N
N

N

HAL

open science

Numerical stability of a hybrid method for pricing
options

Maya Briani, Lucia Caramellino, Giulia Terenzi, Antonino Zanette

» To cite this version:

Maya Briani, Lucia Caramellino, Giulia Terenzi, Antonino Zanette.
brid method for pricing options. International Journal of Theoretical and Applied Finance, 2019,

pp-1950036. 10.1142/50219024919500365 . hal-02380723

HAL Id: hal-02380723
https://hal.science/hal-02380723
Submitted on 28 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Numerical stability of a hy-


https://hal.science/hal-02380723
https://hal.archives-ouvertes.fr

Numerical stability of a hybrid method
for pricing options

MAYA BRIANT*
LuciaA CARAMELLINO'
GruLiA TERENZIF
ANTONINO ZANETTES

Abstract

We develop and study stability properties of a hybrid approximation of functionals of the Bates
jump model with stochastic interest rate that uses a tree method in the direction of the volatility
and the interest rate and a finite-difference approach in order to handle the underlying asset price
process. We also propose hybrid simulations for the model, following a binomial tree in the direction
of both the volatility and the interest rate, and a space-continuous approximation for the underlying
asset price process coming from a FEuler-Maruyama type scheme. We test our numerical schemes
by computing European and American option prices.

Keywords: stochastic volatility; jump-diffusion process; European and American options; tree meth-
ods; finite-difference; numerical stability.
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1 Introduction

Following the work in [8, 9], we further develop and study the hybrid tree/finite-difference approach and
the hybrid Monte Carlo technique in order to numerically evaluate option prices. We concern here with
the theoretical study of the stability of the numerical scheme for both European and American options.
Also, in this paper we stress the model (and the associated numerical procedure) by considering the
Bates model [7], possibly coupled with a stochastic interest rate following the Vasicek dynamics [41],
and we call the full model as Bates-Hull-White.

The option pricing tree/finite-difference approach we deal with, derives from applying an efficient
simple (recombining binomial) tree method in the direction of the volatility and the interest rate
components, whereas the asset price component is locally treated by means of a one-dimensional
partial integro-differential equation (PIDE), to which a finite-difference scheme is applied. Here, the
numerical treatment of the nonlocal term coming from the jumps involves implicit-explicit techniques,
as well as numerical quadratures. The procedure applies to other rather general stochastic volatility
models (see [10]) or for problems in insurance (see [23]). We concentrate here our attention to the
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Bates-Hull-White model and we give results on the numerical stability. Let us mention that, to
this purpouse, we never require the validity of the Feller condition for the Cox-Ingersol-Ross (CIR)
dynamics [18] of the volatility process.

In the case of plain vanilla European options, Fourier inversion methods [15] lead to closed-form
formulas to compute the price under the Bates model. For American options, numerical methods
are typically based on the use of the dynamic programming principle to which one applies either
deterministic schemes for solutions of PIDEs from numerical analysis and/or from tree methods or
Monte Carlo techniques. Our method is a mixture between a tree approach and a deterministic
numerical approach, and is particularly tailored for the use of the backward dynamic programming
principle.

Let us recall that tree methods for the Heston model have been already proposed in the literature.
For example, Akyildirim, Dolinsky and Soner [1] have recently provided a four tuple discrete Markov
approximation which can be generalized to other stochastic volatility models with a factor equation.
Lo, Nguyen and Skindilias [32] have proposed a Markov chain approximation based on a trinomial tree,
again adaptable to other stochastic volatility models. Vellekoop and Nieuwenhuis [40] have introduced
a binomial tree built from the full truncation scheme of Lord, Koekkoek and Dijk [34]. Other tree
approaches for the Heston model are available (see e.g. the references quoted in [40]). Generally, the
Feller condition for the CIR volatility equation is required, either for theoretical purposes or for the
numerical efficiency of the method.

Another tool is given by the dicretization of PDEs. When the jumps are not considered, available
references are recalled in [8, 9]. In the standard Bates model, the finite-difference methods for solving
the 2-dimensional PIDE associated with the option pricing problems can be based on implicit, explicit
or alternating direction implicit schemes. The implicit scheme requires to solve a dense sparse system
at each time step. Toivanen [39] proposes a componentwise splitting method for pricing American
options. In Ballestra and Cecere [10], the problem is handled by using an ad hoc pseudospectral
method. Chiarella, Kang, Meyer and Ziogas [16] developed a method of lines algorithm for pricing
and hedging American options again under the standard Bates dynamics. Itkin [28] has recently
proposed a unified approach to handle PIDEs associated with Lévy’s models of interest in Finance.

From the simulation point of view, the main problem consists in the treatment of the CIR dynamics
for the volatility process. Several efficient and accurate methods have been developed specifically for
the simulation of CIR paths, see, e.g., Alfonsi [2], Andersen [3], Lord, Koekkoek and Dijk [34] or
Kahl and Jéackel [29]. We propose here a hybrid Monte Carlo technique: we couple the simulation of
the approximating tree for the volatility and the interest rate components with a standard simulation
of the underlying asset price, based on Brownian increments and a straightforward treatment of the
jumps. In the case of American option, this is associated with the Longstaff and Schwartz algorithm
[33], allowing to treat the dynamic programming principle. The numerical results are then compared
with the Alfonsi’s third-order simulation scheme.

The paper is organized as follows. In Section 2, we introduce the Bates-Hull-White model. In
Section 3 we recall the tree procedure for the volatility and the interest rate pair (Section 3.1), we
describe our discretization of the log-price process (Section 3.2) and the hybrid Monte Carlo simulations
(Section 3.3). Section 4 is devoted to the hybrid tree/finite-difference method: we set the numerical
scheme for the associated local PIDE problem (Section 4.1) and we apply it to the solution of the
whole pricing scheme (Section 4.2). Section 5 is devoted to the analysis of the numerical stability of
the resulting tree/finite-difference method. Section 6 refers to the practical use of our methods. Here,
numerical results and comparisons are widely discussed.



2 The Bates-Hull-White model

The Bates model [7] is a stochastic volatility model with price jumps: the dynamics of the underlying
asset price is driven by both a Heston stochastic volatility [26] and a compound Poisson jump process of
the type originally introduced by Merton [35]. We allow the interest rate to follow a stochastic model,
which we assume to be a generalized Ornstein-Uhlenbeck (hereafter OU) process. More precisely, the
dynamics under the risk neutral measure of the share price .S, the volatility process V' and the interest
rate r, are given by the following jump-diffusion model:

ds

Sft = (ry — n)dt + \/V, dZ + dH,
-~

AVi = ky (Ov — Va)dt + ov/VidZ)

dry = K, (0, (t) — m)dt + 0,dZ]

(2.1)

where 1 denotes the continuous dividend rate, Sp, Vo, ro > 0, Z°, ZV and Z" are correlated Brownian
motions and H is a compound Poisson process with intensity A and i.i.d. jumps {Jj}x, that is

K
H, = Z Ji., (2.2)
k=1

K denoting a Poisson process with intensity A. We assume that the Poisson process K, the jump
amplitudes {.J;}x and the 3-dimensional correlated Brownian motion (Z°,Z", Z") are independent.
As suggested by Grzelak and Oosterlee in [24], the significant correlations are between the noises
governing the pairs (S,V) and (S,r). So, as done in [9], we assume that the couple (Z",Z") is a
standard Brownian motion in R? and Z* is a Brownian motion in R which is correlated both with Z"
and Z":

d(Z5,ZVYy = prdt and d(Z°,Z"); = padL.

We recall that the volatility process V follows a CIR dynamics with mean reversion rate xy, long run
variance fy and oy denotes the vol-vol (volatility of the volatility). We assume that 0y, ky,op > 0
and we stress that we never require in this paper that the CIR process satisfies the Feller condition
2Ky 0y > 0‘2/, ensuring that the process V' never hits 0. So, we allow the volatility V to reach 0.
The interest rate r; is described by a generalized OU process, in particular 6, is time-dependent but
deterministic and fits the zero-coupon bond market values, for details see [13]. As already done in
[27], we write the process r as follows:

re = 0, Xt + o4 (23)

where

t t
X; = —/@T/ Xsds+ Z; and @y =roe "t + Kr/ Hr(s)e_”’"(t_s)ds. (2.4)
0 0
From now on we set
ZV=w'  Z"=W?  Z%=p W'+ pW? 4 psW?,

where W = (W', W2 W3) is a standard Brownian motion in R and the correlation parameter p3 is

given by
ps=11—p}—p3, pi+p<L.



By passing to the logarithm Y = In S in the first component, by taking into account the above
mentioned correlations and by considering the process X as in (2.3)-(2.4), we get the triple (Y, V, X)
given by

dY; = py (Vi Xo, )dt +/V, (p1dWE + podW2 + psdW7) + dN,, Yo =1In S € R,

dV, = py (V)dt + oy /VidWi, Vo >0, (2.5)
dX; = ux(Xy)dt +dW2,  Xo =0,

where
1
py (v, x,t) = opx + @ — 1 — 3 ¥ (2.6)
pyv (v) = Ky (Oy —v), (2.7)
px(x) = —krx, (2.8)

and V; is the compound Poisson process written through the Poisson process K, with intensity A, and
the i.i.d. jumps {log(1 + Ji)}, that is

Kt
Ny = ZIOg(l + Jk)7
k=1

Recall that K, the jump amplitudes {log(1+ J)}x and the 3-dimensional standard Brownian motion
(W1, W2, W3) are all independent. We also recall that the Lévy measure associated with N is given
by

v(dz) = \P(log(1 + J1) € dz),

and whenever log(1 + J;) is absolutely continuous then v has a density as well:
v(dz) = v(z)dr = )‘plog(1+J1)(x)d$7 (2.9)

Plog(1+,) denoting the probability density function of log(1 + J1). For example, in the Merton model
[35] it is assumed that log(1 + J;) has a normal distribution - this is the choice we will do in our
numerical experiments, as done in Chiarella et al. [16]. But other jump-amplitude measures can be
selected. For instance, in the Kou model [30] the law of log(1 4 J;) is a mixture of exponential laws:

Prog(1401) (%) = PAre M Lmoy + (1 — p)A—e " 1,

14 denoting the indicator function of A. Here, the parameters A+ > 0 control the decrease of the
distribution tails of negative and positive jumps respectively, and p is the probability of a positive
jump.

We pass to the transformation Y = InS. If ¥(Y') denotes the payoff written on the log-price, the
option price P = P(t,y,v,z) is given by

T , T
European price:  P(t,y,v,x) = E(e_ Ji (orXs +“’S)d5\I/(YTt’y’”’$)>,

T ,z 2.10
American price:  P(t,y,v,z) = sup E(e*ft (o7 X5 +“’S)d5\IJ(Yf’y’”’I)), ( )
T€Ti, T

where T; 7 denotes the set of all stopping times taking values on [¢, T]. Hereafter, (Ybyor ytv xte)
denotes the solution of the jump-diffusion dynamic (2.5) starting at time ¢ in the point (y, v, ).



3 The dicretized process

We first set up the discretization of the triple (Y, V, X) we will take into account.

3.1 The 2-dimensional tree for (V, X)

We consider an approximation for the pair (V,X) in (2.5) on the time-interval [0,7] by means of a
2-dimensional computationally simple tree. This means that we construct a Markov chain running
over a 2-dimensional recombining bivariate lattice and, at each time-step, both components of the
Markov chain can jump only upwards or downwards. We consider the “multiple-jumps” approach
by Nelson and Ramaswamy [36], extensively developed for the CIR process in [5]. We give here the
main ideas in order to set-up the whole algorithm. We start by considering a discretization of the
time-interval [0, 7] in N subintervals [nh, (n + 1)h], n =0,1,..., N, with h = T/N.
For n=20,1,..., N, consider the lattice for V and X defined by

Vo = {0} ith o = (V7o + 22k —n)vh) 1 3.1

n = {Vk tk=01,..n With vp = o+ 7( —n) {(VVo+ 2 (2k—n)Vh>0}> (3.1)
X, ={a}j=01,..n With 2 = (2j —n)Vh, (3.2)

respectively. Notice that v8 = Vp and a;8 = 0 = Xo. For each fixed v} € V,, and a:? € X,, we denote the

“up” and “down” jump by vij(}uk) and UZZ}M) and by x;‘:?}”) and a:;.:?}%j). By applying the “multiple

jump approach”, the jump-indexes ky (n, k), ka(n, k), ju(n. ), ja(n, j) are defined as

ku(n,k) =min{k* : k+1<k* <n+1and v} + py(op)h < vt} (3.3)
kq(n, k) = max{k™ : 0 < k* <k and vy + pv(vy)h > vpy1 ke, (3.4)
Ju(n, j) = min{j* : j+1<7" <n+1and 27 + px(z})h < l’?jl}, (3.5)
Ja(n,j) = max{j* : 0 < j* <jand 2] + px(x7)h > x?fl}, (3.6)

where py and px is the drift of V' and X respectively (see (2.7) and (2.8)), with the understanding
ky(n,k) = n+ 1, respectively kq(n, k) = 0, if the set in the r.h.s. of (3.3), respectively (3.4), is empty,
and similarly for j, and j4.

