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Abstract 13 

Sorption of Eu(III) onto quartz from highly saline solutions (up to 5M NaCl) has been studied by 14 

sorption edges. The acid-base titrations of the solid surface suggest the rather unusual 15 

presence of two different sites that has been the object of recent discussions in the literature. 16 

Europium uptake results show the usual behaviour with a steep pH-edge and nearly complete 17 

removal at sufficiently high pH. Previous spectroscopic data on this system suggest the 18 

presence of two bidentate surface complexes with different proton stoichiometry. Based on this, 19 

a self-consistent Surface Complexation Model (SCM) was fitted to the full set of experimental 20 

data, from 0.1 to 5 M NaCl, using a coupled Pitzer/surface complexation approach. The Pitzer 21 

model was applied to aqueous species. A Basic Stern Model was used for interfacial 22 

electrostatics of the system, which includes ion-specific effects via ion-pair formation. Parameter 23 

fitting was done using the general parameter estimation software UCODE coupled to a modified 24 

version of FITEQL2 involving separate calculations of the respective ionic strength corrections. 25 

At high ionic strength (>1 M), the surface potential is strongly screened by ion-pair formation 26 

and the diffuse layer potential is negligibly low, which justifies the extension of the standard 27 

electrostatic model to these harsh conditions. Overall, our model is able to describe the full set 28 

of analysed data. It is expected that these first systematic data acquisition along with the 29 

detailed modelling can serve as a benchmark for the modelling of future studies on sorption in 30 

highly saline systems. 31 
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1. Introduction 35 

 36 

Adsorption processes are important in retarding the potential migration of radionuclides from a 37 

nuclear waste repository to the biosphere 
1,2

. Many studies have been carried out to 38 

characterize the interactions of key radionuclides on many surfaces for a wide range of solution 39 

compositions. The major body of the studies was performed with salt concentrations of 0.1M 40 

and below (
3
 and references therein). Surface complexation modelling approaches 

4–6
 have 41 

rationalized the adsorption of dissolved ions (such as heavy metal ions or radionuclides) in a 42 

fashion similar to the treatment of aqueous complexation equilibria. In particular, on oxides, 43 

surface ligands (surface hydroxyl groups) undergo protonation and/or deprotonation which 44 

allow, along with an electrostatic model for the interface, the description of the charging curves 45 

of the surfaces under study. The fundamental charging of oxide surfaces occurs via proton 46 

uptake or release from the surface functional groups. The surface charge is pH dependent and 47 

influenced by the electrolyte ions and increases with ionic strength. Adsorption of other solutes 48 

like radionuclides is also pH dependent and affected by the variable charge of the surface. For 49 

salt concentrations significantly higher than 0.1M there is no systematic data set to allow an 50 

extension of the present modelling approaches to higher salt contents within a variable charge 51 

model. In one case, data for sorption on montmorillonite were modelled using a combined Pitzer 52 

and triple layer approach by Mahoney and Langmuir
7
. In Mahoney and Langmuir study’s, the 53 

data were more adequately modelled up to 4.0 M NaCl (encompassing data at 1.0 and 2.0 M 54 

NaCl for the high concentration range) using activity coefficients calculated by the Davies 55 

equation than by using Pitzer based activity coefficient models. It is unclear how the pH 56 

measurements were actually done at the high salt level
8
 and if the charges were accurately 57 

determined in the high salt level range, a Basic Stern model coupled to the Davies equation was 58 

successful in describing the reported data also in 4.0 M NaCl
9
. The situation is different for 59 

aqueous solubility and speciation of radionuclides where a large body of systematic 60 

experimental data exists. In these cases, SIT and Pitzer modelling approaches set 61 

thermodynamic frameworks that can be applied to performance assessment for repositories in 62 

salt formations 
10

 to include solubility limits and concomitant effects of aqueous solution 63 

complexation effects. The importance of obtaining accurate data and using consistent 64 

thermodynamic data to model them is obvious. For the aqueous solution this concerns the 65 

measurement of the proton activity, which is a master variable, and which is not trivial at high 66 

salt levels, and the calculation of correct activity coefficients
11

.  67 

Radionuclide retention due to surface reactions is typically represented in Performance 68 

