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Introduction

In this paper, we present a simple calculus for pseudodi¤erential operators on an arbitrary smooth manifold M . This symbolic calculus has two characters: First, it is intrinsic, this means that it doesn't depend on the di¤erent coordinate systems of M . Secondly, it works well in the case where we use the classes of Hörmander S m ; with the condition 0 max( ; 1=3) < 1, whereas the usual calculus based on the coordinate systems which we …nd in the classic books as [H], [Ta] and [Tr], works well only under the condition 1 < 1 (which implies 1=2 < 1). The language of linear connections has a fundamental role in the construction of the symbolic calculus for pseudodi¤erential operators on manifolds, for this reason, I used it in this paper.

H. Widom discovered in the seventies that the use of linear connections to de…ne the intrinsic symbols of pseudodi¤erential operators is essential. By using these mathematical beings he constructed a version of symbolic calculus on the manifolds [W], but he didn't utilize a global phase function in his construction and was satis…ed by a local utilization of the standard phase function. On the contrary, Safarov gave a complete intrinsic symbolic calculus in its article [Sa], he used global phase functions and presented the distribution kernels of the operators as oscillatory integrals de…ned in open neighborhoods of the diagonal M . 0 2000 Mathematics Subject Classi…cation: 47G30, 53B05, 53C05, 58J40 0 Key words: Densities, density tensors, linear connections, pseudodi¤erential operators, intrinsic symbols. 1 In this paper I followed the footsteps of Safarov which treated the case where the symbols of operators are functions de…ned on the cotangent bundle T M . I treated here the case where these symbols are "densities over M " de…ned on T M , and to make this I generalized some operations of derivation de…ned on the sets of functions and tensors to the case of densities and density tensors.

To construct an intrinsic symbolic calculus on the manifold M , we have need of that which we call the phase functions of pseudodi¤erential type. These classes of the functions are generally de…ned on sets of the form W = f(y; x; ) : (x; y) 2 W; 2 T x M g where W

M M are open neighborhoods of the diagonal M , and since long time, it became clear that these classes are bound to the family of the connections on M . In fact, for all connection on M , there is a family of the phase functions associated to this connection. For example, the phase function which we …nd in the theory of pseudodi¤erential operators in R n , is the phase function associated with the Levi-Civita connection on R n .

The symbolic calculus on the open sets of R n appear simple because it is written in the standard Cartesian system which is de…ned in all R n . All normal coordinate systems corresponding to the Levi-Civita connection on R n , are bound linearly to this system. But this is not the case when we deal with the pseudodi¤erential operators on arbitrary manifolds. Because in the last case, a favorite connection doesn't exist, and the normal coordinate systems corresponding to the family of the connections on M , are not universal and depend on the points of M . I signal that the last property appear in R n if we replace the Levi-Civita connection by a non- ‡at connection in the survey of the symbolic calculus.

Most results exposed in this article are natural generalizations of those exposed in [Sa], and I added here the two results 5.2 and 6.7 which we can consider as natural generalizations of the classic theorems 3.1 and 4.2 in the book [Sh].

In this paper, I used some symbols and amplitudes of Hörmander's classes corresponding to the family of the connections on M, and it is clear that one can generalize easily this work to contain other classes of symbols and amplitudes.

The section 2 contains elementary results about the properties of the connections that we can …nd in any book dedicated to the survey of the connections as [KN]. But these results are very important to comprehend the language used here in the determination of the symbols, for this reason I was obliged to present them in this article.

Finally, concerning the operators and the symbols, I utilized the same notations of the classic book [H], and concerning the densities, the tensors and the density tensors, I used the most usable notations in the books of the di¤erential geometry as [KN], [P], [Sp], [Ste] and [Str].

Recalls of some properties of connections on manifolds

1. Let M be a smooth n-dimensional manifold and be an a¢ ne connection on M . For (x; y) 2 M M , we denote by x;y : [0; 1] ! M the geodesic (of course if it exists) joining x and y such that x;y (0) = x and x;y (1) = y. This geodesic is uniquely determined as soon as it exists. We put V = (x; y) 2 M M : x;y exists .

The theory of ODE assures that V is an open neighbourhood of the diagonal

M = f(x; x) : x 2 M g in M M
. Also, we can see easily that V is symmetric with respect to M .

Let ' = (x 1 ; : : : ; x n ) be a coordinate system de…ned in U M . Then W = (x; y) 2 U U \ V : x;y ([0; 1]) U is an open set in U U and in the case where '(U ) is convex in R n , we can use the Taylor formula to prove that

_ k x;y (0) = y k x k + 1 2 X ij k ij (x)(y i x i )(y j x j ) + X 3 j j N P k (x)(y x) +(N + 1) 1 Z 0 (1 s) N X j j=N +1
(y x) P k (x + s(y x))ds;

(2.1) for all (x; y) 2 W , where

x k = x k (x), y k = x k (y), _ x;y (0) = (x k x;y ) 0 (0), k ij
are the Christo¤el symbols of , and P k are some polynomials in the Christo¤el symbols and their derivatives. If (x i ) is a normal coordinate system with origin x, then _ k x;y (0) = _ k x;y (t) = y k x k for all y 2 V (x) = fz 2 M : (x; z) 2 V g and t 2 [0; 1]. Therefore we have P k (x) = 0, 8k,8 6 = 0, in this system. In particular, k ij (x) + k ji (x) = 0 in any normal coordinate system with origin x.

Let (x;

) 2 T M . The horizontal lift of the vector v 2 T x M at the point (x; ) is given by

r v (x; ) = X j v j @ x j (x; ) + X ijk k ij (x)v i k @ @ j (x; )
where (x 1 ; : : : ; x n ; 1 ; : : : ; n ) is a coordinate system de…ned in a neighbourhood of (x; ), v = P j v j @ @x j (x) and = P j j dx j (x). If X is a vector …eld on M , then its horizontal lift in T M is given by

r X (x; ) = r X(x) (x; ); (x; ) 2 T M .
The horizontal distribution and the vertical distribution are de…ned by

HT M = [ (x; )2T M f(x; )g H (x; ) T M and V T M = [ (x; )2T M f(x; )g V (x; ) T M
respectively, where H (x; ) T M = fr v (x; ) : v 2 T x M g, V (x; ) T M = ker T (x; ) P and P : T M ! M is the canonical surjection.

