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Numerical stability of a hybrid method for pricing options

Maya Briani, Lucia Caramellino, Giulia Terenzi,

Introduction

Following the work in [START_REF] Briani | A hybrid approach for the implementation of the Heston model[END_REF][START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF], we further develop and study the hybrid tree/finite-difference approach and the hybrid Monte Carlo technique in order to numerically evaluate option prices. We concern here with the theoretical study of the stability of the numerical scheme for both European and American options. Also, in this paper we stress the model (and the associated numerical procedure) by considering the Bates model [START_REF] Bates | Jumps and stochastic volatility: exchange rate processes implicit in Deutsch mark options[END_REF], possibly coupled with a stochastic interest rate following the Vasicek dynamics [START_REF] Vasicek | An equilibrium characterization of the term structure[END_REF], and we call the full model as Bates-Hull-White.

The option pricing tree/finite-difference approach we deal with, derives from applying an efficient simple (recombining binomial) tree method in the direction of the volatility and the interest rate components, whereas the asset price component is locally treated by means of a one-dimensional partial integro-differential equation (PIDE), to which a finite-difference scheme is applied. Here, the numerical treatment of the nonlocal term coming from the jumps involves implicit-explicit techniques, as well as numerical quadratures. The procedure applies to other rather general stochastic volatility models (see [START_REF] Briani | Convergence rate of Markov chains and hybrid numerical schemes to jump-diffusions with application to the Bates model[END_REF]) or for problems in insurance (see [START_REF] Goudenege | Pricing and Hedging GLWB in the Heston and in the Black-Scholes with Stochastic Interest Rate Models[END_REF]). We concentrate here our attention to the Bates-Hull-White model and we give results on the numerical stability. Let us mention that, to this purpouse, we never require the validity of the Feller condition for the Cox-Ingersol-Ross (CIR) dynamics [START_REF] Cox | A theory of the term structure of interest rates[END_REF] of the volatility process.

In the case of plain vanilla European options, Fourier inversion methods [START_REF] Carr | Option valuation using the Fast Fourier Transform[END_REF] lead to closed-form formulas to compute the price under the Bates model. For American options, numerical methods are typically based on the use of the dynamic programming principle to which one applies either deterministic schemes for solutions of PIDEs from numerical analysis and/or from tree methods or Monte Carlo techniques. Our method is a mixture between a tree approach and a deterministic numerical approach, and is particularly tailored for the use of the backward dynamic programming principle.

Let us recall that tree methods for the Heston model have been already proposed in the literature. For example, Akyildirim, Dolinsky and Soner [START_REF] Akyıldırım | Approximating stochastic volatility by recombinant trees[END_REF] have recently provided a four tuple discrete Markov approximation which can be generalized to other stochastic volatility models with a factor equation. Lo, Nguyen and Skindilias [START_REF] Lo | A Unified Tree approach for options pricing under stochastic volatility models[END_REF] have proposed a Markov chain approximation based on a trinomial tree, again adaptable to other stochastic volatility models. Vellekoop and Nieuwenhuis [START_REF] Vellekoop | A tree-based method to price American Options in the Heston Model[END_REF] have introduced a binomial tree built from the full truncation scheme of Lord, Koekkoek and Dijk [START_REF] Lord | A comparison of biased simulation schemes for stochastic volatility models[END_REF]. Other tree approaches for the Heston model are available (see e.g. the references quoted in [START_REF] Vellekoop | A tree-based method to price American Options in the Heston Model[END_REF]). Generally, the Feller condition for the CIR volatility equation is required, either for theoretical purposes or for the numerical efficiency of the method.