Assessment calculations by the equilibrium distribution coefficient (Kd), which is a quotient 69 

between the adsorbed concentration of radionuclide (mass of radionuclide per unit mass of 70 

solid) and the aqueous concentration of radionuclide (mass of radionuclide per unit volume of 71 

solution)
12

. Overall, Kd values lump together various processes (e.g. surface complexation, ion-72 

exchange, precipitation, co-precipitation, etc.) and do not provide appreciable insight into the 73 

retention mechanism. Alternatively, radionuclide retention processes can be assessed through 74 



the use of surface complexation models. Such approach, based on the definition on a 75 

mechanistic reaction model, can represent a variety of retention reactions (equilibrium and 76 

kinetic). It has become highly desirable to approach adsorption in more concentrated solutions, 77 

covering intermediate (0.1-1 M) and high ionic strength (>1 M), by similar procedures. This 78 

involves collection of experimental data in a systematic way on a model system in a first step 79 

and a subsequent attempt to rationalize the data in terms of a surface complexation model.  80 

As a model surface, quartz is studied in this work. Quartz presents well-known surface 81 

properties, with surface functional groups also present on the surface of clays and clay 82 

minerals. On the other hand, trivalent lanthanides, and more precisely, Eu has been selected as 83 

adsorbing solute of interest for the adsorption studies. This trivalent lanthanide cation is often 84 

used as a proxy for the radionuclides Am and Cm, which constitute an important fraction of the 85 

minor lanthanides/actinides present in the high-level liquid waste generated during the 86 

reprocessing of spent nuclear fuel
13

. In the scenario of a repository failure, these radionuclides 87 

could migrate away from the waste disposal site, finally entering the geosphere. During this 88 

migration process they will be interacting with the surrounding host-rock minerals. 89 

Consequently, a reliable understanding of their behaviour in contact with surfaces is crucial 90 

whenever retention processes are to be taken advantage of in the Safety Case for a given 91 

repository. Extensive studies have been carried out on the uptake of trivalent actinides onto 92 

mineral surfaces under different conditions 
13–18

, but a study for high salt content on silica 93 

minerals is missing. In Germany and some other countries (Canada, USA, etc.) some options 94 

for repositories in areas that would involve highly saline aqueous solutions have been discussed 95 

and experimental data and models for treating such systems are required.  96 

 97 

It is expected that such a model can be applied in Performance Assessment for a nuclear waste 98 

repository in highly saline environment in a similar way as is nowadays envisaged or applied for 99 

sorption from low ionic strength solutions in the licensing process for nuclear waste repositories 100 

or practised in general environmental contexts with respect to contaminant transport. Data on 101 

Eu adsorption on clay surfaces have been recently published up to high ionic strength and were 102 

modelled by a non-electrostatic surface complexation model coupled to the Pitzer approach
16

. 103 

While the coupling itself is rather a technical problem, the more interesting scientific issue is 104 

how traditional electrostatic models perform at high salt concentrations. One issue is whether 105 

coupled models yield a good fit to experimental data over the full range of background 106 

electrolyte content. Another arises from the fact that the application of the Gouy-Chapman-type 107 

treatment that is part of many of those models is beyond the limits of the underlying theory. For 108 

this reason, the constant capacitance model has been traditionally used as the equivalent of the 109 

constant ion medium approach in solution studies to treat the interfacial electrostatics at high - 110 

medium concentrations 
19

. Although the constant capacitance model allows for variable ionic 111 

strength in a semi-predictive way 
20

, it is preferable to have a fully consistent set of surface 112 

complexation parameters to describe a given system. We therefore test a Basic Stern model to 113 

describe electrostatics at the mineral water interface up to high salt concentrations. Hiemstra 114 



and co-workers 
9
 modelled data on silica from Bolt 

21
 up to 4M NaCl applying conventional 115 

activity corrections involving the Davies-equation. At the highest salt level, such approaches fail 116 

to correctly describe the activity corrections of the dissolved species. Except for the works of 117 