The transition probabilities for V' are defined as follows: starting from the node (n, k) the proba-
bility that the process jumps to ky(n, k) and kq(n, k) at time-step n + 1 are set as
pv ()b op = ophl )

n+1 n+1
Yku(nk) ~ Yka(n,k)

Py (n,k) =0V A1 and py(n,k) =1—py (n,k) (3.7)

respectively. A similar definition is set for the component X: starting from (n, j), the probability that
the process jumps to j,(n,7) and jgz(n,j) at time-step n + 1 are
1
,uX(x?)h%—x?—m?H , . ‘
e 2 A1 and p¥ (ng) =1 - p (n, ) (3.8)
ZL ot
Ju(n,j) Ja(n,j)

pi (n,§) =0V

respectively.

The tree procedure for the pair (V, X) is obtained by joining the trees built for V' and for X.
Namely, for n =0,1,..., N, consider the lattice

Vn X Xn = {(’U}g, fE?)}kz,j:O,l,...,n- (3.9)
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Figure 1: The tree for the process V (left) and for X (right). The figure shows possible instances of the up and
down jumps.

Starting from the node (n, k, j), which corresponds to the position (v, x?) €V, x X,, we define the
four possible jumps by means of the following four nodes at time n + 1:

(n+ 1, ku(n, k), ju(n, 5)) with probability puu(n, k,5) = p}, (n, k)pyy (n, §),
(n+1,ky(n,k),ja(n,j)) with probability pyq(n,k,j) = p}f(n, k)pé((n,j), (3.10)
(n+1,kq(n, k), ju(n,j)) with probability pgu(n,k,j) = pzl/(n, k)pff(n,j), ’
(n+1,ka(n, k), ja(n, 7)) with probability paa(n, k,j) = py (n, k)py (n, j),

where, for a € {u,d}, the above nodes kq(n, k), jo(n,7) and the above probabilities pY (n, k), pX (n, j)
are defined in (3.3)-(3.4), (3.5)-(3.6), (3.7) and (3.8). The factorization of the jump probab1htles in
(3.10) follows from the orthogonality property of the noises driving the two processes. This procedure
gives rise to a Markov chain (Vn", Xﬁ)n:07.,,,N that weakly converges on the path space, as h — 0, to
the diffusion process (Vi, X¢);e[o,) solution to

dVy = py (Vy)dt + oy /VidW}, Vo >0,
dX; = px(Xp)dt +dW?2, Xo=0.

This can be proved by using standard results (see e.g. the techniques in [36]) and the convergence
of the chain approximating the volatility process proved in [5]. And this holds independently of the
validity of the Feller condition 2ky 6y > 0‘2/.

Details and remarks on the extension of this procedure to more general cases can be found in [9].
In particular, if the correlation between the Brownian motions driving (V, X') was not null, one could
define the jump probabilities by matching the local cross-moment (see Remark 3.1 in [9]).

3.2 The approximation of the component Y

We describe here how we manage the Y-component in (2.5) by taking into account the tree procedure
given for the pair (V, X). We go back to (2.5): by isolating \/V;dW}! in the second line and dW}? in
the third one, we obtain

dY, = p(Vi, Xo,)dt + psy/VidW} + L1V, + po/VidX, + dN, (3.11)
%



with
p(v,z,t) = py(v,2,t) = Loy (v) — p2v/o px(z)

3.12
=0,z + @ — %v—f%v(Gv—v)erzmmf (3.12)

(ny, py and px are defined in (2.6), (2.7) and (2.8) respectively). To numerically solve (3.11), we
mainly use the fact that the noises W3 and N are independent of the processes V and X. So, we first
take the approximating tree (VT?, Xn)n:o71,,,,,N_1 discussed in Section 3.1 and we set (V;", Xth)te[o,T] =
(f/ﬁ Ih J,)A( (; /h J)te[O,T] the associated time-continuous cadlag approximating process for (V, X). Then,
we insert the discretization (V" X*) for (V, X) in the coefficients of (3.11). Therefore, the final process
Y" approximating Y is set as follows: YJ' = Yj and for t € (nh, (n + 1)h] withn =10,1,...,N — 1

V= Y+ Vil K)o = k) + o[V OV = W)

P1 7h( S h h
+ [/ V 4+ por/ V(XY — X0 ) + (Ny — Nopp).
UV( ) P2 t( t nh) ( t h)

(3.13)

3.3 The Monte Carlo approach

Let us show how one can simulate a single path by using the tree approximation (3.9) for the couple
(V, X) and the Euler scheme (3.13) for the Y-component.

Let (Yn)nzo,lw,]\; be the sequence approximating Y at times nh, n =0,1,..., N, by means of the
scheme in (3.13): Y* = Yj and for t € [nh, (n + 1)h] with n = 0,1,..., N — 1 then

Vi = Y/;il + u(VE XE nh)h + psy/hVEA,

UV (Vn+1 Vi) + Pz\/VT{l(X;LLH - X))+ (Ntng1)h — Nan),
where p is defined in (3. 12) and Aq,...,Apn denote i.i.d. standard normal r.v.’s, independent of the
noise driving the chain (V X). The simulation of N (n+1)h — Nap is straightforward: one first generates
a Poisson r.v. K,’ZH of parameter Ah and if K,TZLJrl > 0 then also the log-amplitudes log(1 + J,?H) for
k=1,... ,K}TLL+1 are simulated. Then, the observed jump of the compound Poisson process is written
as the sum of the simulated log-amplitudes, so that

Vi = Y4 u(VE X nh)h + psy/RVEA, 41

K (3.14)
PLh, — V) 4 oo J V(KR = X+ Y log(1 + 771,
k=1

O'V

in which the last sum is set equal to 0 if K;LL'H =0.

The above simulation scheme is plain: at each time step n > 1, one let the pair (V, X) evolve
on the tree and simulate the process Y by using (3.14). We will refer to this procedure as hybrid
Monte Carlo algorithm, the word “hybrid” being related to the fact that two different noise sources
are considered: we simulate a continuous process in space (the component Y) starting from a discrete
process in space (the tree for (V, X)).

The simulations just described will be used in next Section 6 in order to set-up a Monte Carlo
procedure for the computation of the option price function (2.10). In the case of American options,
the simulations are coupled with the Monte Carlo algorithm by Longstaff and Schwartz in [33].



4 The hybrid tree/finite difference approach

The option price in (2.10) is typically computed by means of the standard backward dynamic pro-
gramming algorithm. So, consider a discretization of the time interval [0,7] into N subintervals of
length h = T'/N. Then the price P(0, Yy, Vo, Xo) is numerically approximated through the quantity
P (0,Yp, Vo, Xo) backwardly given by
{Ph(T,y,v,m) =U(y) andasn=N —1,...,0,

= (o, nh,y,v,x nh,v nh,x (41)
Ph(nh7 Yy,v, :1:) = max {\Il(y)v € (or +<pnh)hE<Ph((n + 1)h7 (n—i}{)h ’Vv(n—i-l)h’ X(ﬂ—i—l)h)) }’

for (y,v,z) € R x Ry x R, in which

\Tl( - 0 in the European case,
v= U(y) in the American case.

So, what is needed is a good approximation of the expectations appearing in the above dynamic pro-
gramming principle. This is what we first deal with, starting from the dicretized process (Yh, Vi X h)
introduced in Section 3.

4.1 The local 1-dimensional partial integro-differential equation

Let Y" denote the process in (3.13). If we set
Zh =T} - %(W — VR = ooy V(XD = Xan), € [nh, (n+ 1)) (4.2)

then we have (u being given in (3.12))

Azl = M(Vrfh, Xﬁh’ nh)dt + ps3 Y_/élh dW3,+dN; t e (nh,(n+1)h], (4.3)
Zgh = Yrillw

that is, Z" solves a jump-diffusion stochastic equation with constant coefficients and at time nh it
starts from Yr?h. Take now a function f: we are interested in computing

E(f(Yins)n) | Yor = ¥, Van = v, Xop = 7).

We actually need a function f of the whole variables (y, v, x) but at the present moment the variable
y is the most important one, we will see later on that the introduction of (v, z) is straightforward.
So, we numerically compute the above expectation by means of the one done on the approximating
processes, that is,

E(f(Y(Z+1)h) | Yélh =Y Vrilh = Uszh = l’)

— pl — — — — _ —
= E(f(Z(hn+1)h + ;(V(irlz-',-l)h - Vrilh) + P24/ Vr?h(X(hn—i-l)h - szlh)) | Zf«fh =Y, Vr?h = 1)7X7}~fh = x)v

in which we have used the process Z" in (4.2). Since (_Vh, X" is independent of the Brownian noise
W3 and on the compound Poisson process N driving Z" in (4.3), we have the following: we set

\ij(C7 Y,v, :Z:) = E(f(Zgln+1)h + C) | Z;LLh =Y, V'rflh =0, X:zlh = 1‘) (44)

8



and we can write

E(f(?(}ﬁﬂ) ) | v nh = V =v Xhh = 1) (4.5)
—EG@(“(7H1 ‘%J+mVaX&Hm_X%%%”@)“%fszﬁzx) '
Now, in order to compute the quantity W;(¢) in (4.4), we consider a generic function g and set

u(t yi v @) = B(g(Zh 1) | 20 =y VP = v, X =), te [nh, (n+ 1A,

By (4.3) and the Feynman-Kac representation formula we can state that, for every fixed z € R and
v > 0, the function (¢,y) — u(t,y; v, x) is the solution to

Ouu(t,y;v, ) + LW u(t,y;v,2) =0y € Rt € [nh, (n + 1)h), (4.6)
u((n + 1)h,y;v,2) = g(y) y €R, '
where L("%) is the integro-differential operator
L(”’x)u(t,y;v,x) = u(v,z)ayu(t,y;v,x) 2P3082 (t,yw,ﬂf)
+o00 (47)
[ty 6 v0) — ult v )] ()

where p is given in (3.12) and v is the Lévy measure associated with the compound Poisson process N,
see (2.9). We are assuming here that the Lévy measure is absolutely continuous (in practice, we use a
Gaussian density), but it is clear that the procedure we are going to describe can be straightforwardly
extended to other cases.

4.1.1 Finite-difference and numerical quadrature

In order to numerically compute the solution to the PIDE (4.6) at time nh, we generalize the approach
already developed in [8, 9]: we apply a one-step finite-difference algorithm to the differential part of
the problem coupled now with a quadrature rule to approximate the integral term.

We start by fixing an infinite grid on the y-axis Y = {y; = Yo + iAy}icz, with Ay = y; — yi—1,
i € Z. For fixed n and given z € R and v > 0, we set u]' = u(nh, y;; v, z) the discrete solution of (4.6)
at time nh on the point y; of the grid ) — for simplicity of notations, in the sequel we do not stress in
u}' the dependence on (v, x).

First of all, to numerically compute the integral term in (4.7) we need to truncate the infinite
integral domain to a bounded interval Z, to be taken large enough in order that

/Zu(g)dg ~ A (4.8)

In terms of the process, this corresponds to truncate the large jumps. We assume that the tails of v
rapidly decrease — this is not really restrictive since applied models typically require that the tails of
v decrease exponentially. Hence, we take R € N large enough, set Z = [-RAy, + RAy] and apply to
(4.8) the trapezoidal rule on the grid )V with the same step Ay previously defined. Then, for & = [Ay,
l=—R,...,R, we have

+RAy R
[ Tty + 0 - ult ) vOde = Ay Y (ulty+ &) — ult.) (&) (49)

—RAy I=—R



We notice that y; +& = Yo+ (i +1)Ay € ), so the values u(t, y; + &) are well defined on the numerical
grid Y for any ¢,l. These are technical settings and can be modified and calibrated for different Lévy
measures V.