Another tool is given by the dicretization of PDEs. When the jumps are not considered, available references are recalled in [START_REF] Briani | A hybrid approach for the implementation of the Heston model[END_REF][START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF]. In the standard Bates model, the finite-difference methods for solving the 2-dimensional PIDE associated with the option pricing problems can be based on implicit, explicit or alternating direction implicit schemes. The implicit scheme requires to solve a dense sparse system at each time step. Toivanen [START_REF] Toivanen | A Componentwise Splitting Method for Pricing American Options Under the Bates Model[END_REF] proposes a componentwise splitting method for pricing American options. In Ballestra and Cecere [START_REF] Briani | Convergence rate of Markov chains and hybrid numerical schemes to jump-diffusions with application to the Bates model[END_REF], the problem is handled by using an ad hoc pseudospectral method. Chiarella, Kang, Meyer and Ziogas [START_REF] Chiarella | The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines[END_REF] developed a method of lines algorithm for pricing and hedging American options again under the standard Bates dynamics. Itkin [START_REF] Itkin | Efficient Solution of Backward Jump-Diffusion PIDEs with Splitting and Matrix Exponentials[END_REF] has recently proposed a unified approach to handle PIDEs associated with Lévy's models of interest in Finance.

From the simulation point of view, the main problem consists in the treatment of the CIR dynamics for the volatility process. Several efficient and accurate methods have been developed specifically for the simulation of CIR paths, see, e.g., Alfonsi [START_REF] Alfonsi | High order discretization schemes for the CIR process: application to affine term structure and Heston models[END_REF], Andersen [START_REF] Andersen | Simple and efficient simulation of the Heston stochastic volatility model[END_REF], Lord, Koekkoek and Dijk [START_REF] Lord | A comparison of biased simulation schemes for stochastic volatility models[END_REF] or Kahl and Jäckel [START_REF] Kahl | Fast strong approximation Monte Carlo schemes for stochastic volatility models[END_REF]. We propose here a hybrid Monte Carlo technique: we couple the simulation of the approximating tree for the volatility and the interest rate components with a standard simulation of the underlying asset price, based on Brownian increments and a straightforward treatment of the jumps. In the case of American option, this is associated with the Longstaff and Schwartz algorithm [START_REF] Longstaff | Valuing American options by simulations: a simple least squares approach[END_REF], allowing to treat the dynamic programming principle. The numerical results are then compared with the Alfonsi's third-order simulation scheme.

The paper is organized as follows. In Section 2, we introduce the Bates-Hull-White model. In Section 3 we recall the tree procedure for the volatility and the interest rate pair (Section 3.1), we describe our discretization of the log-price process (Section 3.2) and the hybrid Monte Carlo simulations (Section 3.3). Section 4 is devoted to the hybrid tree/finite-difference method: we set the numerical scheme for the associated local PIDE problem (Section 4.1) and we apply it to the solution of the whole pricing scheme (Section 4.2). Section 5 is devoted to the analysis of the numerical stability of the resulting tree/finite-difference method. Section 6 refers to the practical use of our methods. Here, numerical results and comparisons are widely discussed.

The Bates-Hull-White model

The Bates model [START_REF] Bates | Jumps and stochastic volatility: exchange rate processes implicit in Deutsch mark options[END_REF] is a stochastic volatility model with price jumps: the dynamics of the underlying asset price is driven by both a Heston stochastic volatility [START_REF] Heston | A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options[END_REF] and a compound Poisson jump process of the type originally introduced by Merton [START_REF] Merton | Option pricing when underlying stock returns are discontinuous[END_REF]. We allow the interest rate to follow a stochastic model, which we assume to be a generalized Ornstein-Uhlenbeck (hereafter OU) process. More precisely, the dynamics under the risk neutral measure of the share price S, the volatility process V and the interest rate r, are given by the following jump-diffusion model:

dS t S t - = (r t -η)dt + V t dZ S t + dH t , dV t = κ V (θ V -V t )dt + σ V √ V t dZ V t , dr t = κ r (θ r (t) -r t )dt + σ r dZ r t , (2.1) 
where η denotes the continuous dividend rate, S 0 , V 0 , r 0 > 0, Z S , Z V and Z r are correlated Brownian motions and H is a compound Poisson process with intensity λ and i.i.d. jumps {J k } k , that is

H t = Kt k=1 J k , (2.2) 
K denoting a Poisson process with intensity λ. We assume that the Poisson process K, the jump amplitudes {J k } k and the 3-dimensional correlated Brownian motion (Z S , Z V , Z r ) are independent.