Schnurr et al. 
16

 and Zoll and Schifj
22

, on clay minerals and algae respectively, we have no 118 

knowledge of a consistent treatment of the activity corrections up to salt brines in an adsorption 119 

study. This work therefore is the first attempt to couple Pitzer equations with an electrostatic 120 

model for the interface. The use of Pitzer equations to calculate activity coefficients at high ionic 121 

strength conditions is preferred because this model allows a robust description of the complex 122 

ion-interaction processes in saline media. As will be seen later, the model performs very well for 123 

our system. Furthermore, due to the high salt content, the impact of the Gouy-Chapman part 124 

(i.e. the diffuse part of the double layer) is of minor importance, since the fundamental charge 125 

caused by proton ad- and desorption from surface functional groups is sufficiently screened by 126 

counter-ion adsorption.  127 

 128 

2. Materials and Methods 129 

 130 

2.1 Materials 131 

 132 

Commercially available MINUSIL 5 particles (pure quartz particles of nominal 5 µm size) were 133 

obtained from U.S. silica company. The solids were washed several times with dilute HNO3 134 

solutions, dried and checked for the absence of impurities by XPS. The XPS spectra (not 135 

shown) did not reveal any significant impurities on the pre-treated particles. The specific surface 136 

area (measured by BET using Nitrogen gas) of the pre-treated particles was 6.5 m
2
/g.  137 

 138 

2.2 Surface titrations and zeta potentials measurements 139 

 140 

The MINUSIL solids were titrated at different NaCl concentrations (0.1, 1, 3 and 5M). Titrations 141 

were carried out in fast mode with small additions of titrant and short waiting times between 142 

additions. Calibration of the measurement set-up was done with standard procedure but 143 

considering the “A”-factor which allows to correct operational, measured pH values at high ionic 144 

strength to pHc (-log[H
+
])

20
. The set-up was purged by purified and humidified Argon to avoid 145 

intrusion of carbon dioxide and limit evaporation. The data treatment followed standard 146 

procedures. The values for pKw at the different ionic strengths were calculated using the Pitzer 147 

formalisms. The Pitzer parameters were those used by Schnurr et al. 
16

 (for the Am-Na-Cl-148 

system). They are self-consistent, and consistent between the treatment of the titration data and 149 

the modelling of our experimental titration and adsorption data. The raw data yielded the relative 150 

surface charge as a function of pHc. For the modelling it is necessary to determine the absolute 151 

charge. It is not straightforward to decide how to treat the data at these high salt contents, as 152 

several pH-scales would be possible besides the pHc scale. Plotting the relative data on any of 153 

these scales could yield a common intersection point. In the case of standard quartz no 154 



common intersection point is expected, but the observed plateau down to low pH is usually set 155 

to absolute zero surface charge. Our data do not show classical quartz behaviour, therefore no 156 

clear acidity scale to define common intersection points can be defined. A consistent way to fix 157 

the absolute charge is to use the Pitzer pH scale within a model and involve zeta-potential 158 

measurements, which give an absolute value of the surface charge within the shear-plane.  159 

The DT-300 system from Quantachrome/Dispersion Technology was used for the 160 

electroacoustic experiments. Before each new measurement, a calibration of the probe is done 161 

in a particle-free solution, and the background current is automatically subtracted from the 162 

suspension measurements. Moreover, ultrasounds are applied for 3 min in the suspensions 163 

before any experiment using a sonotrode (UP100H model from Hielscher). To calculated zeta 164 

potential from electroacoustic measurements, a bimodal size distribution has been used, 165 

resulting from laser diffraction granulometry. The pH was measured in the usual way, i.e. by 166 

calibrating against three commercial buffers. With the lower ionic strength, no extra corrections 167 

were required.  168 

 169 

2.3 Batch Sorption studies 170 

 171 

Eu sorption onto MINUSIL particles was studied in NaCl solutions of different ionic strengths: 172 

0.1, 1, 3 and 5M. The total concentration of Eu in all cases was 1·10
-7

M, the solid to liquid ratio 173 

was 10g/L, and pHc values were varied in the range from 2.5 to 8.0 by HCl and NaOH solutions. 174 