3. Let (x; y) 2 V . We denote here by (x; y) the parallel displacement from T x M to T y M along the geodesic x;y . Obviously, (y; x) = (x; y) 1 , and if the points x, y and z belong to the same geodesic, then (x; z) = (y; z) (x; y). Also, the theory of ODE assures that the map is of class C 1 from V to the bundle S

(x;y)2M M f(x; y)g Hom(T x M; T y M ).
Let x 2 M and let (y k ) be a normal coordinate system with origin x. Let us denote by x (y) the matrix of (x; y) in this system. Based on the de…nition of the parallel displacement, we get

X k (y k x k )@ y k ( x ) i j (y) = X pq (y p x p ) q pj (y)( x ) i q (y); y 2 V (x) (2.2)
where x k = y k (x) and y k = y k (y). And from here, we deduce that

@ y k ( x ) i j (x) = i kj (x) = 1 2 T i kj (x), @ y `@y k ( x ) i j (x) = 1 2 @ y k i `j (x) + @ y ` i kj (x) + X p p kj (x) i `p(x) + X p p `j (x) i kp (x) ! where n T i kj (x)
o is the torsion tensor of . So, if is symmetric, then we obtain

@ y k ( x ) i j (x) = 0, (2.3) @ y `@y k ( x ) i j (x) = 1 2 (@ y k i `j (x) + @ y ` i kj (x)) = 1 6 (R i kj`( x) + R i `jk (x)) (2.4) where n R i kj`( x)
o is the curvature tensor of . If M is a pseudo-Riemannian manifold with metric tensor fg ij g and is the Levi-Civita connection on M , then we have

t x (y) G 1 (y) x (y) = G 1 (x); y 2 V (x)
where G(y) = (g ij (y)). And in this case, (2.3) and (2.4) immediately implies

@ y k G(x) = @ y k G 1 (x) = 0, @ y `@y k g ij (x) = 1 3 (R ikj`( x) + R i`jk (x)) (2.5)
where R ijk`= P p g ip R p jk`.

Densities and Density Tensors

1. Densities. Let M be a smooth n-dimensional manifold and be a real number. By de…nition, a smooth density on M of order is a C 1 section of the complex line bundle (M ). But I prefer here to identify each density with its components, in this way, one says that u : M ! C is a density on M of order if it veri…es the following condition:

ũ(x) = det @x i @ xj (x) u(x); x 2 U
where (x i ) and (x i ) are two coordinate systems de…ned on U M , and u(x) and ũ(x) are the values of u in these two systems. We often denote by C 1 (M ; ) and C 1 c (M ; ) the spaces of smooth -densities and smooth -densities with compact supports respectively.

Also, one says that u : T M ! C is a density of order on M if we have

ũ(x; ) = det @x i @ xj (x) u(x; ); (x; ) 2 T U
where (x i ) and (x i ) are always two coordinate systems de…ned on U M , and u(x; ) and ũ(x; ) are the values of u in these two systems. We denote here by C 1 (T M ; ) the spaces of smooth densities u : T M ! C of order , and it is necessary to note that

C 1 (T M ; ) = C 1 (T M ) C 1 (M ; ) 6 = C 1 (T M ; ) C 1 (T M ).
Now, let M 1 ,..., M r be smooth manifolds, and let 1 ,..., r be real numbers. We say that u is a density of order ( 1 ; : : :

; r ) on M = M 1 M r if it veri…es the following ũ(x) = det @x i 1 @ xj 1 (x 1 ) ! 1 det @x i r @ xj r (x r ) r u(x); x = (x 1 ; : : : ; x r ) 2 U 1 U r M
where (x i `) and (x i `) are two coordinate systems de…ned on U ` M `(1 ` r), and u(x; ) and ũ(x; ) are the values of u in the two systems ((x i1 1 ) i1 ; : : : ; (x ir r ) ir ) and ((x i1 1 ) i1 ; : : : ; (x ir r ) ir ) respectively.We will denote by C 1 (M 1 M r ; 1;:::; r ) and C 1 c (M 1 M r ; 1;:::; r ) the spaces of smooth ( 1 ; : : : ; r )-densities and smooth ( 1 ; : : : ; r )-densities with compact supports respectively. Obviously, if

= 1 = = r then C 1 (M 1 M r ; 1;:::; r ) = C 1 (M 1 M r ; ) and C 1 c (M 1 M r ; 1;:::; r ) = C 1 c (M 1 M r ;
). Using the local charts, one can construct two appropriate topologies on the two spaces C 1 (M 1 M r ; 1;:::; r ) and C 1 c (M 1 M r ; 1;:::; r ) (See for example [CP]). We will denote here by D 0 (M 1 M r ; 1;:::; r ) the topological dual of the space C 1 c (M 1 M r ; 1 1;:::;1 r ). Let M be a smooth n-dimensional manifold and be an a¢ ne connection on M . We de…ne the density % as follows: %(x; y) = det (x; y); (x; y) 2 V where (x; y) is the parallel displacement from T x M to T y M along the geodesic x;y . The density %(x; y) (2 C 1 (V ;

1;1 )) depends on and will play a fundamental role in the following. Now, let (y k ) be a normal coordinate system with origin x. From (2.2), it follows that

X k (y k x k )@ y k %(x; y) = X k`( y k x k ) k`( y)%(x; y); y 2 V (x)
where x k = y k (x) and y k = y k (y). And from this, we obtain

X k (y k x k )@ y k %(x; y) + X k`( y k x k )(y ` x `)@ y `@y k %(x; y) = X kp (y k x k ) p kp (y)%(x; y) + X k`( y k x k )(y ` x `) X p @ y k p `p(y) + X pq p kp (y) q kq (y) ! %(x; y), y 2 V (x). (3.1) Therefore @ y k %(x; y) =y=x = X p p kp (x) = 1 2 X p T p kp (x), (3.2) 
@ y `@y k %(x; y) =y=x = 1 2 X p (@ y k p `p(x) + @ y ` p kp (x)) + 1 2 X pq p kp (x) q `q (x).
So, if is symmetric, then we have

@ y k %(x; y) =y=x = 0, (3.3) @ y `@y k %(x; y) =y=x = 1 2 X p (@ y k p `p(x) + @ y ` p kp (x)) = 1 6 (R k`( x) + R `k(x)) (3.4) where fR k`g is the Ricci tensor of de…ned by R k`= P j R j kj`.
Let's suppose that M is a pseudo-Riemannian manifold and is the Levi-Civita connection on M . Then we have

%(x; y) = g 1 (x)g(y); (x; y) 2 V
where g is the canonical density of M . In this case, (3.3) and (3.4) become as follows @ y k g(y) =y=x = 0, @ y `@y k g(y

) =y=x = 1 3 R k`( x)g(x), (3.5)
since the tensor fR k`g is symmetric.

2. Density Tensors. We denote by T p q (M ; ) the space of the C 1 sections of T p q (M ) (M ). The elements of this space are called the density tensors of order and type (p; q) on M . And to simplify this exposition, I will identify each density tensor with its components and this in every local chart of M .

