-the-
art, are promising in that they generalize well to unseen data,
and we will continue to explore them.

We are currently working on applying this approach to
smaller datasets, where the impact of a mechanism to coun-
terbalance the overfitting tendency will is more valuable.

Further areas of study are to adapt different convolutional
neural networks architectures used on other natural language
processing tasks and see if that helps improving the perfor-
mance even more. For example, something in the line of
(Chiu and Nichols 2016), where the character level convo-
lution could be included in the CLadder. Even more, there
are some research for Recurrent Ladder Networks applied
in image data which could also be adapted for natural lan-
guage processing tasks.
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