But in practice one cannot solve the PIDE problem over the whole real line. So, we have to choose
artificial bounds and impose numerical boundary conditions. We take a positive integer M > 0 and
we define a finite grid Var = {yi = Yo + iAytics,,, with Ty = {—M, ..., M}, and we assume that
M > R. Notice that for y = y; € Vs then the integral term in (4.9) splits into two parts: one part
concerning nodes falling into the numerical domain )Yj; and another part concerning nodes falling out
of Vyr. As an example, at time t = nh we have

R

R
Y oulnhyi+ (@) ~ Y whw(@ = Y, wgv@+ Y ap v(@)

I=—R I=—R L <R, i+l <M || <R, |i+l|>M

where 4" stands for (unknown) values that fall out of the finite numerical domain ;. This implies
that we must choose some suitable artificial boundary conditions. In a financial context, in [19] it
has been shown that a good choice for the boundary conditions is the payoff function. Although this
is the choice we will do in our numerical experiments, for the sake of generality we assume here the
boundary values outside Vys to be settled as 4] = b(nh,y;), where b = b(t,y) is a fixed function
defined in [0, 7] x R.

Going back to the numerical scheme to solve the differential part of the equation (4.6), as already
done in [9], we apply an implicit in time approximation. However, to avoid to solve at each time step
a linear system with a dense matrix, the non-local integral term needs anyway an explicit in time
approximation. We then obtain an implicit-explicit (hereafter IMEX) scheme as proposed in [19] and
[11]. Notice that more sophisticated IMEX methods may be applied, see for instance [12, 38]. Let us
stress that these techniques could be used in our framework, being more accurate but expensive.

As done in [9], to achieve greater precision we use the centered approximation for both first and
second order derivatives in space. The discrete solution u™ at time nh is then computed in terms of
the known value u"*! at time (n + 1)h by solving the following discrete problem: for all i € Jay,

R

ul o= 2ul +ut
pg p —d AylZ =1l Ay Z (uf_ﬁll — u?“) v(&) = 0.
I=—R

n+1 o
% + iy (v, 7)

Uiy — Uiy n 1
2Ay 2
(4.10)

We then get the solution u™ = (u",, ..., u?,)T by solving the following linear system

Au" = Bu" 14, (4.11)

where A = A(v,x) and B are (2M +1) x (2M + 1) matrices and d is a (2M + 1)-dimensional boundary
vector defined as follows.

1. The matrix A. From (4.10), we set A as the tridiagonal real matrix given by

1+28 —a-—0
a—p3 1428 —a-p

A= . .. ) (4.12)
a—0 1428 —a-p
a—p 1428
with b
_ _ 2
o= 57y u(nh,v,x) and f N P30, (4.13)
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p being defined in (3.12). We stress on that at each time step n, the quantities v and z are constant
and known values (defined by the tree procedure for (V, X)) and then « and § are constant parameters.

2. The matrix B. Again from (4.10), B is the (2M + 1) x (2M + 1) real matrix given by

v(0)— A v(Ay) ... v(RAy) 0
B I+hy v(—Ay) 1/(0.) —A V(.Ay) 5 v(RAy) | (4.14)
0 V(—R'Ay) y(—Ay) v(0) —A
where [ is the identity matrix and .
A= v(&).
I=—R

3. The boundary vector d. The vector d € R?™+1 contains the numerical boundary values:
d=ay +a}, (4.15)

with
ag = ((6 - Oé)bEM_l,O, e 0, (/3 + a)bg\‘/[_‘_l)T c R2M+1

and anJrl R2M+1 is such that

—M—i—1
Ay S wlw) bt fori=—M,...,—M+R-1,
I=—R
(ap*h)i=1< 0 fori——M+R,....M—R,
R
Wy > w(m) b, fori=M-—R+1,...,M—1,
=M —i+1

where we have used the standard notation b} = b(nh,y;), i € T

In practice, we numerically solve the linear system (4.11) with an efficient algorithm (see next
Remark 6.2). We notice here that a solution to (4.11) really exists because for 8 # |a|, the matrix
A = A(v,z) is invertible (see e.g. Theorem 2.1 in [14]). Then, at time nh, for each fixed v > 0 and
x € R, we approximate the solution y — u(nh,y;v,x) of (4.6) on the points y;’s of the grid in terms of
the discrete solution u™ = {u};c7,,, which in turn is written in terms of the value u™*' = {u*1},c 7,,
at time (n + 1)h. In other words, we set

u(nh,yi;v,x) = ul, i € Jur, where u™ = (uf')ic,, solves (4.11) (4.16)

4.1.2 The final local finite-difference approximation

We are now ready to tackle our original problem: the computation of the function ¥(¢;y,v, ) in
(4.4) allowing one to numerically compute the expectation in (4.5). So, at time step n, the pair (v, x)
is chosen on the lattice V,, x X0 v = v, o = 2 for 0 <k, j < n. We call A} ; the matrix A in (4.12)

when evaluated in (vj,z}) and d" the boundary vector in (4.15) at time-step n. Then, (4.16) gives

car T T o~ g T n _ n . :
V(¢ v, Uk,l‘j) >~ upy , where u’ ;= (ui7k7]~)zejM solves the linear system

Apjuly ;= Bf(y.+¢) +d".

11



Therefore, by taking the expectation w.r.t. the tree-jumps, the expectation in (4.5) is finally computed
on Yy X Vp X X, by means of the above approximation:

- ~
E(f( (n—i—l)h) | Yh - ylvvh - vk’X h — x;l) - u?,kyj’
where u’ . = (uf'). ;)i solves the linear system

n n
A 7] 7k7j

= > pab(n,kJ)Bf(y +71( Ve — VE) + o2 u(@l e~ j)) +d".
a,be{u,d}

Finally, if f is a function on the whole triple (y, v, x), by using standard properties of the conditional
expectation one gets

E(f(YV(}TLH_l)hv ‘7(n+1)th(hn+1 ) ’ Ynh Yi, V nh — ’Uk’XZLLh - .f;l) = u?Jf,j’
where uy ; = (u7'}. ;)ic7,, solves the linear system
Al Uk
. P1
= > paln, k,ﬁBf(y Wl = ) + V@ ) — 2P o, k),x;ﬁ(,i,j)) +d".
a,be{u,d}

(4.17)

4.2 Pricing European and American options

We are now ready to approximate the function P, solution to the dynamic programming principle
(4.1). We consider the discretization scheme (Y" V" X") discussed in Section 4.1 and we use the
approximation (4.17) for the conditional expectations that have to be computed at each time step n.
So, for every point (y;, vy, x) € Y X Vi X Xy, by (4.17) we have

nh,y; v @ nh,vl nh,z’
E<Ph((n+ Db, Yo 0y ‘/(n+1l§th(n+1J)h)> ~ Uy

where 'y ;= (7). ;)ic7,, solves the linear system

Apjuli ;=B ) pa(n.k.j)x
a,be{u,d} (4.18)
P1
B (o Dy PR 4y = o)+ e — ), g )

We then define the approximated price Ph(nh, y,v,x) for (y,v,x) € Yyy xVp x X andn=0,1,...,N
as

Py(T,yi,on g, 2N i) = ¥(y;)) andasn=N—1,...,0:
{h( Yir N> TN) = W (yi) (4.19)

Py (nh,yi, v, ) = max{@(yi) ~lorairen)hg nkJ}

in which a7 ; = (azk’j)iejM is the solution to the system in (4.18) with P replaced by Pj,.

Note that the system in (4.18) requires the knowledge of the function y — Py((n 4+ 1)h,y, v, ) in
points y’s that do not necessarily belong to the grid Vj;. Therefore, in practice we compute such a
function by means of linear interpolations, working as follows. For fixed n, k, j, a,b, we set I, 1. j ..5(%),
1 € Ju, as the index such that

P1 1 1
Yi + 7( n—‘_(n k) vg) + p2\/> ?:nj € lur, Jerinant (1) Yok a, b(i)+1)>
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with I, g jap(i) = —M if y; + (”+1 —vk +p2,/vk "“ —a") < —M and I, g jap(i) +1 =M

ka(n, Ly (n.5)
if y; + E( "Jr(ilk vp) + pzs/ ?;(rij ) > M. We set
+1 o ( +1
. y2+ O’V( Za(n k‘) +p2 ;Lb(nj yInk]ab()
Gn k,j,ab(1) = Ay :

Note that gy k. jap(i) € [0,1). We define
(ja,bph)((n + 1)h7 Yi, U]Z-HE}L k) $§le+("1 ])) = ph((n + 1)h7 yIn k,j,a,b(1)2 U]ZLJr(r}l k) :U;L:(r:h])) (1 - qn,k,j,a,b(i))
+ Ph((n =+ 1)h7 yln’kd-’a,b(i)—i-la Uk:bli,k)’ ;Lb—i(_ij)) Qn,k,j,a,b(l)

and we set
P1L , n U n n
Py (n+Dh,y + V(”kJr(:z k) —vi) + p2v/o(@ Jb+7llJ) z3), vk:zvll kyijj(q’]))
= @apPa)(n+ Db,y 0L et Y,

Therefore, starting from (4.18), in practice the function @y ; = (4} ;)ie7,, in (4.19) is taken as the
solution to the linear system

An,]ﬂnk,] B ; ?ab n, k ])( bPh)(( l)ha y-y”?j{},”k)ax;&r&j)) +d". (420)
a,be{u,d

We can then state our final numerical procedure:

{Ph(T, Yi, UN g ZN,j) = ¥(y;) andasn=N—1,...,0:

: U 4.21
Ph(nh,yi,vg,x?) = max{\Il(yi) —(oral+enn)hgn } ( )

Wik,
a’y, i = (4, ;)ieq being the solution to the system (4.20).

Remark 4.1 In the case of infinite grid, that is M = 400, i+ Ip . jop(1) is a translation: Ip j jqp(i) =

Fusesaal0) 8. 0, i = (GupP(n+ Doy U, a5 ) i st linear conver combination of
a translation of y; — 15}1(( + Dh,yi, v k (n k)’ ;sz(r71 ]))

5 Stability analysis of the hybrid tree/finite-difference method

For the study of the stability, we consider a norm on the functions of (y,v,x) which is uniform with
respect to the volatility and the interest rate components (v, x) and coincides with the standard Iy
norm with respect to the direction y (see next (5.6)). The choice of the I3 norm allows one to perform a
von Neumann analysis in the component y on the infinite grid Y = {y; = Yo+iAy}iez, that is, without
truncating the domain and without imposing boundary conditions. Therefore, our stability analysis
does not take into account boundary effects. This approach is extensively used in the literature, see
e.g. [21], and yields good criteria on the robustness of the algorithm independently of the boundary
conditions.

Let us first write down explicitly the scheme (4.21) on the infinite grid V = {y;}icz. For a fixed
function f = f(t,y,v,z), we set g = f either g = 0 and we consider the numerical scheme given by

Fh(T) yi;lUN,kva,j) = f(T7 yiﬂ)N,kva,j) and asn =N — 17 s )0:
(ora? +oni)h, n } (5.1)

n n n n -
Fy(nh, yi, vy, ) = max {g(nh,yi,vk,xj),e i Uy, j

13



where ') ;= (u}), ;)iez is the solution to

(an g = Brg)uiq g+ (1 + 2B p)uy ;= (Qneg + B )uihy g

= z{j }pabm,k,j) X | @ap ) (0 + Dy, ol @) )+
a,be{d,u

+hAyzl: v(&) ((jmeh)((n + D), yiyi, vzxiﬁk),x?:(ij)) — (TapFn)(n+ )b, y;, vzxiﬁk),w?:&j)))} ,

(5.2)
in which a1 ; and f, 1 ; are the coefficients o and  defined in (4.13) when evaluated in the pair
(vg,27). Note that (5.2) is simply the linear system (4.20) on the infinite grid, with d" = 0 (no
boundary conditions are needed). Let us stress that in next Remark 5.2 we will see that, since
Bk > 0, a solution to (5.2) does exist, at least for “nice” functions f. It is clear that the case g = f
is linked to the American algorithm whereas the case g = 0 is connected to the European one: (5.1)
gives our numerical approximation of the function

B (emton I X 009 (g v X)) g =0,

F(t,y,v,x) = (5.3)

sup B (e (o I XA [ ) p (7 ytuw yio xte)) i g = f,

T€T,T

at times nh and in the points of the grid Y x V,, x A,,.