Let be a connection on M . We want to prolong the action of to the spaces of the density tensors. First, let X be a vector …eld on M and (x i ) be a coordinate system de…ned on U M . If T 2 T p q (M ; ), we put D X (x)T i1;:::;ip j1;:::;jq (x) = X j X j (x)@ x j T i1;:::;ip j1;:::;jq (x)

+ X ji 0 1 i1 ji 0 1 (x)X j (x)T i 0 1 ;:::;ip j1;:::;jq (x) + + X ji 0 p ip ji 0 p (x)X j (x)T
i1;i2;:::;i 0 p j1;:::;jq (x)

X jj 0 1 j 0 1 jj1 (x)X j (x)T
i1;:::;ip j 0 1 ;:::;jq (x)

X jj 0 q j 0 q jjq (x)X j (x)T
i1;:::;i 0 p j1;j2;:::;j 0 q (x); x 2 U where T i1;:::;ip j1;:::;jq (x) are the components of T with respect to (x i ) and

X = P j X j @ @x j in U . We know that if = 0, then D X T = n D X (x)T i1;:::;ip j1;:::;jq (x)
o is a tensor of the type (p; q) on M which is called the covariant derivative of T with respect to X. If 2 R, we de…ne two density tensors D X T and Ð X T as follows: in any coordinate system (x i ) (de…ned on U M ), the components of D X T and Ð X T are given by the relations i1;:::;ip j1;:::;jq (y) =y=x where y = (y i ) is the normal coordinate system with origin x 2 U associated to (x i ). The two density tensors D X T and Ð X T are called the covariant derivatives of T with respect to X, and we can notice easily that if = 0, then these two derivatives coincide with the usual covariant derivative of T .

Let T 2 T p q (M ; ). The two density tensors with the components belong to the space T p q+r (M ; ) and are called the r-th covariant di¤erentials of T (here (y i ) is the normal coordinate system with origin at the point x associated to the system used in this point, and D k (y) =D @=@y k (y)). The symmetrizations of these density tensors with respect to k 1 , ..., k r are called the r-th symmetric covariant di¤erentials of T , and we will denote them respectively by D r T = n D T . We now give the following proposition which its simple proof is based on (3.1) and (3.2). Proposition 3.1. Let T 2 T p q (M ; ). If is symmetric, then D X T =Ð X T for all vector …eld X on M , and if is ‡at (T 0;R 0), then D r T =Ð r T and D r 0 (D r T ) =D r (D r 0 T ) =D r+r 0 T for all (r; r 0 ) 2 N 2 .

Let's suppose that M is a pseudo-Riemannian manifold and is the Levi-Civita connection on M . In this case if T 2 T p q (M ; ), then F = g T 2 T p q (M ), and we can verify easily that D X T = Ð X T = g D X F and D r T = g D r F for all vector …eld X on M and all r 2 N.

3. Horizontal Di¤erentials. Let a(x; ) 2 C 1 (T M; ) and let (x i ) be a coordinate system de…ned on U M . We put d a(x; ) = @ y (% (x; y)a(y; (x; y) )) =y=x , r a(x; ) = @ y (a(y; (x; y) )) =y=x where y = (y i ) is the normal coordinate system with origin x 2 U associated to the system (x i ) and 2 N n . If p 2 N, the two density tensors fd a(x; )g j j=p and fr a(x; )g j j=p will be called the p-th symmetric horizontal di¤erentials of a. The following proposition justi…es the use of this terminology.

Proposition 3.2. Let a(x; ) 2 C 1 (T M; ) and p 2 N. Then the density tensor fd a(x; )g j j=p is the symmetrization of the density tensor with the components r

(x) i1 r (x)
ip (% (x; y)a(y; )) =(y; )=(x; ) , and the tensor fr a(x; )g j j=p is the symmetrization of the density tensor n r , where y = (y i ) is the normal coordinate system with origin at the point x associated to the system used in this point and r

(x) k = r @=@y k .
Proof. Let x 2 M and let y = (y i ) be a normal coordinate system with origin x. From (2.2) we have

X j j=p p! ! (y x) @ y (a(y; (x; y) )) = X i1;:::;ip (y i1 x i1 ) (y ip x ip )r (x) i1 r (x) ip a(y; (x; y) ); y 2 V (x),
where y i (x) = x i and y i (y) = y i . Therefore

X j j=p p! ! (y x) @ y (a(y; (x; y) )) =y=x = X i1;:::;ip (y i1 x i1 ) (y ip x ip )r (x) i1 r (x) ip a(x; ) + O(jy xj p+1 ).
Putting y i = x i + "X i and passing to the limit as " ! 0, we obtain

X j j=p p! ! X @ y (a(y; (x; y) )) =y=x = X i1;:::;ip X i1 X ip r (x) i1 r (x) ip a(x; ):
This equality immediately gives the proposition.

Remark 3.3. Let a(x; ) 2 C 1 (T M; ). In any coordinate system (x i ) de…ned on U M we have

r k a(x; ) = 2 a(x; ) X i ( i ik (x) + i ki (x)) + r x k a(x; ), d k a(x; ) = 2 a(x; ) X i T i ki (x) + r k a(x; ) = a(x; ) X i i ki (x) + r x k a(x; ),
where (x; ) 2 T U and r x k = r @=@x k . From this we obtain

(r k r ` r `rk )a(x; ) = X ij R i jk`( x) i @ j a(x; ) a(x; ) X i R i ik`( x) + 1 2 X i D k T i i`( x) 1 2 X i D `T i ik (x) + 1 2 X ip T p k`( x)T i ip (x) + 1 4 X ip T i kp (x)T p `i(x)
1 4

X ip T p ki (x)T i `p(x) 1 
A ;

(d k d ` d `dk )a(x; ) = X ij R i jk`( x) i @ j a(x; ) a(x; ) X i R i ik`( x) 1 4 X ip T i kp (x)T p `i(x) + 1 4 X ip T p ki (x)T i `p(x) 1 A ; (d k r ` r `dk )a(x; ) = X ij R i jk`( x) i @ j a(x; ) a(x; ) X i R i ik`( x) + 1 2 X i D k T i i`( x) + 1 4 X ip T p k`( x)T i ip (x) 1 A ; (@ k r ` r `@ k )a(x; ) = (@ k d ` d `@ k )a(x; ) = 1 2 X j
T k `j (x)@ j a(x; ):

Remark 3.4. Let a(x; ) 2 C 1 (T M; ). By Proposition 3.2 we deduct that if is ‡at, then d a(x; ) = r a(x; ) = @ y a(y; ) =(y; )=(x; ) ; 8 . So r r a(x; ) = r r a(x; ) = r + a(x; ); 8 ; 8 ; @ r a(x; ) = r @ a(x; ) = @ @ y a(y; ) =(y; )=(x; ) ; 8 ; 8 :

In view of Remark 3.3 these equalities are not true in the general case.

Remark 3.5. It is clear that if a(x; ) 2 C 1 (T M ), then d a(x; ) = r a(x; ); 8 ,
and in this case, a is constant along any horizontal curve in T M if and only if all its symmetric horizontal di¤erentials are equal to zero.