As suggested by Grzelak and Oosterlee in [START_REF] Grzelak | On the Heston model with stochastic interest rates[END_REF], the significant correlations are between the noises governing the pairs (S, V ) and (S, r). So, as done in [START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF], we assume that the couple (Z V , Z r ) is a standard Brownian motion in R 2 and Z S is a Brownian motion in R which is correlated both with Z V and Z r : d Z S , Z V t = ρ 1 dt and d Z S , Z r t = ρ 2 dt.

We recall that the volatility process V follows a CIR dynamics with mean reversion rate κ V , long run variance θ V and σ V denotes the vol-vol (volatility of the volatility). We assume that θ V , κ V , σ V > 0 and we stress that we never require in this paper that the CIR process satisfies the Feller condition 2κ V θ V ≥ σ 2 V , ensuring that the process V never hits 0. So, we allow the volatility V to reach 0. The interest rate r t is described by a generalized OU process, in particular θ r is time-dependent but deterministic and fits the zero-coupon bond market values, for details see [START_REF] Brigo | Interest Rate Models-Theory and Practice[END_REF]. As already done in [START_REF] Hull | Numerical procedures for implementing term structure models I[END_REF], we write the process r as follows:

r t = σ r X t + ϕ t (2.3)
where

X t = -κ r t 0 X s ds + Z r t
and ϕ t = r 0 e -κrt + κ r t 0 θ r (s)e -κr(t-s) ds.

(2.4)

From now on we set

Z V = W 1 , Z r = W 2 , Z S = ρ 1 W 1 + ρ 2 W 2 + ρ 3 W 3 ,
where W = (W 1 , W 2 , W 3 ) is a standard Brownian motion in R 3 and the correlation parameter ρ 3 is given by

ρ 3 = 1 -ρ 2 1 -ρ 2 2 , ρ 2 1 + ρ 2 2 ≤ 1.
By passing to the logarithm Y = ln S in the first component, by taking into account the above mentioned correlations and by considering the process X as in (2.3)-(2.4), we get the triple (Y, V, X) given by

dY t = µ Y (V t , X t , t)dt + √ V t ρ 1 dW 1 t + ρ 2 dW 2 t + ρ 3 dW 3 t + dN t , Y 0 = ln S 0 ∈ R, dV t = µ V (V t )dt + σ V √ V t dW 1 t , V 0 > 0, dX t = µ X (X t )dt + dW 2 t , X 0 = 0, (2.5) 
where

µ Y (v, x, t) = σ r x + ϕ t -η - 1 2 v, (2.6 
)

µ V (v) = κ V (θ V -v), (2.7 
)

µ X (x) = -κ r x, (2.8) 
and N t is the compound Poisson process written through the Poisson process K, with intensity λ, and the i.i.d. jumps {log(1

+ J k )} k , that is N t = Kt k=1 log(1 + J k ),
Recall that K, the jump amplitudes {log(1 + J k )} k and the 3-dimensional standard Brownian motion (W 1 , W 2 , W 3 ) are all independent. We also recall that the Lévy measure associated with N is given by ν(dx) = λP(log(1

+ J 1 ) ∈ dx),
and whenever log(1 + J 1 ) is absolutely continuous then ν has a density as well:

ν(dx) = ν(x)dx = λp log(1+J 1 ) (x)dx, (2.9) 
p log(1+J 1 ) denoting the probability density function of log(1 + J 1 ). For example, in the Merton model [START_REF] Merton | Option pricing when underlying stock returns are discontinuous[END_REF] it is assumed that log(1 + J 1 ) has a normal distribution -this is the choice we will do in our numerical experiments, as done in Chiarella et al. [START_REF] Chiarella | The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines[END_REF]. But other jump-amplitude measures can be selected. For instance, in the Kou model [START_REF] Kou | A Jump-Diffusion Model for Option Pricing[END_REF] the law of log(1 + J 1 ) is a mixture of exponential laws:

p log(1+J 1 ) (x) = pλ + e -λ + x 1 {x>0} + (1 -p)λ -e λ -x 1 {x<0} , 1 A denoting the indicator function of A.
Here, the parameters λ ± > 0 control the decrease of the distribution tails of negative and positive jumps respectively, and p is the probability of a positive jump.