5.1 The “discount truncated scheme” and its stability

In our stability analysis, we consider a numerical scheme which is a slightly modification of (5.1): we
fix a (possibly large) threshold L > 0 and we consider the scheme

FhL(T,yi,ka,xN,j) = f(T,yi,vnk N ;) andasn=N—1,...,0:

n)’ e*(o",«a?;-l 1{1?>*L}+S@nh)hun } (54)

L n o _n\ __ n
Fy (Nhayhvkafﬂj) = max {g(nh,yi, Vg, L i,k,j

with g = f or g = 0, where u" ; = (uf) ;)icz is the solution to (5.2), with (J,,F)) replaced by
(JapFF). Let us stress that the above scheme (5.4) really differs from (5.1) only when o, > 0
(stochastic interest rate). And in this case, in the discounting factor of (5.4) we do not allow z7 to run
everywhere on its grid: in the original scheme (5.1), the exponential contains the term o whereas in
the present scheme (5.4) we put x?l{x;i>, L}, 80 we kill the points of the grid ), below the threshold
—L. And in fact, (5.4) aims to numerically compute the function
E<e—(ar ftT xbe 1{X27m>7L}ds+ftT gosds)f(T’ Y%,y,v,a&7 Vth,v7 X;lx)> if g=0,
L
F (t7y,U7$) = sup E(@—(or N XH* 1{X§,$>_L}ds+f[ éosds)f(T’ Y;fy,’u,:c’ V:,U,ijx)) if g = f,
T€Ti, T
(5.5)

at times nh and in the points of the grid Y x V,, x &},. Recall that in practice h is small but fixed,
therefore there is a natural threshold which actually comes on in practice (see for instance the tree
given in Figure 1). And actually, in our numerical experiments we observe a real stability. However,
we will discuss later on how much one can loose with respect to the solution of (5.1).

For n = N,...,0, the scheme (5.4) gives back a function in the variables (y,v,z) € Y x V,, x X,,.
Note that V, x X, C IV x IX, where

Iy =[vg,vy] and Iy = [zf, 23],
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that is, the intervals between the smallest and the biggest node at time-step n:
oy 2 oy 2
vy = <\/V0 - TH\/E) L= nvhs0y Un = (\/Vb + ?n\/@ , 2t =-nVh, a"=nVh

As n decreases to 0, the intervals I and IX are becoming smaller and smaller and at time 0 they
collapse to the single point v8 = Vp and x8 = Xy = 0 respectively. So, the norm we are going to define
takes into account these facts: at time nh we consider for ¢ = ¢(t,y, v, x) the norm

l6(mh = sup  fgmh,v.a)lnwy = sup (D lemhiyiv,a)PAy)t. (5.6)

(v,z)elY xIX (va)elY xIX N ey
In particular,
) 1/2
qu(O, )HU = H¢(07 - Vo, XO)HZZ()}) = (Z ‘(b(yzv Vo, XU)’ Ay) and
1€EZ

1/2
I6(T v < swp oy v, 0)luoy = s (3 le(v.a)PAy)
(v,z)ER4 xR (v,z)ERL xR =7

We are now ready to give our stability result.

Theorem 5.1 Let f > 0 and, in the case g = f, suppose that

sup |f(t,y,’0,$)| < 7T|f(TvyaU793)|,
te€[0,T]

for some yp > 0. Then, for every L > 0 the numerical scheme (5.4) is stable with respect to the norm
(5.6):
|20 )llo < Cp M I1EX(T. ) = O I (T ) |,y Ay,

where
N T
. e2AT+o LT=Y 0y opnh N2290 ck = e2AT+o, LT [ prdt if g =0,
Cp” =
T _yN N— _(r .
max (’YT, e2AcT+orLT=3 00y %"nhh> —%° Ck = max (’YT, e2AT+or LT~ [, ‘Ptdt> if g=F,

in which ¢ > 0 is such that Y, v(§)Ay < Ac.

Proof. In order to weaken the notation, we set g, ; = g(nh,y;,vy,2}) and, similarly, F} . =

FE(nh,y;, o2, z7h), oo F7 i ks = TapFE) (04 1), ys, UZ:F(;jk),:U;L;&J)) (we have also dropped the

dependence on L). The scheme (5.4) says that, at each time step n < N and for each fixed 0 < k,j < n,

_(GTZ?1{1?>7L}+§Onh)h n

Fi’,}k,j = Imax {ngJ,e ui,k’j}, (57)
where, according to (5.2), uj; ; solves

(kg = Brg)ui g g ; + (1 +2Bnp)uly ; — (Qngg + Brp) Uiy g

= Y pa(n.k, ) ((Ja,bF”“)i,ka,jb +hAy Y (&) [GaoF™ ivtkagy = Cap " i) )
a,be{d,u} l

(5.8)
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Let F¢ denote the Fourier transform of ¢ € l3()), that is,
— Ay@
— Z pse1? 0 R,
2m SEZ

i denoting the imaginary unit. We get from (5.8)
((Oén,k,j — Bup)e OB 41428, 1 — (anp + 5n,k)€i%y>3uﬁ,j(9)

. (5.9)
= (1 + hAy El V(fl)(elwAy - 1)) Za,bE{dm} pab(na k)j)g(ja,bFn—i_l)kmjb(Q)'

Note that

|(an,k,j - ,Bn’k)efiBAy + 1+ Q/Bn,k — (O[Thk,j + 5n7k)ei9Ay’
> ‘iﬁe [(an,k,j - Bmk)e_ieAy + 1+ 2Bn,k — (an7k7j + Bmk)ei@Ay] ‘
=1+28,,(1 —cos(6Ay)) > 1

for every 6 € [0,27) (recall that 5, ; > 0). And since ), v(&)Ay < Ac, we obtain

Fup (0) < (14 hAy Y1 —10(&)) > parlns ke )T CapF )k, 5, (0)

YA a,be{d,u}

<(@+2xeh) D par(n b HIFTap ™k, i, (0]
a,be{d,u}

Therefore,

8uk ;122 ([0,2m),Leby < (1 + 2Ach) Z Pab(n, ke, DT (Tap F™ )k gy |l 22(10,20) Leb) -
abe{d,u}

We use now the Parseval identity ||F¢l|r2(jo,27),Leb) = [l () and we get

lu illizoy < (L+2xeh) > pap(n, by ) TasF™ ). koo li2 )
a,be{d,u}

= (1+2Xch) > par(n b DIF e
a,be{d,u}

the first equality following from the fact that ¢ — (Jqp, F"™" )Z ka,j» 18 @ linear convex combination of

translations of ¢ — FZ”/,;F 1] (see Remark 4.1). This gives

—(orz} 1 2>_LYTPn h —
sup ||€ (o ] {af>-L} nn) U.n;k,jng(y) < (1+2)\Ch)€UTLh ©nhh sup ||F7,L+1Hl2

0<k,j<n 0<k,j<n+1

and from (5.7), we obtain

\bo,),(l+2)\ch)e‘””‘_%hh sup HFT“LIHZQ )

sup || F k]le (y) < max <O<Skujp<n Hg”’” 0<k,j<n+1

0<k,j<n

We now continue assuming that g = f, the case ¢ = 0 following in a similar way. So,

sup (12l < max (r2ll (T, ) v, (1+ 22eh)em ot sup 7 0 ).
0<k,j<n 0<k,j<n+1
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For n = N — 1 we then obtain

s FN S ) < max (vrll F(T.) v, (1 4+ 20ch)err oo (T, ) | )
—_ ’]7’”’

and by iterating the above inequalities, we finally get

1o = [ F,0]

N
) < max ([T, )Ly, (14 2Ach) NN L=y eont [ (T, )] ).

O

Remark 5.2 In the above proof we have actually proved that, as n varies, the solution unk] to the
infinite linear system (5.2) does exist and is unique if ||f(T,-)||n < 0o. In fact, starting from equality
(5.9), we define the function iy, ;(9), 0 € [0,27), by

<(06n,k,j — Brg)e 08 + 1428, 1 — (i + 5n,k:)€i9Ay) Ui, (0)

= (14 A2y S (@)@ = 1)) 5 pe g,y Pab( ks ) TP+, 5, (6).

As noticed in the proof of Proposition 5.1, the factor multiplying 1y, ;(0) is different from zero because
Bnk > 0. So, the definition of 1y j is well posed and moreover, ¢y ; € L*([0,2m,),Leb). We now set
u'y i as the inverse Fourier transform of vy ;, that is,

1 2w .
n= (0)el2vq0, 1 e 7.
Up g, Ayx/ﬂ/o Vi i (0)e

Straightforward computations give that unkj fulfils the equation system (5.2).

Of course, Theorem 5.1 gives a stability property for the scheme introduced in [9] for the Heston-
Hull-White model (just take A = 0 - no jumps are considered). Moreover, for the standard Bates
model, that is, o, = 0 (deterministic interest rate), Theorem 5.1 applies to the original (untruncated)
scheme (5.1).

5.2 Back to the original scheme (5.1)

Let us now discuss what may happen when one introduces the threshold L. We recall that the original
scheme (5.1) gives the numerical approximation of the function F' in (5.3) whereas the discount
truncated scheme (5.4) aims to numerically compute the function F'* in (5.5). Proposition 5.3 below
shows that, under standard hypotheses, F tends to F as L — oo very fast. This means that, in
practice, we loose very few in using (5.4) in place of (5.1).

Proposition 5.3 Suppose that f = f(t,y,v,z) has a polynomial growth in the variables (y,v,x),
uniformly in t € [0,T]. Let F and FL, with L > 0, be defined in (5.3) and (5.5) respectively. Then
there exist positive constants cp and Cr(y,v,x) such that for every L > 0

— —rpr(T—t)|2
|F(t,y,’U,fL') - FL(t,y,’U,ZU)| < O'TCT(y,U,ZE)e cr|L+aze | 3

for every t € [0,T] and (y,v,x) € R x Ry x R.
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Proof. In the following, C' denotes a positive constant, possibly changing from line to line. We
have

|F(t’ y,v,x) - FL(ta y,’U,I)|

—or [ XET1, 4 ds —or [ XET1, ds
< O'TCE( sup ’f(u’quvyy’l),l"VJ,U’Xt,vﬂ X e Tft S xbTts_Ly % |e rft S xo¥<-L} T _ 1‘)
t<u<T

Set
Tf"z =inf{s>¢t: X" < -L}.

One has 1{X‘§,z<_L} < 1{Tt,z so that, for u < T,

Dr<s}

u u T
0< —ar/t Xbe Lyt _pyds < gr/t | X5 Lo gyds < ar/t | X5\ ds Lito oy

Then,

or [ X" ds ds

N _ u t,x
Lixtosopy @) gmor i X

sup e (xbTo_r)

t<u<T
< eor ftT |X5"|ds (ear ftT |XE%)ds 1) 1

_1’

< 2620'T ftT |X§’x‘d8 1

{07 <T} {07 <T}

By inserting,
‘F(tv Y, v, x) - FL(ta Y, v, x)‘

T t,x
< O'TCE( sup | f(u, YIvvr vhv xtvy| e2er Jo 1X7ds 1{7_t,z<T}>
t<u<T -L=

T t,z 1/2
< O‘TCE( <Su£T ’f(u’ Y£7317v,x7 VJ’U7XZ’U)|2 elor S 1Xs |ds) P(TE‘Z < T)I/Z.
t<u<

Since f has a polynomial growth in the space variables, uniformly in the time variable, by stan-
dard estimates one gets that sup;<,<r |f(u, YUt v X)) has all moments. Moreover, for a
Brownian motion W, supg .7 |W;| has finite exponential moments of any order, and this gives that

edor [T 1X07lds has finite moments of any order. It follows that

|F(t,y,v,2) — FE(t,y,v,2)| < OP(z"F < T)1/2.

As for the above probability, recall that X" = gemrr(s—t) 4 fts e_“*(s_")dW3 so that

P t,x <T)=P( inf Xb* 1) =P( inf —kr(s—t) /s fnT(sfu)d 2 L
(07 <T) (SGIE,T] Jr<—=L) <SEIE,T] <we + t e Wu)< )

B |L+xe—m~(T—t)|2)

S]P’( sup ‘/ A
t 2ftT e2trudy,

s€[t,T)

> L+ xe*"‘T(T*t)> < 2exp <

By inserting above, we get the result. [
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5.3 Further remarks

As already stressed, the introduction of the threshold —L allows one to handle the discount term.
In order to let the discount disappear, an approach consists in the use of a transformed function, as
developed by several authors (see e.g. Haentjens and in’t Hout [25] and references therein). This is
a nice fact for European options (PIDE problem), being on the contrary a non definitive tool when
dealing with American options (obstacle PIDE problem). Let us see why.

First of all, let us come back to the model for the triple (Y,V, X), see (2.5). The infinitesimal
generator is

1
Liu = <0rw +pr—n— 51}) Oyu + Ky (By — v)0yu — KrxOyu
1
+§ (Uagyu + 0-12/'0851)“ + 8330” + 2,010'\/1]857)1,& + 2p2ﬁ8§xu) (510)
+oo
[ ey + ) — alt s 0] O

We set o
G(t,x) — E(eiar i Xs ds).