Remark 3.6. Let T 2 T p 0 (M ; ). We put a(x; ) = X i1;:::;ip

T i1;:::;ip (x) i1 ip = X j j=p p! ! T (x)
where fT g j j=p is the symmetrization of the density tensor T . We can verify easily that if (x i ) is a coordinate system de…ned on U M , then

r x k a(x; ) = X i1;:::;ip D k (x)T i1;:::;ip (x) i1 ip = X j j=p p! ! D k (x)T (x) ; (x; ) 2 T U .
From this equality and Proposition 3.2 it follows that

d a(x; ) = X j j=p p! ! D T (x) ; (x; ) 2 T U , r a(x; ) = X j j=p p! ! Ð T (x) ; (x; ) 2 T U ,
where 2 N n . Also, we deduct that if X is a vector …eld on M , then r X (y; )(% (x; y)a(y;

)) =(y; )=(x; ) = X j j=p p! ! D X T (x) ; (x; ) 2 T U; r X (y; )a(y; ) =(y; )=(x; ) = X j j=p p! ! Ð X T (x) ; (x; ) 2 T U;
where y = (y i ) is the normal coordinate system with origin x associated to the system (x i ).

Some Classes of Symbols and Amplitudes

1. Let M be a smooth n-dimensional manifold, and let m, and be real numbers (0 , 1). The classic class of symbols S m ; (T M ; ) consists of densities a(x; ) 2 C 1 (T M ; ) such that in any coordinate system (x i ) de…ned on U M for all compact set K U and all ( ; ) 2 N n N n @ @ x a(x; ) const K; ; h i m+ j j j j x ; 8(x; ) 2 T K;

where h i x = q 1 + 2 1 + + 2 n ; = P j j dx j (x).
Also, if N is another smooth n 0 -dimensional manifold, the classic class of amplitudes S m ; (N T M ; ; ) consists of densities a(y; x; ) 2 C 1 (N T M ; ; ) such that in any coordinate systems (x i ) and (y i ) de…ned (respectively) on U M and W N for all compact set K 1 K 2 U W and all ( ; ; ) 2 N n N n N n 0 @ y @ @ x a(y; x; ) const K1;K2; ; ; h i m+ (j j+j j) j j x ; (x; ) 2 T K 1 ; y 2 K 2 :

We signal that the properties of the classes S m ; are widely-known and we can …nd them in any book dedicated to the survey of the pseudodi¤erential operators.

2. M is always a smooth n-dimensional manifold. Let be a connection on M and let m, and be real numbers (0 , 1). The class of symbols S m ; (T M ; ; ) consists of densities a(x; ) 2 C 1 (T M ; ) such that in any coordinate system (x i ) de…ned on U M for all compact set K U and all 2 N n and (i 1 ; : : : ; i p ) @ r x i 1 r x ip a(x; ) const K; ;i1;:::;ip h i m+ p j j x ; 8(x; ) 2 T K where r x i = r @=@x i . Safarov introduced these classes in his article [Sa].

If N is another smooth n 0 -dimensional manifold, the class of amplitudes S m ; (N T M ; ; ; ) consists of densities a(y; x; ) 2 C 1 (N T M ; ; ) such that in any coordinate systems (x i ) and (y i ) de…ned (respectively) on U M and W N for all compact set K 1 K 2 U W and all ( ; ) 2 N n N n 0 and (i 1 ; : : : ; i p ) @ y @ r x i 1 r x ip a(y; x; ) const K1;K2; ; ;i1;:::;ip h i

m+ (j j+p) j j x ; (x; ) 2 T K 1 ; y 2 K 2 : (4.1)
For the sake of simplicity we will designate by S m ; ( ; ; ) the space S m ; (N T M ; ; ; ) and at the same time the space of density tensors T 2 T p q (N T M ; ; ) (p; q 2 N) which all their components verify (4.1).

Let (N T M ; ;0 ; ); where X 1 ; : : : ; X p are vector …elds on M . By using the partitions of unity on M , we can prove this result: If a j 2 S mj ; ( ; ) with a j ! 1 as j ! +1, then there exists a density tensor a 2 S m ; ( ; ), m = max m j , such that a ( ; ). In particular, we have fd a(x; )g j j=p ; fr a(x; )g j j=p 2 S m+p ; ( ; ); 8p:

Proof. It su¢ ces to see that, in any coordinate system (x i ) de…ned on U M , we have

r (x) i1 r (x) ip a(y; ) =(y; )=(x; ) = 0 (x)a(x; ) + X i i (x)r x i a(x; ) + X i1;i2 i1;i2 (x)r x i 1 r x i 2 a(x; ) + + X
i1;:::;ip i1;:::;ip (x)

r x i 1 r x ip a(x; ); (x; ) 2 T U (4.2)
where 0 , i , i1;i2 ,..., i1;:::;ip are functions of class C 1 in U .

Remark 4.2. Let a(x; ) 2 S m ; (T M ; ; ). From the previous proposition, it follows that if X 1 ; :::; X p are vector …elds on M , then (V ; ; ); where x = (x i ) is the normal coordinate system with origin x associated to the system (x i ), ỹ = (ỹ i ) is the normal coordinate system with origin y associated to the system (y i ) and (z t ; z s ) = ( x;y (t); x;y (s)).

Some Classes of Oscillatory Integrals

1. Phase Functions. Let M be an open set of R n . We know well that if A is a pseudodi¤erential operator on M , then its distribution kernel is given by an oscillatory integral of the form

K A (x; y) = Z e i(x y) a(x; y; ) † ; (x; y) 2 M M (5.1)
where a 2 S S m ; (M M R n ) and † = (2 ) n d . But when M is a general manifold, the writing of the pseudodi¤erential kernels as in (5.1) is not possible except in the local charts of M or in small neighborhoods of the diagonal M = f(x; x) : x 2 M g. We study here some oscillatory integrals which we can consider pseudodi¤erential kernels, and to make this, I need a class of the phase functions. We signal that the families of the phase functions of pseudodi¤erential type bind to the family of the connections on M ; in fact, for all connection on M , there is a family of the phase functions associated to this connection. For example, the phase function that we …nd in the theory of pseudodi¤erential operators in R n is the phase function associated with the Levi-Civita connection on R n .

Let M be a smooth manifold and a connection on M . The phase functions of pseudodi¤erential type associated to are

' t (x; ; y) = < _ x;y (t); >; (x; y) 2 V ; ; 2 T zt M
where t 2 [0; 1] and z t = x;y (t) (These functions are similar to the phase functions introduced by Drager [D]). Based on the de…nitions of the geodesic and the parallel displacement, we deduct easily that we have ' t (x; ; y) = ' 1 t (y; ; x); 8(x; y) 2 V; 8t 2 [0; 1] ; 8 2 T zt M; ' t (x; ; y) = ' s (x; (z t ; z s ) ; y); 8(x; y) 2 V; 8(t; s) 2 [0; 1] 2 ; 8 2 T zt M:

Let (x i ) be a coordinate system de…ned on U M . The formula (2.1) shows that for all point x 0 2 U , there exists an open neighborhood W U of

x 0 such that the expression of ' 0 with respect to the system (x i ) takes in W the following form

' 0 (x; ; y) = (x y) (A(x; y) ); 8(x; y) 2 W W; 8 2 T x M (5.2)
where A 2 C 1 (W W ; M n n (R)) and A(x; x) = I n ; det A(x; y) 6 = 0 for all (x; y) 2 W W .