We pass to the transformation Y = ln S. If Ψ(Y ) denotes the payoff written on the log-price, the option price P = P (t, y, v, x) is given by European price:

P (t, y, v, x) = E e -T t (σrX t,x s +ϕs)ds Ψ(Y t,y,v,x T ) , American price: P (t, y, v, x) = sup τ ∈T t,T E e -τ t (σrX t,x s +ϕs)ds Ψ(Y t,y,v,x τ ) , (2.10) 
where T t,T denotes the set of all stopping times taking values on [t, T ]. Hereafter, (Y t,y,v,x , V t,v , X t,x ) denotes the solution of the jump-diffusion dynamic (2.5) starting at time t in the point (y, v, x).

The dicretized process

We first set up the discretization of the triple (Y, V, X) we will take into account.

3.1 The 2-dimensional tree for (V, X)

We consider an approximation for the pair (V, X) in (2.5) on the time-interval [0, T ] by means of a 2-dimensional computationally simple tree. This means that we construct a Markov chain running over a 2-dimensional recombining bivariate lattice and, at each time-step, both components of the Markov chain can jump only upwards or downwards. We consider the "multiple-jumps" approach by Nelson and Ramaswamy [START_REF] Nelson | Simple binomial processes as diffusion approximations in financial models[END_REF], extensively developed for the CIR process in [START_REF] Appolloni | A robust tree method for pricing American options with CIR stochastic interest rate[END_REF]. We give here the main ideas in order to set-up the whole algorithm. We start by considering a discretization of the time-interval [0, T ] in N subintervals [nh, (n + 1)h], n = 0, 1, . . . , N , with h = T /N . For n = 0, 1, . . . , N , consider the lattice for V and X defined by

V n = {v n k } k=0,1,...,n with v n k = V 0 + σ V 2 (2k -n) √ h 2 1 { √ V 0 + σ V 2 (2k-n) √ h>0} , (3.1) 
X n = {x n j } j=0,1,...,n with x n j = (2j -n) √ h, (3.2) 
respectively. Notice that v 0 0 = V 0 and x 0 0 = 0 = X 0 . For each fixed v n k ∈ V n and x n j ∈ X n , we denote the "up" and "down" jump by v n+1 ku(n,k) and v n+1 k d (n,k) and by x n+1 ju(n,j) and x n+1 j d (n,j) . By applying the "multiple jump approach", the jump-indexes k u (n, k), k d (n, k), j u (n, j), j d (n, j) are defined as

k u (n, k) = min{k * : k + 1 ≤ k * ≤ n + 1 and v n k + µ V (v n k )h ≤ v n+1 k * }, (3.3) 
k d (n, k) = max{k * : 0 ≤ k * ≤ k and v n k + µ V (v n k )h ≥ v n+1,k * }, (3.4) 
j u (n, j) = min{j * : j + 1 ≤ j * ≤ n + 1 and x n j + µ X (x n j )h ≤ x n+1 j * }, (3.5) 
j d (n, j) = max{j * : 0 ≤ j * ≤ j and x n j + µ X (x n j )h ≥ x n+1 j * }, (3.6) 
where µ V and µ X is the drift of V and X respectively (see (2.7) and (2.8)), with the understanding k u (n, k) = n + 1, respectively k d (n, k) = 0, if the set in the r.h.s. of (3.3), respectively (3.4), is empty, and similarly for j u and j d . The transition probabilities for V are defined as follows: starting from the node (n, k) the probability that the process jumps to k u (n, k) and k d (n, k) at time-step n + 1 are set as

p V u (n, k) = 0 ∨ µ V (v n k )h + v n k -v n+1 k d (n,k) v n+1 ku(n,k) -v n+1 k d (n,k) ∧ 1 and p V d (n, k) = 1 -p V u (n, k) (3.7)
respectively. A similar definition is set for the component X: starting from (n, j), the probability that the process jumps to j u (n, j) and j d (n, j) at time-step n + 1 are

p X u (n, j) = 0 ∨ µ X (x n j )h + x n j -x n+1 j d (n,j) x n+1 ju(n,j) -x n+1 j d (n,j) ∧ 1 and p X d (n, j) = 1 -p X u (n, j) (3.8)
respectively.