Recall that (see e.g. [31])

2

Gt,z) =e . A T)=—" (5.11)

Ry

2 2
2o A1)~ Ty (A8 T)~T-+) — Z2 A2(t,T) 1 — e rr(T=1)

and, moreover, GG solves the PDE

1
G — k20, G + 5agmc; — oG =0, te€[0,T),r€R,
G(T,z)=1.

(5.12)

Lemma 5.4 Let L; denote the infinitesimal generator in (5.10). Setw =u-G~'. Then
Gtu + Ltu — XU = G(@tﬂ + Ztﬂ),

where
o 1 — ¢—kr(T—t)
Li=1L;— o, [p2\/00y + O]

r

Proof. Since G depends on t and = only, straightforward computations give
_ _ _ 4 1,
Owu + Liu — zu =G [@u + Ltu] + 0;G(t, x) [pgx/{)f)yu + 8zu] + u[atG — K20, G + iamG - ara:G].

By (5.12), the last term is null. The statement now follows by observing that 0;InG(t,x) =
1—e—rr(T—1)
=" 0

—0
T For

We notice that the operator L; in Lemma 5.4 is the infinitesimal generator of the jump-diffusion
process (Y, V, X) which solves the stochastic differential equation as in (2.5), with the same diffusion
coefficients and jump-terms but with the new drift coefficients

1— e—lir(T—t) 1— e—nT(T—t)

py(t v 2) = py (0, 2) =0y —————p2v,  py(v) = pv(v),  px(e) = px(t z)-o; -
T T
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Let us first discuss the scheme (5.1) for F' in the case ¢ = 0 (European options). By passing to the
associated PIDE, Lemma 5.4 says that

F(t,y,v,z) = G(t,2)F(t,y,v, ),

where

— (T, —t,y,0,7 5tv <t.x
F(tayﬂ-]ax):E(e ft Lpdsf(TaYT 7VT 7XT ))
Therefore, in practice one has to numerically evaluate the function F. By using our hybrid tree/finite-
difference approach, this means to consider the scheme in (5.4), with the new coefficient @,, , ; (written
starting from the new drift coefficients) but with a discount depending on the (deterministic) function

—\Or 1 > — n h _ . .
 only, that is, with e (or27 ey >y Fonn) replaced by e #n+". And the proof of the Proposition 5.1
shows that one gets

— N
IFR (0, ) lo < max (yp, AT 2n0 o) | £(T,-)]| .

In other words, by using a suitable transformation, the European scheme is always stable and no
thresholds are needed.

Let us discuss now the American case, that is, the scheme (5.1) with ¢ = f. One could think to
use the above transformation in order to get rid of the exponential depending on the process X. Set
again

F(t,y,v,z) = G(t,z) " F(t,y,v, ).

By using the associated obstacle PIDE problem, Lemma 5.4 suggests that

F(t.y.v,2) = sup E(e™ e F (r, Y20 VX)), with F(ty,v,2) = G, 2) f(t,y, v, ).
TE T, T

So, in order to numerically compute F, one needs to set up the scheme (5.4) with the new coefficient

- - —(orz1 T >— n h
Qp k,j, With f replaced by f, g = f and with the discounting factor e (v Lap> -yt onn) replaced

by e~#nn". So, again one is able to cancel the unbounded part of the discount. Nevertheless, the
unpleasant point is that even if || f(T',-)||» has a bound which is uniform in N then || (T, )|y may have
not because G~1(¢,x) has an exponential containing z, see (5.11). In other words, the unboundedness
problem appears now in the obstacle.

6 The hybrid Monte Carlo and tree/finite-difference approach algo-
rithms in practice

The present section is devoted to our numerical experiments. We first resume the main steps of our
algorithms and then we present several numerical tests.

6.1 A schematic sketch of the main computational steps in our algorithms

To summarize, we resume here the main computational steps of the two proposed algorithms.
First, the procedures need the following preprocessing steps, concerning the construction of the
bivariate tree:

(T1) define a discretization of [0, 7] in N subintervals [nh, (n+1)h], n =0,...,N —1, with h = T /N

(T2) for the process V, set the binomial tree v}, 0 < k < n < N, by using (3.1), then compute the
jump nodes k,(n,k) and the jump probabilities pY (n, k), a € {u,d}, by using (3.3)-(3.4) and
(3.7);
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(T3) for the process X, set the binomial tree 27, 0 < j < N, by using (3.2), then compute the jump
nodes jy(n, j) and the jump probabilities p;X (n, j), b € {u, d}, by using (3.5)-(3.6) and (3.8);

(T4) for the 2-dimensional process (V,X), merge the binomial trees in the bivariate tree (vy,z7),
0 < k,j <n < N, by using (3.9), then compute the jump-nodes (k,(n, k), jp(n,7)) and the
transitions probabilities pay(n, k, j), (a,b) € {d,u}, by using (3.10).

The bivariate tree for (V, X) is now settled. Our hybrid tree/finite-difference algorithm can be resumed
as follows:

(FD1) set a mesh grid y; for the solution of all the PIDEs;

(FD2) for each node (v, 2n;), 0 < k,j < N, compute the option prices at maturity for each y;,
1 € Y, by using the payoff function;

(FD3) forn =N —1,...0: for each (v}, x?), 0 < k,j <mn, compute the option prices for each y; € Vs,
by solving the linear system (4.20).

Notice that, at each time step n, we need only the one-step PIDE solution in the time interval
[nh, (n+1)h]. Moreover, both the (constant) PIDE coefficients and the Cauchy final condition change
according to the position of the volatility and the interest rate components on the bivariate tree at
time step n.

We conclude by briefly recalling the main steps of the hybrid Monte Carlo method:

(MC1) let the chain (V,*, X") evolve for n = 1,..., N, following the probability structure in (T4);

(MC2) generate Ag,..., Ay Lid. standard normal r.v.’s independent of the noise driving the chain
(Vh, XM);
(MC3) generate Ké, e K,JLV i.i.d. positive Poisson r.v.’s of parameter Ak, independent of both the chain

(Vh,f(h) and the Gaussian r.v.’s Aq,..., Ay, and for every n = 1,..., N, if K}’ > 0 simulate
the corresponding amplitudes log(1 + J7'),...,log(1 + J}"gg);

(MC4) starting from }A/Oh = Yp, compute the approximate values YY{‘, 1 <n <N, by using (3.14);

(MC5) following the desired Monte Carlo method (European or Longstaff-Schwartz algorithm [33] in the
case of American options), repeat the above simulation scheme and compute the option price.

Remark 6.1 In next Section 6.2 we develop numerical experiments also in the standard Bates model,
that is, with a constant interest rate. Recall that in the standard Bates model the dynamic reduces to

ds, <
Dt (r — p)dt + /V, dZE + dH,,
St— (7" 77) t t t (61)

dVy = ky (0y — Vy)dt + oy V, dZ)

with So, Vo > 0, r > 0 constant parameters, d(Z°,ZV); = pdt, |p| < 1 and H; is the compound
Poisson process already introduced in Section 2, see (2.2). We can apply our hybrid approach to this
case as well: it suffices just to follow the computational steps listed above except for the construction
of the binomial tree for the process X. Consequently, we do not need the bivariate tree for (V,X),
specifically we omit steps (T3)-(T4) and we replace step (MC1) with
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(MC1’) let the chain V* evolve forn=1,..., N, following the probability structure in (T2).

And of course, in all computations we set equal to 0 the parameters involved in the dynamics for r,
except for the starting value ro. In particular, we have o, = 0 and @y = rg for every t.

Remark 6.2 We observe that in order to compute the option price by the hybrid tree/finite-difference
procedure, in step (FD3) we need to solve many times the tridiagonal system (4.20). This is typically
solved by the LU-decomposition method in O(M) operations (recall that the total number of the grid
values y; € Yy is 2M + 1). However, due to the approximation of the integral term (4.9), at each
time step n < N we have to compute the sum

> artiv(&), (6.2)

which is the most computationally expensive step of this part of the algorithm: when applied directly,
it requires O(M?) operations. Following the Premia software implementation [37], in our numerical
tests we use the Fast Fourier Transform to compute the term (6.2) and the computational costs of
this step reduce to O(M log M). According to the Bates (respectively the Bates-Hull-White) model, the
hybrid algorithm requires N(N +1)/2 (respectively (N (N +1)/2)?) resolutions of linear systems, each
of them having a linear complexity. Therefore, the overall complexity is O(N?M log M) (respectively
O(N*Mlog M)).

6.2 Numerical results

We develop several numerical results in order to asses the efficiency and the robustness of the hybrid
tree/finite-difference method and the hybrid Monte Carlo method in the case of plain vanilla options.
The Monte Carlo results derive from our hybrid simulations and, for American options, the use of the
Monte Carlo algorithm by Longstaff and Schwartz in [33].

We first provide results for the standard Bates model (see Remark 6.1) and secondly, for the case
in which the interest rate process is assumed to be stochastic, see (2.1).

Following Chiarella et al. [16], in our numerical tests we assume that the jumps for the log-returns
are normal, that is,

1
log(1 + J;) ~ N(v - 50% 52), (6.3)

N denoting the Gaussian law (we also notice that the results in [16] correspond to the choice v = 0).
In Section 6.2.1, we first compare our results with the ones provided in Chiarella et al. [16]. Then
in Section 6.2.2 we study options with large maturities and when the Feller condition is not fulfilled.
Finally, Section 6.2.3 is devoted to test experiments for European and American options in the Bates
model with stochastic interest rate. The codes have been written by using the C++4 language and the
computations have been all performed in double precision on a PC 2,9 GHz Intel Core I5 with 8 Gb
of RAM.

6.2.1 The standard Bates model

We refer here to the standard Bates model as in (6.1). In the European and American option contracts
we are dealing with, we consider the following set of parameters, already used in the numerical results
provided in Chiarella et al. [16]: initial price Sy = 80,90, 100, 110, 120, strike price K = 100, maturity
T = 0.5; (constant) interest rate r = 0.03, dividend rate n = 0.05; initial volatility Vj = 0.04, long-
mean Ay = 0.04, speed of mean-reversion Ky = 2, vol-vol oy = 0.4, correlation p = —0.5, 0.5; intensity
A =5, jump parameters ¥ = 0 and § = 0.1 (recall (6.3)). It is known that the case p > 0 may lead to
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moment explosion, see. e.g. [4]. Nevertheless, we report here results for this case as well, for the sake
of comparisons with the study in Chiarella et al. [16].

In order to numerically solve the PIDE using the finite difference scheme, we first localize the
variables and the integral term to bounded domains. We use for this purpose the estimates for
the localization domain and the truncation of large jumps given by Voltchkova and Tankov [42].
For example, for the previous model parameters the PIDE problem is solved in the finite interval
In Sp — 1.59,1n Sy + 1.93).

The numerical study of the hybrid tree/finite-difference method HTFD is split in two cases

HTFDa: time steps IV; = 50 and varying mesh grid Ay = 0.01, 0.005, 0.0025, 0.00125;
HTFDb: time steps Ny = 100 and varying mesh grid Ay = 0.01, 0.005, 0.0025, 0.00125.

Concerning the Monte Carlo method, we give the results from the hybrid simulation scheme in
Section 3.3, that we call HMC. We give comparisons with the accurate third-order Alfonsi [2] dis-
cretization scheme for the CIR stochastic volatility process and by using an exact scheme for the
interest rate. In addition, we simulate the jump component in the standard way. The resulting Monte
Carlo scheme is here called AMC. We consider varying number of Monte Carlo iterations Nyc and
two cases for the number of time discretization steps iterations:

HMCa and AMCa: N; = 50 and Ny = 10000, 50000, 100000, 200000;
HMCb and AMCb: N; = 100 and Ny = 10000, 50000, 100000, 200000.

All Monte Carlo results include the associated 95% confidence interval.

Table 1 reports European call option prices. Comparisons are given with a benchmark value ob-
tained using the Carr-Madan pricing formula CF in [15] that applies Fast Fourier Transform methods
(see the Premia software implementation [37]).

In Table 2 we provide results for American call option prices. In this case we compare with
the values obtained by using the method of lines in [17], called MOL, with mesh parameters 200
time-steps, 250 volatility lines, 2995 asset grid points, and the PSOR method with mesh parameters
1000, 3000, 6000 that Chiarella et al. [16] used as the true solution. Moreover, we consider the
Longstaff-Schwartz [33] Monte Carlo algorithm both for AMC and HMC. In particular

HMCLSa and AMCLSa: 10 exercise dates, Ny = 50 and Nyc = 10000, 50000, 100000, 200000
HMCLSb and AMCLSDb: 20 exercise dates, Ny = 100 and Ny = 10000, 50000, 100000, 200000.

Tables 3 and 4 refer to the computational time cost (in seconds) of the various algorithms for
p = —0.5 in the European and American case respectively.

In order to study the convergence behavior of our approach HTFD, we consider the convergence
ratio proposed in [20], defined as

Py — Px
ratio = ﬁ, (64)
2

where Py denotes here the approximated price obtained with N = Ny number of time steps. Recall
that Py = O(N~%) means that ratio = 2¢. Table 5 suggests that the convergence ratio for HTDFb
is approximatively linear.