Let y = (y i ) be a normal coordinate system with origin x 2 M . We have in this system ' t (x; ; y) = (x y) ; 8y 2 V (x); 8t 2 [0; 1] ; 8 2 T zt M: 2. Oscillatory Integrals. Let M be a smooth n-dimensional manifold and a connection on M . Let a(y; x; ) 2 S m ; (V ; ; ; ) and 2 R. Under the condition ( ; ) 2 ]0; 1] [0; 1[ we can consider the oscillatory integral

K(x; y) = % 1 (x; z t )% (x; z s )% 1 (x; y) Z e i' t (x; ;y) a(z s ; z t ; ) † ; (x; y) 2 V
like an element of the dual space D 0 (V ; + + ;1 ) where its action on the elements of the space D(V ; 1 ; ) is determined as follows < K(x; y); '(x; y) >= X jk`Z e i' t (x; ;y) % 1 (x; z t )% (x; z s )% 1 (x; y) a(z s ; z t ; )'(x; y) j (x) k (y) `(z t )dxdy †

where ' 2 D(V ; 1 ; ) and ( j ) is a partition of unity associated to some atlas of M . Let's notice that the integrals in this sum are usual oscillatoy integrals. So K(x; y) 2 C 1 (V M ; + + ;1 ) (this is the fundamental property which characterizes the pseudodi¤erential Kernels).

We signal that we can write the oscillatory integral K(x; y) as follows K(x; y) = % (x; z t )% 1 (z t ; y) Z e i' t (x; ;y) a 0 (z s ; z t ; ) † ; (x; y) 2 V with a 0 (y; x; ) = % (x; y)a(y; x; ). Because of that we are going to study all integrals K(x; y) under this form.

Proposition 5.1. Let a(y; x; ) 2 S m ; (V ; 0; ; ) and (t; s; r; ) 2 [0; 1] 3 R. Under the condition 0 < 1 we can write the oscillatory integral

K(x; y) = % (x; z t )% 1 (z t ; y) Z e i' t (x; ;y) a(z s ; z t ; ) † ; (x; y) 2 V as follows K(x; y) = % (x; z t )% 1 (z t ; y) Z e i' t (x; ;y) t (z t ; ) † + f t;s; (x; y) = % (x; z r )% 1 (z r ; y) Z e i' r (x; ;y) b(z s ; z r ; ) † + f t;s;r; (x; y)
where f t;s; ; f t;s;r; 2 C 1 (V ; + ;1 ), b(y; x; )

P (t r) j j ! D d
x a(y; x; ) and t (x; ) P (s t) j j ! D r y a(y; x; ) =y=x . In particular we have

K(x; y) = % (x; z s )% 1 (z s ; y) Z e i' s (x; ;y) s (z s ; ) † + C 1 (V ; + ;1 )
where s (x; )

P (t s) j j ! D d x a(y; x; ) =y=x .
Proof. Let us prove the …rst equality in the proposition. By using Taylor's formula, we immediately get the following expansion

a(y; x; ) = X j j N _ x;y ! r y a(y; x; ) =y=x + X j j=N +1 _ x;y ! a (y; x; ); (x; y) 2 V where N 2 N , a (y; x; ) = N +1 ! R 1 0 (1
) N @ y a(y; x; ) =y=z d and _ x;y = ( _ 1

x;y (0)) 1 ( _ n x;y (0)) n . So, the oscillatory integral K(x; y) becomes as follows

K(x; y) = % (x; z t )% 1 (z t ; y) X j j N (t s) j j ! Z D (e i' t (x; ;y) ) r y a(y; z t ; ) =y=zt † + % (x; z t )% 1 (z t ; y) X j j N (t s) j j Z
D (e i' t (x; ;y) )a (z s ; z t ; ) † since _ zt;zs = (s t) _ x;y (t). Now by integrating by parts with respect to , we obtain

K(x; y) = % (x; z t )% 1 (z t ; y) Z e i' t (x; ;y) 0 @ X j j N (s t) j j ! D r y a(y; z t ; ) =y=zt + X j j=N +1 (s t) j j D a (z s ; z t ; ) 1 A † : If one chooses t (x; ) 2 S m ; (T M ; ; ) such that t (x; ) X (s t) j j ! D r y a(y; x; ) =y=x ; then one gets K(x; y) = % (x; z t )% 1 (z t ; y) Z e i' t (x; ;y) t (z t ; ) † +% (x; z t )% 1 (z t ; y) Z e i' t (x; ;y) b N (z s ; z t ; ) † with b N (y; x; ) = t (x; ) X j j N (s t) j j ! D r y a(y; x; ) =y=x + X j j=N +1
(s t) j j D a (y; x; ):

From here we deduce the wanted since b N 2 S m+( )(N +1) ; 0 (V ; 0; ), < and the choice of N is arbitrary.

To prove the second equality in the proposition one makes the change of variables = (z r ; z t ) in the oscillatory integral K(x; y), so it becomes as follows

K(x; y) = % (x; z r )% 1 (z r ; y) Z e i' r (x; ;y) % (z r ; z t )a(z s ; z t ; (z r ; z t ) ) † ,
and for arriving to the wanted we use the following expansion

% (x; y)a(z; y; (x; y) ) = X j j N _ x;y ! d x a(z; x; ) + X j j=N +1 _ x;y ! a (z; y; x; ); (z; y; x; ) 2 V where a (z; y; x; ) = N + 1 ! 1 Z 0
(1 ) N @ y (% (x; y)a(z; y; (x; y) )) =y=z d and V = f(z; y; x; ) : (x; y) 2 V ;

(x; z) 2 V ; (y; z) 2 V ; 2 T x M g.
The following proposition is demonstrated exactly as the previous proposition.

Proposition 5.2. Let a(y; x; ) 2 S m ; (V ; 0; ; )(0 < 1). We choose a function 2 C 1 (M M ) such that supp V , 1 in a small neighborhood of M and the two projections 1 ; 2 :supp ! M are proper maps. We de…ne a density (x; ) as follows: If (x i ) is a coordinate system de…ned on U M , the value of in this system is given by

(x; ) = Z e i' 0 (x; ;y) (x; y)a(y; x; )dy † ; (x; ) 2 T U
where y = (y i ) is the normal coordinate system with origin x associated to (x i ).

Then (x; ) 2 S m ; (T M ; ; ) and (x; ) P 1 ! D r y a(y; x; ) =y=x . So, we have Z e i' 0 (x; ;y) a(y; x; ) † Z e i' 0 (x; ;y) (x; ) † 2 C 1 (V ; +1;0 ).