The tree procedure for the pair (V, X) is obtained by joining the trees built for V and for X. Namely, for n = 0, 1, . . . , N , consider the lattice Starting from the node (n, k, j), which corresponds to the position (v n k , x n j ) ∈ V n × X n , we define the four possible jumps by means of the following four nodes at time n + 1:

V n × X n = {(v n k , x n j )} k,j=0,1,...,n . (3.9) 
(n + 1, k u (n, k), j u (n, j)) with probability p uu (n, k, j) = p V u (n, k)p X u (n, j), (n + 1, k u (n, k), j d (n, j)) with probability p ud (n, k, j) = p V u (n, k)p X d (n, j), (n + 1, k d (n, k), j u (n, j)) with probability p du (n, k, j) = p V d (n, k)p X u (n, j), (n + 1, k d (n, k), j d (n, j)) with probability p dd (n, k, j) = p V d (n, k)p X d (n, j), (3.10) 
where, for a ∈ {u, d}, the above nodes k a (n, k), j a (n, j) and the above probabilities p V a (n, k), p X a (n, j) are defined in (3.3)-(3.4), (3.5)-(3.6), (3.7) and (3.8). The factorization of the jump probabilities in (3.10) follows from the orthogonality property of the noises driving the two processes. This procedure gives rise to a Markov chain ( V h n , Xh n ) n=0,...,N that weakly converges on the path space, as h → 0, to the diffusion process (V t , X t ) t∈[0,T ] solution to

dV t = µ V (V t )dt + σ V V t dW 1 t , V 0 > 0, dX t = µ X (X t ) dt + dW 2 t , X 0 = 0.
This can be proved by using standard results (see e.g. the techniques in [START_REF] Nelson | Simple binomial processes as diffusion approximations in financial models[END_REF]) and the convergence of the chain approximating the volatility process proved in [START_REF] Appolloni | A robust tree method for pricing American options with CIR stochastic interest rate[END_REF]. And this holds independently of the validity of the Feller condition 2κ V θ V ≥ σ 2 V . Details and remarks on the extension of this procedure to more general cases can be found in [START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF]. In particular, if the correlation between the Brownian motions driving (V, X) was not null, one could define the jump probabilities by matching the local cross-moment (see Remark 3.1 in [START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF]).

The approximation of the component Y

We describe here how we manage the Y -component in (2.5) by taking into account the tree procedure given for the pair (V, X). We go back to (2.5): by isolating √ V t dW 1 t in the second line and dW 2 t in the third one, we obtain

dY t = µ(V t , X t , t)dt + ρ 3 V t dW 3 t + ρ 1 σ V dV t + ρ 2 V t dX t + dN t (3.11) with µ(v, x, t) = µ Y (v, x, t) -ρ 1 σ V µ V (v) -ρ 2 √ v µ X (x) = σ r x + ϕ t -η -1 2 v -ρ 1 σ V κ V (θ V -v) + ρ 2 κ r x √ v (3.12)
(µ Y , µ V and µ X are defined in (2.6), (2.7) and (2.8) respectively). To numerically solve (3.11), we mainly use the fact that the noises W 3 and N are independent of the processes V and X. So, we first take the approximating tree ( V h n , Xn ) n=0,1,...,N -1 discussed in Section 3.1 and we set ( V h t , Xh t ) t∈[0,T ] = ( V h t/h , Xh t/h ) t∈[0,T ] the associated time-continuous càdlàg approximating process for (V, X). Then, we insert the discretization ( V h , Xh ) for (V, X) in the coefficients of (3.11). Therefore, the final process Ȳ h approximating Y is set as follows: Ȳ h 0 = Y 0 and for t ∈ (nh, (n + 1)h] with n = 0, 1, . . . , N -1

Ȳ h t = Ȳ h nh + µ( V h nh , Xh nh , nh)(t -nh) + ρ 3 V h t (W 3 t -W 3 nh ) + ρ 1 σ V ( V h t -V h nh ) + ρ 2 V h t ( Xh t -Xh nh ) + (N t -N nh ).
(3.13)