The pHc values were determined using the known “A”-factors as described in the previous 175 

section.  176 

 177 

 178 

2.4 Speciation calculations and surface complexation modelling 179 

 180 

Thermodynamic data (log  
0
 values) used in this work are identical to those used by Schnurr et 181 

al. 
16

. We summarize the log  
0
 values for the aqueous Eu-species, which have been taken from 182 

the NEA compilation for Americium 
23

 (see Table 1). The Pitzer activity coefficients were used 183 

as indicated above. Europium and Americium, generally featuring analogous aqueous species 184 

with comparable structures, are usually treated within a common scheme to describe ion-185 

interaction processes. The potential dissolution of quartz may result in the formation of silicic 186 

acid that may act as inorganic ligand for cations. However, in a related study it was found that 187 

addition of dissolved silica is required to affect the speciation in this system 
17

. Moreover, 188 

increasing the system ionic strength largely decrease the stability of ternary aqueous species 189 

Eu-H2O-Si. Thus, no attempt was made to include Si aqueous speciation in the model, i.e. 190 

ternary aqueous or surface species were not considered. 191 



Table 1. log  0 used for calculating the aqueous speciation of Eu(III). 192 

Reaction log  0 

Eu
3+

 + H2O ↔ Eu(OH)
2+ 

+ H
+
 -7.20 

Eu
3+

 + 2H2O ↔ Eu(OH)2
+ 

+ 2H
+
 -15.1 

Eu
3+

 + 3H2O ↔ Eu(OH)3(aq) + 3H
+
 -26.2 

Eu
3+

 + 4H2O ↔ Eu(OH)4
- 
+ 4H

+
 -40.6 

Eu
3+

 + Cl
-
 ↔ EuCl

2+
 0.24 

Eu
3+

 + 2Cl
-
 ↔ EuCl2

+
 -0.74 

 193 

Quartz surface protonation is modelled with a 2-site protolysis model 
24

. The MINUSIL sample 194 

used in this study presents two distinct types of functional groups that govern the reactions 195 

taking place at the quartz surface. A basic Stern model is used for interfacial electrostatics of 196 

the system, which includes ion-specific effects via the formation of ion-pairs between ionized 197 

surface functional groups and ions of the background electrolyte 
25

. For the fundamental 198 

charging the titration and zeta-potential results were fitted simultaneously. As previously 199 

explained, a major problem in the treatment of the titration data is that the absolute charge 200 

cannot be determined. Zeta-potentials are an absolute measure of the net-charge within the 201 

shear-plane and are affected by the proton ad- and desorption reactions. The coupling of the 202 

various data sets via UCODE is possible and allows the relative charging data obtained in the 203 

titrations 
26

 to be transformed to absolute values, while simultaneously fitting capacitance and 204 

stability constants. Site densities were constrained as described below.  205 

Metal ion adsorption is modelled by applying those parameters derived from titration results, i.e. 206 

capacitance and surface hydrolysis constants, and fitting a hypothetical surface complex 207 

stoichiometry with a charge distribution to the experimental Eu uptake data. Parameter fitting is 208 

done using the general parameter estimation software UCODE 
27

 coupled to a modified version 209 

of FITEQL2 
28

.  210 

No separate activity corrections apart from electrostatic factors are applied to the surface 211 

species, i.e. in the mass law equations for adsorption reactions only activity coefficients for 212 

dissolved species and activities of water are considered in the calculation of the ionic strength 213 

dependence of stability constants for surface species. The activity coefficients were separately 214 

calculated using the Pitzer formalism and available self-consistent databases, as described in 215 

detail elsewhere 
16

. The resulting activity coefficients were then used to calculate conditional 216 

stability constants at infinite dilution, or corrections factors to stability constants that were to be 217 

fitted. Fitting thus yields the stability constants at infinite dilution.   218 

 219 

3. Results 220 

 221 

3.1 Surface titrations and zeta potentials 222 

 223 



Surface titration results are presented as symbols in Figure 1 in terms of surface charge (in 224 

mC·m
-2

) vs pHc. The charging curves agree with some previously published studies 
29

, but only 225 

differ from the bulk of the literature data for quartz and silica, which show the deprotonation step 226 

at high pH. Our data are surprising in the sense that a distinct two step behaviour is observed. 227 