Corollary 5.3. Let a(x; ) 2 S m ; (T M ; ; )(0 < 1) and (t; ) 2 [0; 1] R. If % (x; z t )% 1 (z t ; y) Z e i' t (x; ;y) a(z t ; ) † 2 C 1 (V ; + ;1 ) then a(x; ) 2 S 1 (T M ; ).
Proof. According to Proposition 5.1 we have Z e i' 0 (x; ;y) a(x; ) † 2 C 1 (V ; +1;0 ).

Then there exist a neighborhood W V of M and a density b(y; x; ) 2 S 1 (W ; 0; ) such that Z e i' 0 (x; ;y) (a(x; ) b(y; x; )) † = 0; 8(x; y) 2 W , where W = f(y; x; ) : (x; y) 2 W; 2 T M g. From this identity and Proposition 5.2, it follows that

0 a(x; ) X 1 ! D r y b(y; x; ) =y=x .
So a(x; ) 2 S 1 (T M ; ).

I end this section by the following remark.

Remark 5.4. Let a(y; x; ) 2 S m ; (V ; 0; ; ) with ( ;

) 2 ]0; 1] [0; 1[. If K(x; y) = % (x; z r )% 1 (z r ; y) Z e i' r (x; ;y) a(z s ; z r ; ) † ; (x; y) 2 V , then t K(x; y) = % 1 (x; z 1 r )% + (z 1 r ; y) Z e i' 1 r (x; ;y) a(z 1 s ; z 1 r ; ) † ; K (x; y) = % 1 (x; z 1 r )% + (z 1 r ; y) Z e i' 1 r (x; ;y) a(z 1 s ; z 1 r ; ) † ;
where (x; y) 2 V .

6. Pseudodi¤erential Operators acting in the Spaces of Densities for all local amplitude a(y; x; ) of A (every density veri…es this condition is called a principal symbol of A). We can also verify that we have (T M ;

):

Now, let be a connection on M . If A 2 m ; (M ; ; ), then there exist a neighborhood W

V of M and a density a(y; x; ) 2 S m ; 0 (W ; 0; ) ( 0 = max( 1; )) such that

K A (x; y) = % 1 (x; y)
Z e i' 0 (x; ;y) a(y; x; ) † ; (x; y) 2 W .

Based on this simple remark, we give the following de…nition (this de…nition is the same de…nition which Safarov presented in its article [Sa]).

De…nition Let be a connection on M and Let m, , , and be real numbers; 0 < 1, 0 < 1. We say that the linear continuous operator A : C 1 c (M ; ) ! D 0 (M ; ) belongs to the set m ; (M ; ; ; ) if its distribution kernel K A (x; y) veri…es the two following conditions: 2. Symbols of Di¤erential Operators. We know well that all di¤erential operator A : C 1 (M ; ) ! C 1 (M ; ) belongs to the space m 1;0 (M ; ; ), therefore we have the right to ask the following question: If is a connection on M , how can we determine the symbols of A with respect to ? Let's notice that, according to Remark 6.2, it su¢ ces to determine the symbol A (x; ) = A;0 (x; ).

(i) K A (x; y) 2 C 1 (M M M ; ;
First we assume that A 2 m ; (M ; ; ; ) (0 < 1). If A (x; ) is a symbol of A, then K A (x; y) = % 1 (x; y) Z e i' 0 (x; ;y) A (x; ) † + f (x; y); (x; y) 2 V with f (x; y) 2 C 1 (V ; ;1 ). Now let u(x) 2 C 1 (M ; ) and (x; y) 2 C 1 (M M ) such that supp V and 1 in a small neighborhood of M . From the previous equality it follows that if (x i ) is a coordinate system de…ned on U M , then the value of Au in this system is given by

Au(x) = A (y; D y )(% 1 (x; y) (x; y)u(y)) =y=x + Z K A (x; y)(1 (x; y))u(y)dy + Z f (x; y) (x; y)u(y)dy
where x 2 U and y = (y i ) is the normal coordinate system with origin x associated to (x i ). So if A is a di¤erential operator of order m on M and A (x; ) = P j j m a (x) in the system (x i ), then we have

Au(x) = A (y; D y )(% 1 (x; y)u(y)) =y=x = X j j m a (x)D y (% 1 (x; y)u(y)) =y=x . (6.1)
From here we deduct that the value of A (x; ) in the system (x i ) is given by A (x; ) = A(y; D y )(e i(y x) % 1 (x; y)) =y=x ; (x; ) 2 T U: (6.2) I will denote by % n (x; y) the value of %(x; y) in any coordinate system normal (with respect to ) at the point x and by %n (x; y) the value of %(x; y) in any coordinate system normal (with respect to ~ ) at the same point x. Also, I put J ; ~ (x; y) = det @y j =@ ỹk (y) ; (x; y) 2 V = V \ Ṽ ;

; ~ (y; x; ) = e i(y(y) ỹ(y)) % 1 n (x; y)% 1 n (x; y) J ; ~ (x; y) ; (y; x; ) 2 V ;

where y = (y j ) and ỹ = (ỹ k ) are two n.c.s. with origin x such that @y j =@ ỹk (x) = jk (of course (y j ) and (ỹ k ) are normal with respect to and ~ respectively). We can notice easily that J

; ~ = J 1 ~ ; 2 C 1 (V ) and ; ~ = 1 ~ ; 2 C 1 (V )
. By returning to the de…nition of the normal coordinate systems, one can show that there exist a neighborhood W V of M and a map (x; y) 2 W 7 ! (x; L(x; y)) 2 Iso(T M; T M ) of class C 1 having the two following properties:

-For all x 2 M , L(x; x) is equal to the identity of T x M ; -If (x i ) is a coordinate system de…ned on U M , then

(x ỹ(y)) = t M L (x; y) 1 (x y(y)); 8(x; y) 2 U M \ W; (6.5)
where M L (x; y) is the matrix of L(x; y) with respect to (x i ) and y = (y j ) and ỹ = (ỹ k ) are the two normal coordinate systems with origin x associated to (x i ).

I can now give this theorem.