The numerical results in Table 1-4 show that HTFD is accurate, reliable and efficient for pricing
European and American options in the Bates model. Moreover, our hybrid Monte Carlo algorithm
HMC appears to be competitive with AMC, that is the one from the simulations by Alfonsi [2]: the
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numerical results are similar in term of precision and variance but HMC is definitely better from the
computational times point of view. Additionally, because of its simplicity, HMC represents a real
and interesting alternative to AMC.

As a further evidence of the accuracy of our hybrid methods, in Figure 2 and 3 we study the shapes
of implied volatility smiles across moneyness SKO and maturities 1" using HTFDa and HMCa. We
compare the graphs with the results from the benchmark values CF. The parameters used for these
two tests cases are: T = 0.5, Sp = 100, K = 100, » = 0.03, n = 0.05, V5 = 0.04, 0y = 0.04, ky = 2,
oy =04, A=5,v=0,=0.1, p=—0.5.
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(a)

p=-05 | Ay HTFDa HTFDb CF Nuc HMCa HMCb AMCa AMCb
0.01 1.1302 1.1302 10000 1.08+0.09 1.11£0.09 1.00+£0.09 1.08+0.09
0.005 1.1293 1.1294 50000 1.12+0.04 1.17+0.04 1.07+0.04 1.10+0.04
So =80 | 0.0025 1.1291 1.1292 | 1.1293 | 100000 1.14+0.03 1.14£0.03 1.13+0.03 1.13£0.03
0.00125 1.1291 1.1292 200000 1.134+0.02 1.1440.02 1.114+0.02 1.1240.02
0.01 3.3331 3.3312 10000 3.27+0.17 3.27+0.17 3.19+0.16 3.224+0.16
0.005 3.3315 3.3301 50000 3.3240.08 3.4040.08 3.2440.07 3.26+0.0
So =90 | 0.0025 3.3311 3.3298 | 3.3284 | 100000 3.3440.05 3.3440.05 3.32£0.05 3.331+0.05
0.00125 3.3310 3.3297 200000 3.321+0.04 3.35+0.04 3.2840.04 3.31+0.04
0.01 7.5245 7.5239 10000 7.46+£0.25 7.46+£0.25 7.37£0.24 7.361+0.25
0.005 7.5236 7.5224 50000 7.53+£0.11 7.62+0.11 7.40£0.11 7.43+0.11
So =100 | 0.0025 7.5231 7.5221 | 7.5210 | 100000 7.54%0.08 7.5240.08 7.53£0.08 7.5240.08
0.00125 7.5230 7.5220 200000 7.50£0.06 7.54£0.06 7.46+0.06 7.5040.06
0.01 13.6943  13.6940 10000 13.69£0.34 13.69+0.34 13.52+0.33 13.4840.33
0.005 13.6923  13.6924 50000 13.71+£0.15 13.81£0.15 13.55%£0.15 13.58%0.15
So =110 | 0.0025 13.6918  13.6921 | 13.6923 | 100000 13.72+£0.11 13.69+0.11 13.67+0.11 13.70£0.11
0.00125 13.6917  13.6920 200000 13.64+0.08 13.71+0.08 13.63+0.07 13.69+0.08
0.01 21.3173  21.3185 10000 21.40£0.41 21.40+0.41 21.084+0.40 21.03£0.41
0.005 21.3156  21.3168 50000 21.35+0.18 21.46+0.19 21.17£0.18 21.2140.18
So =120 | 0.0025 21.3152  21.3164 | 21.3174 | 100000 21.36+0.13 21.32+0.13 21.29+0.13  21.33+£0.13
0.00125 21.3152  21.3163 200000  21.25+0.09 21.33+0.09 21.26+0.09 21.33£0.09
(b)
p=0.5 Ay HTFDa HTFDb CF Nuc HMCa HMCb AMCa AMCb
0.01 1.4732 1.4751 10000 1.42+0.12 1.40+0.12 1.37£0.12 1.35+0.12
0.005 1.4724 1.4744 50000 1.49+0.06 1.47+0.05 1.40+0.05 1.42+0.05
So =80 | 0.0025 1.4723 1.4742 | 1.4760 | 100000 1.48+0.04 1.46+0.04 1.46+0.04 1.49+0.04
0.00125 1.4722 1.4741 200000 1.47+0.03 1.48+0.03 1.48+0.03 1.48+0.03
0.01 3.6849 3.6859 10000 3.63+0.19 3.63+0.19 3.4840.19 3.49+0.19
0.005 3.6836 3.6849 50000 3.70£0.09 3.70+0.09 3.57+0.09 3.60+0.09
So =90 | 0.0025 3.6832 3.6847 | 3.6862 | 100000 3.6710.06 3.6710.06 3.6610.06 3.7140.06
0.00125 3.6832 3.6847 200000 3.66+0.04 3.70+0.04 3.6940.04 3.68+0.04
0.01 7.6247 7.6245 10000 7.5840.28 7.58+0.28 7.3540.28 7.36+0.27
0.005 7.6238 7.6232 50000 7.66+0.13 7.65+0.13 7.47£0.12 7.52£0.12
So =100 | 0.0025 7.6234 7.6229 | 7.6223 | 100000 7.61£0.09 7.59£0.09 7.5840.09 7.66+0.09
0.00125 7.6233 7.6228 200000 7.5840.06 7.6440.06 7.6240.06 7.61+0.06
0.01 13.4863  13.4835 10000 13.48+0.36 13.48+0.36 13.214+0.36 13.19£0.36
0.005 13.4842  13.4818 50000  13.554+0.17 13.4940.16 13.27+0.16 13.35+0.16
So =110 | 0.0025 13.4837  13.4814 | 13.4791 | 100000 13.47£0.12 13.41+£0.12 13.444+0.12 13.54£0.12
0.00125 13.4836  13.4813 200000 13.42+0.08 13.494+0.08 13.47£0.08 13.48+0.08
0.01 20.9678  20.9661 10000 21.04£0.44 21.04+0.44 20.67£0.44 20.64£0.43
0.005 20.9659  20.9642 50000 21.05+0.20 20.98+0.20 20.71+£0.20 20.8140.20
So =120 | 0.0025 20.9655  20.9636 | 20.9616 | 100000 20.96+0.14 20.87+0.14 20.92+0.14 21.04£0.14
0.00125 20.9654  20.9635 200000  20.88+0.10 20.96+0.10 20.97£0.10 20.98+0.10

Table 1: Standard Bates model. Prices of European call options. Test parameters: K = 100, T = 0.5, r = 0.03,
n=0.05, Vp =0.04, 0y =0.04, ky =2, 0y =04, A\=5,v=0,5 =0.1, p=—-0.5,0.5.
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(a)

p=-051| Ay HTFDa HTFDb | PSOR MOL Nuic HMCLSa HMCLSb AMCLSa AMCLSDb
0.01 1.1365 1.1365 10000 1.03+0.08 1.14+0.09 1.06+0.09 1.03+0.09
0.005 1.1356 1.1358 50000 1.1940.04 1.14+0.04 1.18+0.04 1.124+0.04
So =80 | 0.0025 1.1354 1.1356 | 1.1359 1.1363 | 100000 1.15+0.03 1.13+0.03 1.13£0.03 1.13+0.03
0.00125 1.1353 1.1355 200000 1.14+0.02 1.14+0.02 1.1440.02 1.1440.02
0.01 3.3579 3.3563 10000 3.39+0.15 3.4440.16 3.384£0.15 3.484+0.16
0.005 3.3564 3.3551 50000 3.46%0.07 3.33+0.07 3.46+0.07 3.321+0.07
So =90 | 0.0025 3.3560 3.3548 | 3.3532 3.3530 | 100000 3.35£0.05 3.3510.05 3.3340.05 3.36£0.05
0.00125 3.3559 3.3547 200000 3.35+0.03 3.331+0.03 3.35+0.03 3.3440.03
0.01 7.6010 7.6006 10000 7.68+0.23 7.88+0.24 7.631+0.23 7.80+£0.24
0.005 7.6001 7.5992 50000 7.75+0.11 7.5940.10 7.76+0.10 7.53£0.10
So =100 | 0.0025 7.5997 7.5989 | 7.5970 7.5959 | 100000 7.56+£0.07 7.61+0.07 7.56+0.07 7.61+0.07
0.00125 7.5996 7.5989 200000 7.58+0.05 7.55+0.05 7.5840.05 7.57£0.05
0.01 13.8853  13.8854 10000 13.90£0.29 14.2840.30 13.844+0.29 14.10£0.29
0.005 13.8836  13.8842 50000 14.05£0.13 13.89£0.12 14.07£0.13 13.86+0.12
So =110 | 0.0025 13.8832  13.8839 | 13.8830 13.8827 | 100000 13.804£0.09 13.91£0.09 13.84+0.09 13.8940.09
0.00125 13.8831  13.8838 200000 13.86+0.06 13.844+0.06 13.87£0.06 13.83+0.06
0.01 21.7180  21.7199 10000 21.83£0.34 22.07£0.33 21.71£0.30 22.04£0.34
0.005 21.7168  21.7187 50000 21.914+0.15 21.76+0.13 21.90+0.15 21.724+0.13
So =120 | 0.0025 21.7166  21.7184 | 21.7186 21.7191 | 100000 21.594+0.10 21.784+0.10 21.64+0.10 21.72£0.10
0.00125 21.7165  21.7183 200000 21.68+0.07 21.65+0.07 21.68+£0.07 21.67+0.07
(b)
p=0.5 Ay HTFDa HTFDb | PSOR MOL Nuc HMCLSa HMCLSb AMCLSa AMCLSDb
0.01 1.4817 1.4837 10000 1.32£0.11 1.03+0.09 1.51+0.13 0.66+0.08
0.005 1.4809 1.4830 50000 1.51+0.05 1.31+0.05 1.54+0.05 1.47+0.05
So =80 | 0.0025 1.4807 1.4828 | 1.4843 1.4848 | 100000 1.50£0.04 1.50+0.04 1.51£0.04 1.48+0.04
0.00125 1.4807 1.4828 200000 1.50£0.03 1.49+0.02 1.49+0.03 1.47+0.02
0.01 3.7134 3.7148 10000 3.83+0.19 3.79+0.17 3.89+0.19 3.95+0.19
0.005 3.7121 3.7139 50000 3.8140.08 3.7040.08 3.8440.08 3.6940.08
So =90 | 0.0025 3.7118 3.7137 | 3.7145 3.7146 | 100000 3.6940.06 3.7540.06 3.7240.06 3.7040.06
0.00125 3.7118 3.7137 200000 3.70+0.04 3.71£0.04 3.721+0.04 3.70+£0.04
0.01 7.7044 7.7051 10000 7.7440.26 7.85+0.25 7.96+0.26 7.9940.26
0.005 7.7036 7.7039 50000 7.85+0.12 7.68+0.11 7.87+0.12 7.68+0.11
So =100 | 0.0025 7.7033 7.7036 | 7.7027 7.7018 | 100000 7.66+0.08 7.75£0.08 7.65+0.08 7.73£0.08
0.00125 7.7032 7.7036 200000 7.6940.06 7.67£0.05 7.6840.06 7.6940.05
0.01 13.6770  13.6756 10000 13.57£0.32 13.98+0.31 13.884+0.32 14.124+0.33
0.005 13.6752  13.6742 50000 13.83+0.14 13.67£0.13 13.89+0.14 13.6440.13
So =110 | 0.0025 13.6747  13.6739 | 13.6722 13.6715 | 100000 13.56+£0.09 13.74£0.10 13.584+0.10 13.71£0.10
0.00125 13.6747  13.6738 200000 13.65+0.07 13.654+0.07 13.64£0.07 13.64+0.07
0.01 21.3668  21.3671 10000 21.45+£0.32 21.60+0.35 21.39+0.33 21.8440.34
0.005 21.3655  21.3658 50000 21.544+0.15 21.40£0.14 21.61+0.16 21.4040.13
So =120 | 0.0025 21.3653  21.3655 | 21.3653 21.3657 | 100000 21.264+0.10 21.43+0.10 21.27+0.10 21.38+0.10
0.00125 21.3652  21.3653 200000  21.31+0.07 21.33£0.07 21.31£0.07 21.31+£0.07

Table 2: Standard Bates model. Prices of American call options. Test parameters: K = 100, T = 0.5, r = 0.03,
n=0.05, Vp =0.04, 0y =0.04, ky =2, 0y =04, A\=5,v=0,5 =0.1, p=—-0.5,0.5.
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Ay HTFDa HTDFb Nyve HMCa HMCb  AMCa  AMCb ‘ CF
0.01 0.09 0.34 10000  0.007 0.16 0.16 0.30

0.005 0.18 0.72 50000 0.36 0.72 0.79 1.51

0.0025 0.46 1.62 100000 0.71 1.44 1.57 3.12 0.001
0.00125 0.84 3.53 200000 1.45 2.95 3.14 6.17

Table 3: Standard Bates model. Computational times (in seconds) for Furopean call options in Table 1 for
So = 100, p = —0.5.