Usually such stepwise deprotonation is overshadowed by electrostatics and/or site distributions 228 
30

. Ong et al. 
29

 used second harmonic generation to study the interface between fused silica 229 

and sodium chloride solutions as a function of pH. They found a two step-behaviour and 230 

reported log   values of -4.5 and -8.5 in 0.5 M NaCl and a ratio of 1:4 between the two types of 231 

sites. There are various independent studies that report the existence of two distinct sites on 232 

various silica samples 
24,31–35

. Our proposed model involves two sites, as does the Ong et al. 233 

model, and Figure 1 and Figure 3 show the fits to the surface titrations and the zeta-potentials. 234 

Solid lines in Figure 1 represent the best fit results. The SCM parameters used in the fitting are 235 

detailed in Table 2. The site densities were constrained according to Ong et al. assuming a total 236 

site density of 4.6 sites/nm
2
 
18

.  237 

In the acidic pH range (pHc<6), for the same pHc value the negative surface charge increases 238 

when increasing the ionic strength of the system. A further decrease in the negative charge was 239 

observed in the basic pH range (pHc>7). This behaviour can be described by the speciation 240 

scheme presented in Figure 4. Deprotonated species are predominant in both, acidic and basic, 241 

pHc conditions. We will refer to the more acidic site as the hydrophobic site x. Counter-ions (Na
+
 242 

and Cl
-
) adsorption has also been considered (Table 2).  243 

The pKa values in our modelling have been placed close to those obtained by Ong et al. within a 244 

Diffuse Layer model for data at 0.5M NaCl 
29

. The site labelled y is the “usual” silanol site with 245 

an assigned pK value of about 8.5 and sodium association is also in the range typically reported 246 
13,17,29

. The “hydrophobic” site involves a pK value fixed at about 4.0. Overall, the two pK values 247 

for deprotonation extracted from our experimental data (i.e. 4.0 and 8.5) agree with independent 248 

data reported in the literature, i.e. 2-3 and 9-10 from 
35

, 4.5 and 8.5 from 
29

, 5.5 and 9.0 from 
31

. 249 

To be able to model the data we had to involve rather strong counter-ion association with the 250 

hydrophobic site. There have been recent reports on ion-specific effects on fused silica in the 251 

acidic range
36

, which may be taken as support for our findings. A more direct indication from 252 

AFM measurements where the two sites were also identified on one sample shows that cation-253 

specificity is inversed 
37

 and that the more acidic site is indeed showing the sequence expected 254 

for a hydrophobic surface 
38

.  255 



Table 2. Parameters and reactions used to model the amphoteric behaviour of quartz surface 256 

with an electrostatic SCM model at infinite dilution. In italics fitted parameters. 257 

Reaction log K0 

≡SixOH + H
+
 ↔ ≡SixOH2

+
 -1.3

a
 

≡SixOH ↔ ≡SixO
- 
+ H

+
  -4.0

b
 

≡SiyOH ↔ ≡SiyO
- 
+ H

+
  -8.5

c
 

Parameter  

Site x (sites·nm
-2

) 1.0 

Site y (sites·nm
-2

) 3.7 

Capacitance (F·m
-2

) 2.0 

Specific surface area (m
2
·g

-1
) 6.5 

Shear plane distance parameter
d
 0.03 

a. Counter ion (Cl
-
) constant (log K) for ≡SixOH is 1.9; b. Counter ion (Na

+
) constant (log K) for 258 

≡SixOH was 5.4; c. Counter ion (Na
+
) constant (log K) for ≡SiyOH is 1.5. d. ratio between shear-259 

plane distance and Debye-length; a value close to zero suggests that the model inherent shear-260 

plane is close to the (theoretical) onset of the diffuse layer.   261 

 262 



  

  

Figure 1. Surface charge density as a function of pHc for MINUSIL quartz particles at different 263 

ionic strengths (0.1-5M) in NaCl medium. Symbols stand for the experimental results, while lines 264 

are the best fit model using Table 2 parameters and Pitzer activity coefficients for aqueous 265 

solution speciation. 266 

 267 

A comparison between surface charge as a function of pHc (concentration scale) respectively 268 

pH (activity scale, here Pitzer pH scale) is presented in Figure 2a and Figure 2b respectively.  269 

