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Correlation between chemical structure and enantioselectivity in baker’s yeast reduction of a set of carbonyl compounds was constructed by
means of a multi-layer neural network using the back-propagation algorithm. To evaluate the predictive power of the neural network (NN)
model, the cross-validation procedure was used, 88 % of the reactions were correctly predicted. 
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Introduction 

Concerning the enantioselective reduction of carbonylated 
compounds, the prediction of the preferred alcohol 
enantiomer in synthesis is a difficult task. For the prediction 
of the R/S configuration in an asymmetric reduction of 
carbonyl compounds, Prelog, Cram and Felkin have 
developed models of limited applicability based on steric 
criteria.1  

J. Aires de Sousa et al have studied the enantioselective 
reduction of ketones by DIP-chloride,2 the addition of 
diethylzinc on benzaldehyde2 and the enantioselective 
hydrolysis of ester by Pseudomonas,3 all predictions were 
made using neural network. Using also neural networks for 
prediction of enantioselectivity, W. M. F. Fabian et al 4 have 
described the ring opening of epoxide by hydrolases.  

In our study, the baker’s yeast (Saccharomyces cerevisiae) 
enantioselective reduction of -ketoacid derivates was 
chosen because of its importance in preparation of chiral 
alcohols (Fig. 1). Numerous enzymatic systems which are 
present, can perform such a reduction, but different 
experimental conditions do not generally influence the 
resulted configuration.5 

 

 

 

Figure 1. Bakers' yeast reduction of -ketoacid derivates 

Neural Networks (NNs) have successfully been used in 
organic chemistry,7 particularly in QSAR studies, where 
numerous enzymatic systems and metabolic ways are 
implicated.8 NNs are mathematical models of biological 
neural systems which fit non-linear problems and give better 
correlations than the multiple linear regression (MLR) ones. 
A description of the back-propagation algorithm was given 
previously9 as well a more extensive description.7 An 
attempt of structure-enantioselectivity relationships using 
neural networks was already described,10 but the authors 
were unable to make predictions with molecular refraction22 
and finally proposed a Prelog model. 

Methods  

For our study, 35 reactions were extracted from reviews 
by Servi and Czuk et al.6, where we can find the nearby 
experimental conditions (Table 1).  Under these reactions 
the enantioselectivity was generally total, therefore our 
attention was focused on the prediction of R/S configuration 
of the produced enantiomer. 

Previous studies3,11 have shown that the correlation 
between the structure of the starting ketone and the alcohol 
obtained depends on steric criteria but other effects can also 
occur such as electronic ones. Therefore, the substituting 
groups R1 and R2 can be described by 2 kinds of parameters, 
electronic and steric parameters. 

Electronic parameters:  Hammett12 assigned to every 
substituent a constant  which represents its electronic 
effects on the reaction site. Taft et al.13 have suggested two 
models where inductive and resonance contributions are 
quantitatively separated. 

Steric parameters:  Several studies16 could be found in 
literature concerning the steric effects of substituent groups 
in organic reactions.17 
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Table 1: Chemical structures of the compounds studied 

No R1 R2 No R1 R2 No R1 R2 

1 CH3 C2H5 13 C2H5 C8H17 25 CH2CH2CH=CH2 tC4H9 
2 CH3 nC3H7 14 NC3H7 C8H17 26 CH2CH2C(CH3)=CH2 CH3 
3 CH3 nC5H11 15 NC4H9 C2H5 27 CH2CH2C(CH3)=CH2 C2H5 
4 CH3 nC8H17 16 CH2Cl CH3 28 CH2CH2CH=CH2 H 
5 CH3 iC3H7 17 CH2Cl C2H5 29 CH2CH2CH=CH2 CH3 
6 CH3 Ph 18 CH2Br C2H5 30 CH2CH2CH=CH2 C2H5 
7 CH3 CH3 19 CH2Br nC3H7 31 CH2Cl nC8H17 
8 CH3 