Ay HTFDa HTDFb Nymc  HMCLSa  HMCLSb  AMCLSa  AMCLSb
0.01 0.10 0.37 10000 0.09 0.23 0.20 0.45
0.005 0.19 0.77 50000 0.47 1.11 1.01 2.25
0.0025 0.48 1.77 100000 1.07 2.25 2.01 4.57
0.00125 0.95 3.61 200000 1.94 4.55 4.05 8.98

Table 4: Standard Bates model. Computational times (in seconds) for American call options in Table 2 for
So = 100, p = —0.5.

N So=80 So=90 So=100 Sp=110 So =120
200 1.919250 1.961063 1.894156  2.299666  2.109026
400 2.172836  2.209762  2.556021 1.673541  1.996332
800 1.544849 1.851932 1.463712  2.935697  2.106880

Table 5: Standard Bates model. HTFDb-ratio (6.4) for the price of American call options as the starting point
So varies with fixed space step Ay = 0.0025. Test parameters: T = 0.5, r = 0.03, n = 0.05, V; = 0.04, 6 = 0.04,

k=2,0=04, A=5,v=0,5=0.1, p=—-0.5.
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Figure 2: Standard Bates model. Moneyness vs implied volatility for European call options with Ny = 50. The
red line refers to HTFDa with Ay = 0.005, the blue line refers to HMCa with Nyc = 50000 and the green
line refers to the benchmark values CF. The accuracy of our hybrid methods is evident.

Inplied Volatility Snile

HIFDL ——
CF ——
HHCL ——

nplied Volatility

0.2 8.4 0.6 0.8 1 1.2 1.4 1.6
Haturity

Figure 3: Standard Bates model. Maturity vs implied volatility for European call options with Ny = 50. The
red line refers to HTFDa with Ay = 0.005, the blue line refers to HMCa with Nyic = 50000, and the green
line refers to the benchmark values CF. Also in this case the accuracy of our hybrid methods is evident.

6.2.2 Options with large maturity in the standard Bates model

In order to verify the robustness of the proposed algorithms we consider experiments when the Feller
condition 2ky 0y > 0‘2/ is not fulfilled for the CIR volatility process. We additionally stress our tests
by considering large maturities. For this purpose we consider the parameters from Chiarella et al.
[16] already used in Section 6.2.1 with p = —0.5, except for the maturity and the vol-vol, which are
modified as follows: T'= 5 and oy = 0.7 respectively.

Table 6 reports European call option prices, which are compared with the true values (CF). In
Table 7 we provide results for American call option prices. The settings for the experiments HTFDa-
b, HMCa-b and AMCa-b are the same as described at the beginning of Section 6.2.1. The settings
for the experiments in the American case HMCLSa-b and AMCLSa-b are changed
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HMCLSa and AMCLSa: 20 exercise dates, N; = 100 and Nyic = 10000, 50000, 100000, 200000;

HMCLSb and AMCLSDb: 40 exercise dates, N; = 200 and Nyc = 10000, 50000, 100000,
200000.

In the American case the benchmark values B-AMC are obtained by the Longstaff-Schwartz [33]
Monte Carlo algorithm with 300 exercise dates, combined with the accurate third-order Alfonsi method
with 3000 discretization time steps and 1 million iterations.

The numerical results suggest that large maturities bring to a slight loss of accuracy for HTFD
and HMC, even if both methods provide a satisfactory approximation of the true option prices, being
in turn mostly compatible with the results from the Alfonsi Monte Carlo method. It is worth noticing
that for long maturity 7' = 5 we have developed experiments with the same number of steps both in
time (NN¢) and space step (Ay) as for T'= 0.5. So, the numerical experiments are not slower, and it is
clear that one could achieve a better accuracy for larger values of N;.

p=-051| Ay HTFDa HTFDb CF Nuc HMCa HMCb AMCa AMCD
0.01 9.0085 8.9457 10000 9.21+0.55 9.09+0.55 8.69+0.53 8.56+0.51
0.0050 9.0032 8.9405 50000 9.13+0.25 8.921+0.24 8.81+0.24 9.04+0.24
So =80 | 0.0025 9.0020 8.9392 | 8.9262 | 100000 9.01£0.17 8.81+0.17 8.92+0.17 8.884+0.17
0.00125 9.0016 8.9389 200000 8.99+0.12 8.924+0.12 8.95+0.12 8.90+0.12
0.01 12,7405  12.6520 10000 12.954+0.67 12.95+0.67 12.29+£0.65 12.1540.6
0.0050 12.7342  12.6458 50000 12.87+0.30 12.64+0.29 12.49£0.29 12.76+0.3
So =90 | 0.0025 12.7327  12.6442 | 12.6257 | 100000 12.724+0.21 12.50+0.21 12.63£0.21 12.58+0.21
0.00125  12.7323  12.6438 200000 12.71£0.15 12.614£0.15 12.66+0.15 12.61+£0.15
0.01 17.0324  16.9176 10000 17.24£0.80 17.24+0.80 16.43+0.77 16.29£0.75
0.0050 17.0254  16.9106 50000 17.18+£0.36 16.91+0.35 16.73+0.35 17.03£0.35
So =100 | 0.0025 17.0237  16.9089 | 16.8855 | 100000 17.00£0.25 16.74+£0.25 16.91+0.25 16.84+0.25
0.00125 17.0232  16.9084 200000 16.99+0.18 16.86+0.18 16.94£0.18 16.88+0.18
0.01 21.8149  21.6741 10000  22.04£0.93 22.04+0.93 21.06+0.93 20.91£0.88
0.0050 21.8067  21.6659 50000 21.96+£0.42 21.67+0.41 21.43+0.41 21.82+0.41
So =110 | 0.0025 21.8047  21.6639 | 21.6364 | 100000 21.764+0.29 21.47+0.29 21.69£0.29 21.59£0.29
0.00125 21.8042 21.6634 200000 21.76+0.21  21.594+0.20 21.70£0.20 21.63+£0.20
0.01 27.0196  26.8539 10000 27.26+1.05 27.26+£1.05 26.12+£1.03 25.94£1.01
0.0050 27.0108  26.8452 50000 27.17+£0.47 26.86+0.46 26.56+£0.46 27.021+0.47
So =120 | 0.0025 27.0086  26.8430 | 26.8121 | 100000 26.94+0.33 26.63+0.33 26.89+0.33 26.78+0.33
0.00125  27.0081  26.8425 200000 26.95+£0.23  26.754+0.23  26.89+0.23 26.81+0.23

Table 6: Standard Bates model. Prices of European call options. Test parameters: K = 100, T =5, r = 0.03,
n=0.05, Vo =0.04, 0y = 0.04, sy =2, oy =0.7, A\ =5,7y=0, § = 0.1, p=—0.5. Case 2ky 0y < 0.

6.2.3 Bates model with stochastic interest rate

We consider now the case of Bates model associated with the Vasiceck model for the stochastic interest
rate. For the Bates model we consider the parameters from Chiarella et al. [16] already used in Section
6.2.3. Moreover, for the interest rate parameter we fix the following parameters: initial interest rate
rog = 0.03, speed of mean-reversion k, = 1, interest rate volatility o, = 0.2; time-varying long-term
mean 6,(t) fitting the theoretical bond prices to the yield curve observed on the market, here set as
P.(0,T) = e~ %037 We study the cases p; = psy = —0.5 and pa = pg, = —0.5,0.5. No correlation is
assumed to exist between r and V. We consider the mesh grid Ay = 0.02, 0.01, 0.005, 0.0025, the case
Ay = 0.00125 being removed because it requires huge computational times. The numerical results are
labeled HTFDa-b, HMCa-b, AMCa-b, HMCLSa-b, AMCLSa-b, their settings being given at
the beginning of Section 6.2.1.
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p=-05 | Ay HTFDa HTFDb B-AMC Nuic HMCLSa HMCLSb AMCLSa AMCLSDb
0.01 9.8335 9.7978 10000 10.15£0.46 10.20+0.46 10.4740.47 9.8010.42
0.0050 9.8283 9.7927 50000 9.93+0.20 9.86+0.20 9.8940.19 9.7840.19
So =80 | 0.0025 9.8271 9.7914 | 9.7907£ 0.04 | 100000 9.76+0.14 9.69+0.13 9.744+0.14 9.76+0.13
0.00125 9.8267 9.7911 200000 9.7940.10 9.70+0.09 9.734+0.10 9.7240.09
0.01 14.0801  14.0318 10000 14.58+0.56  14.46+0.55 14.944+0.58 14.08+0.51
0.0050 14.0741  14.0258 50000 14.13£0.24 14.144+0.24 14.194+0.23 14.12+0.23
So =90 | 0.0025 14.0726  14.0244 | 14.0030+ 0.05 | 100000 13.984+0.16 13.87+0.16 13.94+0.16 13.89£0.16
0.00125  14.0722  14.0240 200000 13.93£0.12 13.91+0.11 13.94£0.12 13.96+0.11
0.01 19.0658  19.0075 10000  19.5940.66  19.444+0.63 19.88+£0.66 19.13£0.59
0.0050 19.0594  19.0011 50000 19.10+0.27  19.06+£0.27 19.26£0.26 19.01+0.26
So =100 | 0.0025 19.0578  18.9995 | 18.9632+ 0.05 | 100000 18.92+0.19 18.88+0.18 18.85+0.19 18.90£0.18
0.00125 19.0574  18.9991 200000 18.80£0.13 18.84+0.13 18.85+0.13 18.92+0.13
0.01 24.7434  24.6788 10000  25.02£0.74 24.84+0.72 25.32+0.72 24.78+0.67
0.0050 24.7364  24.6719 50000 24.79£0.30 24.57£0.29 24.9440.29 24.72+0.29
So =110 | 0.0025 24.7347  24.6701 | 24.6289+ 0.06 | 100000 24.53+0.21 24.47+0.20 24.50£0.21 24.51+£0.20
0.00125  24.7343  24.6697 200000 24.42+0.14 24.454+0.14 24.50£0.15 24.53+0.14
0.01 31.0646  30.9983 10000 30.88+£0.74 31.15+0.75 31.1840.74 31.04£0.71
0.0050 31.0577  30.9914 50000 31.10+0.32  30.94+0.31 31.32+0.32  30.984+0.32
So =120 | 0.0025 31.0559  30.9896 | 30.9052+0.07 | 100000 30.89+0.23 30.72£0.22 30.70£0.22  30.7240.22
0.00125  31.0555  30.9892 200000 30.72+0.16  30.73+0.16 30.77£0.16  30.89+£0.15

Table 7: Standard Bates model. Prices of American call options. Test parameters: K = 100, T =5, r = 0.03,

n=0.05, Vo = 0.04, Oy = 0.04, ky =2, oy =0.7, A\=5,7=0, 6 = 0.1, p = —0.5. Case 2y 0y < o%.