Figure 2 highlights that the mode of presenting the data (either on the concentration or on the 270 

activity scale) has some repercussion on how to classify the observations. On the concentration 271 

scale, there is strong effect of salt on the hydrophobic site, while there is no effect for the 272 

hydrophilic site at salt contents of 1M and above (Figure 2a). On the Pitzer-activity scale, hardly 273 

any effect of salt is observed on the hydrophobic site, while the hydrophilic site clearly follows 274 

the trend found in comparable studies at salt contents below 1M. The choice of the scales also 275 

has repercussions on how to classify specific adsorption as will be discussed later. 276 



 277 

  

Figure 2. Calculated surface charge density as a function of a) pHc and b) pH (Pitzer pH scale) 278 

for MINUSIL quartz particles at different ionic strengths (0.1-5M) in NaCl medium. Table 2 279 

parameters and Pitzer activity coefficients for aqueous solution speciation have been used in 280 

these calculations. 281 

 282 

  

Figure 3. a) Zeta potentials as a function of pHc for two different NaCl concentrations, 0.1 and 283 

0.13M. Symbols stand for experimental data while lines are the predictions by the SCM detailed 284 

in Table 2. b) Diffuse Layer potentials as a function of pHc for the different NaCl concentrations, 285 

from 0.1 to 5M, studied in the present work.  286 

 287 

Figure 3 shows calculated interfacial potentials based on the present model. Figure 3a presents 288 

the measured zeta-potentials for the sample at approximately 0.1M NaCl with the concomitant 289 

model calculations, showing a rather good fit. Figure 3b shows the model inherent diffuse layer 290 

potentials for the various NaCl concentrations used in the titrations. Due to the strong ion-291 



pairing there is a strong drop in the interfacial potential up to the head end of the diffuse layer. 292 

The diffuse layer potentials become very low for I ≥ 1M NaCl. This justifies the application of the 293 

conventional diffuse layer, mainly because the diffuse layer potential becomes insignificant. The 294 

zeta-potentials can be described by a shear-plane distance parameter close to zero, which 295 

means the shear plane is nearly identical with the head end of the diffuse layer.  296 

Figure 4 shows the surface speciation according to the model for 0.1M (Figure 4 - a) and 5M 297 

(Figure 4 - b). The high salt content clearly drives the ion-pairs with sodium to control the 298 

speciation on the hydrophilic site. 299 

 300 

  

Figure 4. Silica surface speciation as a function of pHc according with the model presented in 301 

Table 2, at a) 0.1M NaCl and b) 5.0M NaCl.  302 

 303 

3.2 Aqueous speciation of Eu  304 

 305 

Aqueous Eu speciation over a wide range of pHc is shown in Figure 5 for the different NaCl 306 

concentrations. Increasing the ionic strength has not an important effect under acid conditions. 307 

The two aqueous species, EuCl
2+

 and EuCl2
+
, are negligible even at Cl concentrations as high 308 

as 5M (not shown in the Figure). In the basic pH range (pHc>8), within our speciation scheme, 309 

minor differences can be observed with the increase of ionic strength. As pointed out by 310 

Schnurr et al. 
16

, the Pitzer parameters for the chloride complexes in NaCl systems are not 311 

complete, but the resulting effects on europium speciation are minor. 312 

 313 



 314 

Figure 5. Aqueous speciation of Eu vs. pHc based on the available thermodynamic parameters. 315 