CH3 
nC4H9 20 CH2Br nC7H15 32 C2H5 nC8H17 

9 CH3 tC4H9 21 CH2Br nC8H17 33 NC3H7 H 
10  CH3 22 CCl3 C2H5 34 NC3H7 C2H5 
11 C2H5 C2H5 23 CF3 C2H5 35 NC4H9 H 
12 Ph C2H5 24 CH3 C2H5    

 

Hansch et al.18 proposed molecular refraction and 
molecular mass as sample measures of steric effects of 
substituting groups. In this latter study, the steric parameter 
is the volume of the substituents (V) computed using the 
Gavezzotti method.19 

Results and discussions 

A three layers Neural Network (NN) was used with the 
back-propagation (BP) algorithm for the prediction of 
predominant configuration (R or S) of the final product. 
Two methods were used to describe the reactions: 

First method:  Every reaction is described by 6 parameters 
mp and V for R1 and the same for R2, this represents the 
input layer (6 neurons). The output layer contains only one 
neuron, which takes the value of 1 if the predominant 
configuration is S and 0 if it is R. 

Second method:  In this case, four parameters were used to 
describe each substituent (mp, V and L), where L is the 
Verloop20 parameter L represents the length of the 
substituent along the bond axis between the substituent atom 
and the parent compound, it was chosen because it permits 
to distinguish isomers. 

We used a network with 6 or 8 units and a bias in the 
input layer, a variable hidden layer including bias, and one 
unit in the output layer. Input and output data were 
normalized between 0.1 and 0.9. The weights were 
initialized to random values between -0.5 and +0.5 and no 
momentum was added. The learning rate was initially set to 
1 and was gradually decreased until the error function could 
no longer be minimized. All computations were performed 
using our own programs, written in the C language. 

Learning. In order to determine the best architecture, 
different NNs have been tried using the two description 
systems [6-x-1 and 8-x-1; x = 1, 2, 3, 4, 5, 6, ...) with the all 
35 reactions as a training set. The criteria used for the 
comparison of the architectures is the percentage of 
reactions correctly classified. We consider that we have a 

correct classification for a reaction if the output neuron was 
greater than 0.6 for S configuration and less than 0.4 for R 
configuration. After 2000 iterations, the NNs of structure [6-
x-1] (x=2,3,4,5) were able to classify 34 of the 35 reactions 
studied. 

Prediction. The predictive ability of an NN is its ability to 
give a satisfactory output for a molecule not included in the 
examples the NN learned. To determine that predictive 
ability, cross-validation has been used.21 After 1400 
iterations in the cross validation procedure, 29 of the 35 
reactions were correctly predicted (Table 3) with an NN  [6-
3-1] and [6-4-1] and 31 reactions of the 35 reactions (88 %) 
are correctly predicted with an NN (8-3-1). Clearly the 
parameter L provides new information to the NN.22 The use 
of percent (% of S) or 2 neurons (0,1) as output does not 
improve the results. 

We have used m and p parameters introduced by Taft 
for electronic effects of meta and para positions. These 
parameters are available in the literature14 and Kvasnicka 
has shown15 that these parameters can be computed by a 
neural network using simple structural data as inputs. 

Table 2. Prediction results using the first method 

NN architecture Number of reactions  
correctly predicted/35 

6-1-1 26 
6-2-1 27 
6-3-1 29 
6-4-1 29 

Table 3. Prediction results using the second method 

NN architecture Number of reactions  
correctly predicted/35 

8-1-1 26 
8-2-1 30 
8-3-1 31 
8-4-1 30 
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Conclusion 

After the neural network has been fully trained, it has 
shown that the network was able to form reliable 
generalizations to predict R/S configuration in baker’s yeast 
reduction of the carbonyl compounds presented to it. This 
shows that steric and electronic parameters (m, p, V and 
L) provide sufficient information to a neural network for 
prediction of the reactivity of the compounds studied. This 
study represents a first approach to the prediction of 
enatioselectivity, the efficiency of induction depends on the 
concentrations of substrats, and for a quantitative prediction 
this factor must be added to steric and electronic parameters. 
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