Theorem 6.6. Let A 2 m ; 1 (M ; ; ; )\ m ; 2 (M ; ; ; ~ ). Under the condition max( 1 ; 2 ; 1=2) < , if ~ A (x; ) is a symbol of A with respect to ~ , then each symbol A (x; ) of A with respect to veri…es the following asymptotic expansion

A (x; ) X 1 ! r y ; ~ (y; x; ) =y=x D ~ A (x; ): Proof. Let ~ A (x; ) be a symbol of A with respect to ~ . Then K A (x; y) = %1 (x; y) Z e i' 0 (x; ;y) ~ A (x; ) † + f (x; y); (x; y) 2 V ~ with f (x; y) 2 C 1 (V ~ ; ;1
). Now by using (6.5), we get iii) Let M and N be two smooth manifolds of same dimension n and let G : M ! N be a di¤eomorphism. Let and ~ be two connections de…ned on M and N respectively. I put V = (x; y) 2 V ~ : (G 1 (x); G 1 (y)) 2 V and G; ; ~ = G ; ~ . One veri…es that the function G; ; ~ is given by G; ; ~ (y; x; ) = e ify(G 1 (y)) ỹ(y)g % 1 n (G 1 (x); G 1 (y))% 1 n (x; y) det @(y j G 1 ) @ ỹk (y) ; for (y; x; ) 2 V , where ỹ = (ỹ j ) is a n.c.s. with origin x and y = (y j ) is the n.c.s. with origin G 1 (x) which veri…es @(y j G 1 )=@ ỹk (x) = jk . According to Remark 6.4, Proposition 6.5 and Theorem 6.6 we have the following theorem which is considered the natural generalization of the theorem 4.2 in [Sh]. 4. Transposed Operators and Adjoint Operators. Let be a connection on M . Remarks (5.4) and (6.2) immediately give the following theorem.

K A (x; y) = % 1 (x; y) Z e i' 0 ( 
Theorem 6.8. Let A 2 m ; (M ; ; ; ) ( > 0, < 1). First we assume that the operator A is given by Au = au; u 2 C 1 (M ; ) with a 2 C 1 (M ; ) (m 1 = 0). So we have K BA (x; y) = a(y)K B (x; y) = % 1 (x; y) Z e i' 0 (x; ;y) a(y) B (x; ) † + f (x; y); (x; y) 2 V where f 2 C 1 (V ; ;1 ). From here we deduct that BA 2 m2 ; (M ; ; ; ), furthermore, Proposition 5.1 shows that we have To treat the general case, we need some notation. We will put % ; (x; y; z) = % 2 (x; z)% 1 (z; y)% 1 (y; x); % (x; y; z) = % ; (x; y; z) = % 2 (x; z)% 1 (z; y)% 1 (y; x); (x; ; y; z) = ' 0 (x; ; y) + ' 0 (x; ; z) + ' 0 (z; (x; z) ; y); with f 2 C 1 (V ; ;1 ) and a(y; x; ) = Z e i' 0 (x; ;z) (x; z) (z; y) B (x; + )

A (z; (x; z) )% ; (x; y; z)e i (x; ;y;z) dz † :

After that we continue exactly as in the proof of the theorem 8.3 in [Sa] for arriving to the wanted.

Remark 6.11. The result of Theorem 6.10 remains valid if we replace one of its conditions by the following condition: A 2 m1 1;0 (M ; ; ; ) or B 2 m2 1;0 (M ; ; ; ).

  ::;jq (x) = D X (y) % (x; y)T i1;:::;ip j1;:::;jq (y) =y=x = D X (x) % (z; ::;jq (x) = D X (y)T

D

  k1 (y) D kr (y) % (x; y)T i1;:::;ip j1;:::;jq (y) =y=x , D k1 (y) D kr (y)T i1;:::;ip j1;:::;jq (y) =y=x

  ip a(y; ) =(y; )=(x; ) o

P j a j .

 j Proposition 4.1. Let a 2 S m ; (T M ; ; ). For all p 2 N the two density tensors with the components r x; y)a(y; )) =(y; )=(x; ) belong to the space S m+p ;

r

  X1 (y; ) r Xp (y; )a(y; ) =(y; )=(x; ) 2 S m+p ; (T M; ; ); r X1 (y; ) r Xp (y; )(% (x; y)a(y; )) =(y; )=(x; ) 2 S m+p ; (T M; ; ): Remark 4.3. Let V = f(y; x; ) : (x; y) 2 V ; 2 T x M g, (t; s) 2 [0; 1] 2 and (p; q) 2 N N. If a 2 S m ; (V ; ; ; ), then by modifying the equality (4y; ỹ)% (x; x)a(ỹ; x; ~ )) =(ỹ;x; ~ )=(zs;zt; (x;zt) )

  x; ;y) a(y; x; ) † + f (x; y); (x; y) y) J ; ~ (x; y)1 jdet L(x; y)j ~ A (x; L(x; y) ): Since 0 1 = max(1 1 ; ) < , Proposition 5.1 shows that if A (x; ) is a symbol of A with respect to , then A (x; ) X 1 ! D r y a(y; x; ) =y=x :We can also write this asymptotic expansion as follows A (x; )X P (x; )D ~ A (x; )where P (x; ) is a polynomials in independent of ~ A (x; ) and its degree is strictly lower of j j . Therefore if A is a di¤erential operator of order m on M , thenA (x; ) = X j j m P (x; )D ~ A (x; ); (x; ) 2 T M:But a direct use of (6.1) and (6.2) gives y; x; ) =y=x D ~ A (x; ); (x; ) 2 T M: So P (x; ) = r y ; ~ (y; x; ) =y=x ; 8 because the polynomials P (x; ) are independent of A.

  Theorem 6.7. Let A 2 m ; (N ; ; ); 1 < 1. If A (x;) is a symbol of A with respect to ~ , then each symbol B (x; ) of B = G AG 1 with respect to veri…es the following asymptotic expansion ; ~ (y; G(x); t DG(x) 1 ) =y=G(x) D A (G(x); t DG(x) 1 ):

  be a connection on M . We can see easily that S m

	means that the classes S m ; ( ) doesn't depend on when the properties of the classes S m ; ( ) are analogous to those of the classes S m 1 . In general, ; ,
	and for example, from the de…nition we immediately get the following:
	-a 2 S m1 ; ( ; ; ) ^b 2 S m2 ; ( ; ; ) ) a + b 2 S	max(m1;m2) ;	( ; ; );
	-a 2 S m1 ; (N T M; ; ; ) ^b 2 S m1 ; (N T M; S m1+m2 ; (N T M ; + 0 ; + 0 ; );	0 ; 0 ; ) ) a b 2
	-a 2 S m ; ( ; ; ) ) @ a 2 S	m j j ;	( ; ; );
	-a 2 S m ; (N T M ; ;0 ; ) ) r X1	r Xp a 2 S m+p ;
	where 0 = max(1	; ). Therefore if		1	; ; = S m S m ; ( ) S m ; 0 then S m ; ( ), and this

  Every density A;t (x; ) veri…es this condition is called a t-symbol of the operator A, and according to Corollary 5.3 we deduce that the map A 7 !