Fraction of Eu species at different NaCl concentrations for [Eu]T=1·10
-7

M. Thermodynamic data 316 

are reported in Table 1. 317 

A more interesting feature in Figure 5 is that with increasing salt content, the model predicts a 318 

consistent increase in the stability of the first hydrolysis species over the other species. Clearly 319 

this species increases from below 50 % (at 0.1M) to almost 70 % (at 5M) of the total Eu in 320 

solution at 5M NaCl. The first hydrolysis species has often been considered relevant for the 321 

onset of adsorption 
39

, and linear free energy relationships are often used to relate surface 322 

complexation constants with the first hydrolysis constant in the case of cations. This would 323 

suggest stronger adsorption of Eu in the 0.1M NaCl system at a given pHc compared to the 324 

higher ionic strengths.  325 



 326 

3.3 Adsorption of Eu onto MINUSIL particles 327 

 328 

Experimentally obtained Eu sorption edges are presented in Figure 6 (symbols) as fractional 329 

uptake vs pHc in the various NaCl media (from 0.1 to 5 M). A shift in the sorption edges to 330 

higher pHc is found on the log proton concentration (pHc) scale with increasing ionic strength. In 331 

the four studied ionic strengths Eu adsorption onto quartz starts at pHc4 and reaches almost 332 

95% at pHc6. At more basic conditions, nearly complete uptake is observed. As expected 333 

based on the aqueous speciation, enhanced adsorption is observed at the low pHc in 0.1M NaCl 334 

compared to the higher ionic strengths.  335 

The electrostatic SCM developed for simulating Eu uptake onto quartz by using the surface 336 

protonation model and the Eu aqueous speciation described above includes two bidentate 337 

surface complexes (Table 3). The stoichiometry was taken from Stumpf et al. 
17

 and the stability 338 

constants have been fitted to the basic (i.e. classical silanol) site. No adsorption on the 339 

hydrophobic site was considered. This agrees with the recently reported cation adsorption 340 

sequence 
37

. Charge Distribution (CD) is applied in the SCM and CD factors are optimized as 341 

well. Model results are shown as solid lines in Figure 6, and show very good agreement with the 342 

experimental results.  343 

Table 3. Parameters and reactions used to model Eu sorption onto quartz surface with an 344 

electrostatic SCM model at infinite dilution. The fitted parameters are given in italics. The charge 345 

distribution is given in terms of the charge of the Europium charge that is allocated to the 346 

surface plane. 347 

Reaction log K0 Δz0,Eu 

2(≡SiyOH)
 
+ Eu

3+
 ↔ 2(≡SiyO)HEu

2+
+ H

+
  -0.65 0.36 

2(≡SiyOH)
 
+ Eu

3+
 +H2O ↔ 2(≡SiyO)EuOH

+
+ 2H

+
 -10.02 0.02 

 348 

As pointed out above, in previous work 
17

 the same bidentate model in terms of stoichiometry 349 

was already used to describe Am(III) and Cm(III) sorption onto another quartz sample. The 350 

authors at the time confirmed the presence of at least two Eu surface complexes on the quartz 351 

surface by means of TRLFS measurements and the TRLFS also suggested the applied proton 352 

stoichiometry in going from the first to the second surface complex. Differences in the model 353 

concepts and parameters, e.g. the use of Pitzer instead of Davies for activity corrections, or in 354 

the model parameters, e.g. system capacitance, silica surface protonation, CD factors explain 355 

the observed discrepancies in model parameters between the study of Stumpf et al. and ours. 356 

Considering the CD-factors, the present results indicate a more outer-sphere-type surface 357 

complex formation for the same overall stoichiometry compared to Stumpf et al. 
17

. 358 

In a more recent work, Kar and Tomar 
13

 modelled Cm(III) sorption onto silica at 0.1M NaCl and 359 

reported the formation of two distinct monodentate surface complexes, ≡SiOCm
2+

 and 360 

≡SiOCm(OSi(OH)3)2, with log K of -2.53 and -7.94 respectively. These authors applied a Diffuse 361 



Layer Model (DLM) for describing the interfacial electrostatics of the system. The formation of 362 

the ternary aqueous species Cm-H2O-Si, ≡SixOCm(OSi(OH)3)2 as in the study Kar and Tomar, 363 

was not pursued in the present work, since no Pitzer parameters are available for the silica 364 

system. It has already been mentioned that Stumpf et al. reported no effect on the uptake and 365 

the spectroscopic results when adding dissolved silica to the Cm/quartz particle systems. Only 366 

when the silica concentration was raised to concentrations as high as 10 mM a significant effect 367 

was observed with quartz single crystals. The observations by Stumpf et al. are not necessarily 368 

proof for the absence of ternary silicato surface complexes in our study. Yet, the shift in the 369 