The Monte Carlo approach

Let us show how one can simulate a single path by using the tree approximation (3.9) for the couple (V, X) and the Euler scheme (3.13) for the Y -component. Let ( Ŷn ) n=0,1,...,N be the sequence approximating Y at times nh, n = 0, 1, . . . , N , by means of the scheme in (3.13): Ŷ h 0 = Y 0 and for t ∈ [nh, (n + 1)h] with n = 0, 1, . . . , N -1 then

Ŷ h n+1 = Ŷ h n + µ( V h n , Xh n , nh)h + ρ 3 h V h n ∆ n+1 + ρ 1 σ V ( V h n+1 -V h n ) + ρ 2 V h n ( Xh n+1 -Xh n ) + (N (n+1)h -N nh ),
where µ is defined in (3.12) and ∆ 1 , . . . , ∆ N denote i.i.d. standard normal r.v.'s, independent of the noise driving the chain ( V , X). The simulation of N (n+1)h -N nh is straightforward: one first generates a Poisson r.v. K n+1 h of parameter λh and if K n+1 h > 0 then also the log-amplitudes log(1 + J n+1 k ) for k = 1, . . . , K n+1 h are simulated. Then, the observed jump of the compound Poisson process is written as the sum of the simulated log-amplitudes, so that

Ŷ h n+1 = Ŷ h n + µ( V h n , Xh n , nh)h + ρ 3 h V h n ∆ n+1 + ρ 1 σ V ( V h n+1 -V h n ) + ρ 2 V h n ( Xh n+1 -Xh n ) + K n+1 h k=1 log(1 + J n+1 k ), (3.14) 
in which the last sum is set equal to 0 if K n+1 h = 0. The above simulation scheme is plain: at each time step n ≥ 1, one let the pair (V, X) evolve on the tree and simulate the process Y by using (3.14). We will refer to this procedure as hybrid Monte Carlo algorithm, the word "hybrid" being related to the fact that two different noise sources are considered: we simulate a continuous process in space (the component Y ) starting from a discrete process in space (the tree for (V, X)).

The simulations just described will be used in next Section 6 in order to set-up a Monte Carlo procedure for the computation of the option price function (2.10). In the case of American options, the simulations are coupled with the Monte Carlo algorithm by Longstaff and Schwartz in [START_REF] Longstaff | Valuing American options by simulations: a simple least squares approach[END_REF]. [START_REF] Andersen | Moment explosions in stochastic volatility models[END_REF] The hybrid tree/finite difference approach

The option price in (2.10) is typically computed by means of the standard backward dynamic programming algorithm. So, consider a discretization of the time interval [0, T ] into N subintervals of length h = T /N . Then the price P (0, Y 0 , V 0 , X 0 ) is numerically approximated through the quantity P h (0, Y 0 , V 0 , X 0 ) backwardly given by P h (T, y, v, x) = Ψ(y) and as n = N -1, . . . , 0,

P h (nh, y, v, x) = max Ψ(y), e -(σrx+ϕ nh )h E P h (n + 1)h, Y nh,y,v,x (n+1)h , V nh,v (n+1)h , X nh,x (n+1)h , (4.1) 
for (y, v, x) ∈ R × R + × R, in which Ψ(y) = 0 in the European case, Ψ(y) in the American case.

So, what is needed is a good approximation of the expectations appearing in the above dynamic programming principle. This is what we first deal with, starting from the dicretized process ( Ȳ h , V h , Xh ) introduced in Section 3.

The local 1-dimensional partial integro-differential equation

Let Ȳ h denote the process in (3.13). If we set

Zh t = Ȳ h t - ρ 1 σ V ( V h t -V h nh ) -ρ 2 V h nh ( Xh t -Xnh ), t ∈ [nh, (n + 1)h] (4.2)
then we have (µ being given in (3.12))

d Zh t = µ( V h nh , Xh nh , nh)dt + ρ 3 V h nh dW 3 t , +dN t t ∈ (nh, (n + 1)h], Zh nh = Ȳ h nh , (4.3) 
that is, Zh solves a jump-diffusion stochastic equation with constant coefficients and at time nh it starts from Ȳ h nh . Take now a function f : we are interested in computing