When the interest rate is assumed to be stochastic, no references are available in the literature.
Therefore, we propose benchmark values obtained by using a Monte Carlo method in which the CIR
paths are simulated through the accurate third-order Alfonsi [2] discretization scheme and the interest
For these benchmark values, called B-AMC, the

rate paths are generated by an exact scheme.

number of Monte Carlo iterations and of the discretization time steps are set as Nyc = 10% and
N; = 300 respectively. In the American case, B-AMC is evaluated through the Longstaff-Schwartz
[33] algorithm with 20 exercise dates. All Monte Carlo results report the 95% confidence intervals.
European and American call option prices are given in tables 8 and 9 respectively. Tables 10 and
11 refer to the computational time cost (in seconds) of the different algorithms in the European Call
case and American Call case respectively. The numerical results confirm the good numerical behavior
of HTFD and HMC in the Bates-Hull-White model as well.
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(a)

psr =—0.5 | Ay HTFDa HTFDb B-AMC Nuc HMCa HMCb AMCa AMCDH
0.02 1.0169 1.0079 10000 1.0040.09 0.96+0.09 1.0040.09 1.06+0.10
0.01 1.0201 1.0188 50000 1.02+0.04 0.971+0.04 0.98+0.04 1.01+0.04
So = 80 0.0050 1.0199 1.0194 1.0153+0.01 100000 1.00+0.03 1.0040.03 1.014+0.03 1.03+0.03
0.0025 1.0197 1.0193 200000 1.0140.02 1.014+0.02 1.0240.02 1.00+0.02
0.01 3.1172 3.1032 10000 3.05+0.16 3.05+0.16 3.07+0.16 3.14+0.17
0.01 3.1186 3.1137 50000 3.10+0.07 3.03+0.07 3.02+0.07 3.09+0.07
So =90 0.0050 3.1174 3.1135 3.1008+0.02 100000 3.07£0.05 3.08+0.05 3.09+0.05 3.14+0.05
0.0025 3.1174 3.1136 200000 3.09+0.04 3.10+£0.04 3.11+0.04 3.08+0.04
0.02 7.2528 7.2472 10000 7.17+0.24 7.174+0.24 7.201+0.24 7.244+0.25
0.01 7.2528 7.2479 50000 7.21+0.11 7.18+0.11 7.12+0.11 7.21+0.11
So = 100 0.0050 7.2528 7.2480 7.23151+0.02 100000 7.18+0.08 7.2440.08 7.20+0.08 7.27+0.08
0.0025 7.2528 7.2480 200000 7.224+0.05 7.25+0.05 7.24+0.05 7.20+0.05
0.02 13.4553 13.4565 10000 13.30+£0.32 13.304+0.32 13.41+0.33 13.3940.33
0.01 13.4465 13.4440 50000 13.37+0.15 13.40+0.15 13.274+0.15 13.38%+0.15
So =110 0.0050 13.4435 13.4407 | 13.4256+0.03 | 100000 13.35+0.10 13.46+0.10 13.384+0.10 13.48+0.10
0.0025 13.4432 13.4404 200000 13.4040.07 13.47+£0.07 13.434+0.07 13.3940.07
0.02 21.1320 21.1356 10000 20.894+0.40 20.89+0.40 21.08+0.40 20.994+0.41
0.01 21.1243 21.1239 50000 21.03%+0.18 21.09+0.18 20.924+0.18 21.03%+0.18
So = 120 0.0050 21.1222 21.1214 | 21.1070+£0.04 | 100000 21.01+0.13 21.174+0.13 21.04+0.13 21.17+0.13
0.0025  21.1215 21.1207 200000 21.064+0.09 21.16+0.09 21.124+0.09 21.06%0.09
(b)
psr =0.5 | Ay HTFDa HTFDb B-AMC Nuvc HMCa HMCb AMCa AMCbH
0.02 1.3459 1.3379 10000 1.29+0.11 1.28+0.11 1.32+0.10 1.41+0.11
0.01 1.3482 1.3471 50000 1.3440.05 1.3040.05 1.3240.05 1.3540.05
So =80 0.0050 1.3479 1.3475 1.3446+0.01 100000 1.324+0.03 1.314+0.03 1.3440.03 1.3440.03
0.0025 1.3477 1.3473 200000 1.334+0.02 1.3440.02 1.3540.02 1.3240.02
0.01 3.7320 3.7233 10000 3.62+0.18 3.6240.18 3.64+0.18 3.76+0.19
0.01 3.7323 3.7304 50000 3.69+0.08 3.65+0.08 3.64+0.18 3.76+0.19
So =90 0.0050 3.7311 3.7298 3.7263+0.02 100000 3.66+£0.06 3.68+0.06 3.71£0.06 3.73+0.06
0.0025 3.7311 3.7299 200000 3.6940.04 3.7240.04 3.73£0.04 3.68+0.04
0.02 8.0100 8.0073 10000 7.83+0.26 7.83+0.26 7.821+0.26 8.00+£0.27
0.01 8.0112 8.0102 50000 7.92+0.12 7.93+0.12 7.93+0.12 7.97+0.12
So =100 | 0.0050 8.0114 8.0107 8.0069+0.03 100000 7.91+0.08 7.97+0.08 7.99+0.08 8.02+0.08
0.0025 8.0114 8.0107 200000 7.95+0.06 8.02+0.06 8.00+0.06 7.95+0.06
0.02 14.1482 14.1505 10000 13.89+0.35 13.894+0.35 13.88+0.35 14.0740.36
0.01 14.1413 14.1414 50000 14.01+0.16 14.05+0.16 14.03+0.16 14.09+0.16
So =110 0.0050 14.1388 14.1388 | 14.13234+0.03 | 100000 14.01+0.11 14.10+0.11 14.124+0.11 14.1440.11
0.0025  14.1386 14.1386 200000 14.064+0.08 14.17+0.08 14.134+0.08 14.07+0.08
0.02 21.6737 21.6772 10000 21.37£0.42 21.37+0.42 21.35+0.42 21.5140.43
0.01 21.6670 21.6674 50000 21.50+0.19 21.5540.19 21.5240.19 21.60+0.19
So = 120 0.0050 21.6651 21.6653 | 21.6501+0.04 | 100000 21.524+0.13 21.63+0.13 21.644+0.13 21.68+0.14
0.0025 21.6645 21.6646 200000 21.574+0.10 21.71+£0.10 21.654+0.10 21.58+0.09
Table 8: Bates-Hull-White model. Prices of FEuropean call options. Test parameters: K = 100, T = 0.5,
n =20.05,,7r90=0.03, k. =1, 0, =02, Vj =0.04, 8y =004, ky =2, 0y =04, A=5,v=0, §d = 0.1,

psv = 70.5;/)5'7“ = 705705
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(a)

psr =—0.5 | Ay HTFDa HTFDb B-AMC Nuc HMCLSa HMCLSb AMCLSa AMCLSb
0.02 1.0561 1.0470 10000 0.76+0.07 0.56+0.06 0.95+0.08 0.82+0.08
0.01 1.0598 1.0588 50000 1.0840.04 0.91+£0.04 1.01£0.04 0.96+0.04
So = 80 0.0050 1.0597 1.0596 1.054440.01 100000 1.07+0.03 1.034+0.03 1.074+0.03 1.0440.03
0.0025 1.0596 1.0595 200000 1.054+0.02 1.0440.02 1.0740.02 1.054+0.02
0.01 3.2511 3.2364 10000 3.28+0.15 3.39+0.16 3.35+0.16 3.07+0.15
0.01 3.2537 3.2493 50000 3.33+0.07 3.21+0.07 3.25+0.07 3.30+0.07
So =90 0.0050 3.2528 3.2494 3.2273+0.01 100000 3.23+0.05 3.24+0.05 3.27+0.05 3.25+0.05
0.0025 3.2528 3.2495 200000 3.22+0.03 3.23+0.03 3.25+0.03 3.24+0.03
0.02 7.6012 7.5952 10000 7.64+0.22 7.994+0.23 7.80+0.23 7.68+0.22
0.01 7.6020 7.5976 50000 7.72+0.10 7.58+0.09 7.61+0.10 7.65+0.10
So = 100 0.0050 7.6022 7.5980 7.5589+0.02 100000 7.54+0.07 7.621+0.07 7.61+0.07 7.54+0.07
0.0025 7.6022 7.5980 200000 7.54+0.05 7.541+0.05 7.56+0.05 7.60£0.05
0.02 14.1510 14.1524 10000 14.22+0.28 14.614+0.29 14.35+0.29 14.07+0.28
0.01 14.1443 14.1425 50000 14.254+0.13 14.11+£0.12 14.164+0.12 14.174+0.13
So =110 0.0050 14.1420 14.1401 | 14.0909+0.03 | 100000 14.03+0.09 14.18+0.09 14.104+0.09 14.06+0.09
0.0025 14.1419 14.1399 200000 14.05+0.06 14.04+0.06 14.074+0.06 14.13%+0.06
0.02 22.2466 22.2505 10000 22.384+0.32 22.84+0.33 22.46+0.32 22.15+0.32
0.01 22.2412 22.2419 50000 22.354+0.15 22.27+0.14 22.2440.14 22.284+0.14
So = 120 0.0050  22.2398 22.2402 | 22.1736+0.03 | 100000 22.12+0.10 22.274+0.10 22.19+0.10 22.17+0.10
0.0025  22.2394 22.2397 100000 22.12+0.10 22.274+0.10 22.19+0.10 22.1740.10
(b)
psr =0.5 | Ay HTFDa HTFDb B-AMC Nuc HMCLSa HMCLSb AMCLSa AMCLSb
0.02 1.3551 1.3470 10000 1.184+0.09 1.2940.10 1.1240.09 0.80+0.08
0.01 1.3576 1.3566 50000 1.3540.05 1.1740.04 1.33£0.05 1.2540.05
So =80 0.0050 1.3573 1.3570 1.3559+0.01 100000 1.33+0.03 1.30+0.03 1.33+0.03 1.2740.03
0.0025 1.3571 1.3569 200000 1.354+0.02 1.314+0.02 1.3840.02 1.3440.02
0.01 3.7696 3.7606 10000 3.7240.17 3.784+0.17 3.8240.18 3.72+0.17
0.01 3.7705 3.7688 50000 3.86+0.08 3.71+0.08 3.80+0.08 3.81+0.08
So =90 0.0050 3.7694 3.7685 3.7633+0.02 100000 3.75+0.06 3.74+0.05 3.76+0.05 3.74+0.05
0.0025 3.7694 3.7686 200000 3.75+0.04 3.744+0.04 3.80£0.04 3.7940.04
0.02 8.1285 8.1249 10000 8.124+0.24 8.521+0.26 8.254+0.26 8.151+0.25
0.01 8.1308 8.1301 50000 8.25+0.11 8.08+0.11 8.15+0.11 8.18+0.11
So =100 | 0.0050 8.1311 8.1308 8.11224+0.03 100000 8.07+0.08 8.16+0.08 8.11+0.08 8.10+0.08
0.0025 8.1312 8.1309 200000 8.08+0.06 8.07+0.06 8.14+0.06 8.16+0.06
0.02 14.4455 14.4468 10000 14.48+0.32 14.844+0.33 14.43+0.32 14.51+0.32
0.01 14.4409 14.4414 50000 14.60+0.15 14.40+0.14 14.454+0.14 14.474+0.14
So =110 0.0050 14.4389 14.4395 | 14.3884+0.03 | 100000 14.344+0.10 14.47+0.10 14.394+0.10 14.38+0.10
0.0025  14.4388 14.4394 200000 14.354+0.07 14.37£0.07 14.384+0.07 14.48+0.07
0.02 22.2859 22.2893 10000 22.23+£0.36 22.87+0.39 22.45+0.36 22.294+0.35
0.01 22.2815 22.2827 50000 22.50+0.17 22.29+0.16 22.274+0.16 22.28+0.16
So = 120 0.0050  22.2802 22.2813 | 22.2039+0.04 | 100000 22.17+0.12 22.31+£0.12 22.2440.12 22.2240.12
0.0025  22.2798 22.2808 200000 22.174+0.08 22.17+0.08 22.174+0.08 22.32+0.08
Table 9: Bates-Hull-White model. Prices of American call options. Test parameters: K = 100, T = 0.5,
n =0.05 1r =003, k. =1, 0. =02, Vh =004, 0y = 0.04, ky =2, 0y =04, A=5,v=0,0 = 0.1

psv = 70.5;/)5'7“ = 705705
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Ay HTFDa HTDFb | Numc HMCa HMCb AMCa AMCb

0.02 2.77 22.95 10000 0.13 0.25 0.36 0.48
0.01 6.15 48.17 50000 0.66 1.35 1.11 2.48
0.005 12.12 99.19 | 100000 1.37 2.56 1.82 4.99

0.0025 27.61 204.88 | 200000 2.56 5.08 3.70 9.96

Table 10: Bates-Hull-White model. Computational times (in seconds) for European call options in Table 8 for
So = 100, psy. = —0.5.

Ay HTFDa HTDFb Nme HMCLSa  HMCLSb  AMCLSa  AMCLSDH

0.02 2.77 23.10 10000 0.28 0.43 0.40 0.62
0.01 6.39 48.65 50000 0.80 1.79 1.30 2.72
0.005 12.50 99.85 | 100000 1.91 3.89 3.02 6.15
0.0025 27.92 205.60 | 200000 4.03 8.11 5.20 10.75

Table 11: Bates-Hull- White model. Computational times (in seconds) for American call options in Table 9 for
So = 100, ps, = —0.5.
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7 Conclusions

In this paper we have studied the numerical stability of the hybrid tree/finite-difference method already
introduced in [8, 9]. We have extended the method to the Bates model with a possible stochastic
interest rate. We have also considered a Monte Carlo approach. We have used our numerical schemes
to evaluate European and American options. The results can be considered good and reliable, and
the comparison with existing pricing methods has shown a good efficiency also in terms of computing
time costs.

Acknowledgements. The authors wish to thank Andrea Molent for having implemented the Alfonsi
simulation scheme and the Monte Carlo Longstaff-Schwartz algorithms.
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