TRLFS spectra from species 1 to 2 is very similar to that observed for other oxide systems, 370 

where no ternary surface complexes were suspected 
40

.  371 

 372 

  

  

Figure 6. Fractional uptake of Eu ([Eu]T=1·10
-7

M), S/L 10g/L, on MINUSIL as a function of pHc 373 

and at different NaCl concentrations. Experimental data are given by symbols. Solid lines are 374 

calculations using the sub-system parameters (Tables 1 and 2) and the SCM summarized in 375 

Table 3 involving Pitzer activity coefficients for aqueous solution speciation. Dashed lines 376 



represent the calculated contribution of 2(≡SiyO)HEu
2+

 while dashed dotted lines stand for the 377 

contribution of 2(≡SiyO)EuOH
2+

 according to our SCM results. 378 

Overall, it is concluded that the proposed model is able to describe the surface charge and Eu-379 

uptake data up to 5M NaCl concentrations. As in the case of the titrations, Figure 7 highlights 380 

that the mode of presenting the data has some repercussion on how to classify the 381 

observations. On the concentration scale, a clear shift in the sorption edges to higher pHc is 382 

found with increasing ionic strength (Figure 7a). On the Pitzer-activity scale, such a trend 383 

cannot be clearly observed for salt contents of 1M and above (Figure 7b).  384 

 385 

  

Figure 7. Predicted sorption edges for Eu ([Eu]T=1·10
-7

M), S/L 10g/L, on MINUSIL as a function 386 

of a) pHc and b) pH (Pitzer pH scale) at different NaCl concentrations. Predictions obtained with 387 

Table 2 - Table 3 parameters and Pitzer activity coefficients for aqueous solution speciation. 388 

 389 

4. Conclusions 390 

 391 

In the present study, the amphoteric quartz surface behaviour as well as the adsorption of 392 

Eu(III) onto quartz surface were reported up to high ionic strengths of 5M in NaCl. An 393 

electrostatic surface complexation model has been designed to describe the acid-base, zeta-394 

potential and Eu(III) uptake data in a comprehensive, self-consistent way We obtained the 395 

following results: 396 

 397 

-The titration of the quartz sample showed the clear presence of two sites from dilute to 398 

concentrated conditions.  399 

-The salinity effects on quartz surface charge density can be described in different ways 400 

depending on the pH scale chosen. On the concentration scale a major effect occurs at acid pH 401 

conditions, while on the activity scale, the effect at low pH is absent.  402 



-The presence of the two sites and their concomitant surface protonation within the model 403 

developed in this work is in fair agreement with previously published models covering lower 404 

ionic strength conditions for quartz showing similar behaviour. 405 

-Within the model, at high ionic strength (I>1M), the surface potential is strongly screened by 406 

ion-pair formation and the diffuse layer potential is negligibly low, which justifies the extension of 407 

the standard electrostatic model to the highly saline conditions. 408 

-Eu(III) sorption edges onto quartz shift towards higher pHc with increasing ionic strength, as 409 

expected based on the Eu(III) hydrolysis behaviour. As for the charging data, the chosen pH 410 

scale affects the observation or not of an ionic strength effect on Eu(III) uptake.  411 

-A charge distribution SCM has been fitted to the Eu(III) adsorption data involving two bidentate 412 

Eu surface species. 413 

-The proposed new model is in agreement with previous studies at low ionic strength conditions 414 
17

, but the derived log K values differ somewhat probably related to the CD-factors and related 415 

to the presence of the hydrophobic site.  416 

-Coupling a Pitzer approach for the aqueous phase to a conventional surface complexation 417 

model is fairly successful in describing the experimental data even when an electrostatic model 418 

is used.  419 

-Trivalent lanthanide uptake will be of significant importance even in solutions of high ionic 420 

strengths.  421 

-The model approach applied in this work can contribute to the Safety Case for nuclear waste 422 

repositories in formations potentially involving high salt content. 423 

 424 
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