	1 ); V of M and a density a(y; x; ) 2 e i' 0 (x; ;y) a(y; x; ) † ; (x; y) 2 W . Remark 6.1. From (5.2) it follows that m (ii) There exist a neighborhood W S m ; (W ; 0; ; ) such that K A (x; y) = % 1 (x; y) Z ; (M ; ; ; ) m ; 0 (M ; ; ) where 0 = max( ; 1 ). Therefore m ; (M ; ; ; ) = m ; (M ; ; ) when 1 . Remark 6.2. Let t 2 [0; 1]. Based on Proposition 5.1 we conclude that if 0 < 1, then the condition (ii) is equivalent to the following condition: (iii) t There exists a density A;t (x; ) 2 S m ; (T M ; ; ) such that K A (x; y) = % (x; z t )% 1 (z t ; y) Z e i' t (x; ;y) A;t (x; ) † + f t (x; y) in V ; (M ; ; ; )= 1 ; (M ; ; ) to the space S m ; (T M ; ; )=S 1 (T M ; ). Also, from Proposition 5.1 it follows that if A;t (x; ) is t-symbol of A and s 2 [0; 1], then A;s (x; ) X (t s) j j ! D d x A;t (x; ): where f A;t (x; ) is an isomorphism from the space m ; (M ; ; ; ) with 0 < 1 and > 1=2. Remark 6.3. Let A 2 m From the de…nition and Remark 6.2 we deduce that all t-symbol of A (t 2 [0; 1]) is a principal symbol of A 2 m ; 0 (M ;

t (x; y) 2 C 1 (V ; ;1 ). ; ).

  Then t A; A 2 Remark 6.9. A operator A 2 m ; (M ; ;1 ; ) is said to be formally selfadjoint if A = A and nearly formally self-adjoint if A = A + R with R 2 1 (M ; ;1 ). Under the condition 0 < 1, the previous theorem shows that A is nearly formally self-adjoint if and only if the values of the symbol W A (x; ) = A;1=2 (x; ) are real. Then a di¤erential operator A 2 Di¤(M ; ;1 ) is formally self-adjoint if and only if the values of its Weyl symbol are real. 5. Composition formula of intrinsic symbols. Let be a connection on M and let A 2 m1 ; (M ; ; ; ), B 2 m2 ; (M ; ; ; ); 0 < 1, from which at least one is properly supported. In this case, does the operator BA belong to m1+m2 ; (M ; ; ; )? if yes, what the relation that exists between its symbols and those of A and B?

	m ; (M ; 1 ;1 ; ). Moreover, if 1	<	1, then t A;s (x; ) =
	A;1 s (x; ) and A ;s (x; ) = A;1 s (x; ) for all s 2 [0; 1]. So we have
	t A;s (x; )	X (2s 1) j j !	D d x A;s (x; );
	A ;s (x; )	X (1 2s) j j !	D d x A;s (x; ):

I now give some examples. a) Let a 2 C 1 (M ; ). Based on (6.2) and Remark 6.2 we conclude that all symbols of the operator u 2 C 1 (M ; ) 7 ! au 2 C 1 (M ; + ) are equal to a.

b) Let X = P j X j @ @x j be a vector …eld on M . We de…ne two di¤erential operators of order 1 A X and B X by

By using (3.2) and ( 6.2) we get

Now the Remarks 3.6 and 6.2 show that if t 2 [0:1], then

c) Let's assume that M is a pseudo-Riemannian manifold and is the Levi-Civita connection on M . We put ; = g g where is the usual Laplace operator on M , g is the canonical density of M and ( ; ) 2 R 2 . From (2.5), (3.5) and (6.2) it follows that

where S(x) is the scalar curvature of M at x and j j 2 x = P jk g jk (x) j k . Then since D g jk = 0 for all 2 N n 0, the Remarks 3.6 and 6.2 give the following

3. Formulae for transformations of symbols. I now discuss the action of the transformations on the symbols. For this let M and N be two smooth manifolds of same dimension n and let G :

) is a linear continuous operator, then the distribution kernel of B = G AG 1 is given by

Concerning the action on the intrinsic symbols, we will divide our discussion on three steps.

i) Let and ~ be two connections de…ned on M and N respectively and let A 2 m ; (N ; ; ; ~ ). In general, G AG 1 doesn't belong to m ; (M ; ; ; ) when < 1

, but if G is a¢ ne transformation, this belonging is always true. Let's recall that G : M ! N is said to be an a¢ ne transformation of (M; ) into (N; ~ ) if it veri…es

Under this condition, we verify easily that we have 8 > > < > > :

~ G(x);G(y) (s) = G( x;y (s)); 's (G(x); t DG(z s ) 1 ; G(y)) = ' s (x; ; y); (x; y) = t DG(y) ~ (G(x); G(y)) t DG(x) 1 ; %(x; y) = jJ G (x; G(x))j

1 %(G(x); G(y)) jJ G (y; G(y))j (6.4) for all (x; y) 2 V , s 2 [0; 1] and 2 T zs M . All the objects corresponding to ~ are marked by s in order that we distinguish them of those corresponding to .

Remark 6.4. Let ~ be a connection on N . If G : M ! N is a di¤eomorphism, then G is an a¢ ne transformation of (M; ) into (N; ~ ) where = G ~ .

The relations (6.3) and (6.4) immediately give the following proposition.

Proposition 6.5. Let G : (M; ) ! (N; ~ ) be an a¢ ne transformation and let A 2 m ; (N ; ; ; ~ ); < 1, > 0. Then G AG 1 2 m ; (M ; ; ; ). Moreover, under the condition 0

ii) Let's assume that M = N and let A 2 m ; 1 (M ; ; ; )\ m ; 2 (M ; ; ; ~ ) (max( 1 ; 2 ) < ). In this case, what the relation that exists between the symbols of the operator A with respect to and its symbols with respect to ~ ? To give a partial answer to this question, I need some notations.

where

) is a coordinate system de…ned on U M , we put (as Safarov did) P ( ; ) ;

(x; ) = (@ y + @ z ) @ y 0 @ X j 0 j j j

; (x; ) = (@ y + @ z ) @ y 0 @ X j 0 j j j

where (x; ) 2 T U (here the operation of the derivation is made in the normal coordinate systems with origin x associated to (x i )). It is clear that P ( ; ) ;

(x; ) and P ( )

; (x; ) are polynomials in , and we can verify (see [Sa]) that the degree of each one of these two polynomials is lower or equal to min(j j ; j j), furthermore, if is symmetric, this degree is lower or equal to min(j j ; j j ; (j j + j j)=3). In the case where is ‡at, we have P ; (x; ) 0 when j j + j j 1.

Theorem 6.10. Let A 2 m1 ; (M ; ; ; ), B 2 m2 ; (M ; ; ; ); 0 < 1, from which at least one is properly supported. Let's suppose that at least one of the following conditions is ful…lled:

(ii) is symmetric and > 1=3; Proof. The idea of the proof is as follows: We choose a function 2 C 1 (M M ) such that supp V , 1 in a small neighborhood of M and the two projections 1 ; 2 :supp ! M are proper maps. Next we use the de…nition to get K BA (x; y) = % 1 (x; y) Z e i' 0 (x; ;y) a(y; x; ) † + f (x; y); (x; y) 2 V