E(f (Y (n+1)h ) | Y nh = y, V nh = v, X nh = x).
We actually need a function f of the whole variables (y, v, x) but at the present moment the variable y is the most important one, we will see later on that the introduction of (v, x) is straightforward. So, we numerically compute the above expectation by means of the one done on the approximating processes, that is,

E f ( Ȳ h (n+1)h ) | Ȳ h nh = y, V h nh = v, Xh nh = x = E f ( Zh (n+1)h + ρ 1 σ V ( V h (n+1)h -V h nh ) + ρ 2 V h nh ( Xh (n+1)h -Xh nh )) | Zh nh = y, V h nh = v, Xh nh = x ,
in which we have used the process Zh in (4.2). Since ( V h , Xh ) is independent of the Brownian noise W 3 and on the compound Poisson process N driving Zh in (4.3), we have the following: we set

Ψ f (ζ; y, v, x) = E(f ( Zh (n+1)h + ζ) | Zh nh = y, V h nh = v, Xh nh = x) (4.4)
and we can write

E(f ( Ȳ h (n+1)h ) | Ȳ h nh = y, V h nh = v, Xh nh = x) = E Ψ f ρ 1 σ V ( V h (n+1)h -V h nh ) + ρ 2 √ v( Xh (n+1)h -Xh nh ); y, v, x V h nh = v, Xh nh = x . (4.5)
Now, in order to compute the quantity Ψ f (ζ) in (4.4), we consider a generic function g and set

u(t, y; v, x) = E(g( Zh (n+1)h ) | Zh t = y, V h t = v, Xh t = x), t ∈ [nh, (n + 1)h].
By (4.3) and the Feynman-Kac representation formula we can state that, for every fixed x ∈ R and v ≥ 0, the function (t, y) → u(t, y; v, x) is the solution to

∂ t u(t, y; v, x) + L (v,x) u(t, y; v, x) = 0 y ∈ R, t ∈ [nh, (n + 1)h), u((n + 1)h, y; v, x) = g(y) y ∈ R, (4.6) 
where L (v,x) is the integro-differential operator

L (v,x) u(t, y; v, x) = µ(v, x)∂ y u(t, y; v, x) + 1 2 ρ 2 3 v∂ 2 yy u(t, y; v, x) + +∞ -∞ [u(t, y + ξ; v, x) -u(t, y; v, x)] ν(ξ)dξ, (4.7) 
where µ is given in (3.12) and ν is the Lévy measure associated with the compound Poisson process N , see (2.9). We are assuming here that the Lévy measure is absolutely continuous (in practice, we use a Gaussian density), but it is clear that the procedure we are going to describe can be straightforwardly extended to other cases.

Finite-difference and numerical quadrature

In order to numerically compute the solution to the PIDE (4.6) at time nh, we generalize the approach already developed in [START_REF] Briani | A hybrid approach for the implementation of the Heston model[END_REF][START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF]: we apply a one-step finite-difference algorithm to the differential part of the problem coupled now with a quadrature rule to approximate the integral term. We start by fixing an infinite grid on the y-axis Y = {y i = Y 0 + i∆y} i∈Z , with ∆y = y i -y i-1 , i ∈ Z. For fixed n and given x ∈ R and v ≥ 0, we set u n i = u(nh, y i ; v, x) the discrete solution of (4.6) at time nh on the point y i of the grid Y -for simplicity of notations, in the sequel we do not stress in u n i the dependence on (v, x). First of all, to numerically compute the integral term in (4.7) we need to truncate the infinite integral domain to a bounded interval I, to be taken large enough in order that

I ν(ξ)dξ ≈ λ. (4.8)
In terms of the process, this corresponds to truncate the large jumps. We assume that the tails of ν rapidly decrease -this is not really restrictive since applied models typically require that the tails of ν decrease exponentially. Hence, we take R ∈ N large enough, set I = [-R∆y, +R∆y] and apply to (4.8) the trapezoidal rule on the grid Y with the same step ∆y previously defined. Then, for ξ l = l∆y, l = -R, . . . , R, we have

+R∆y -R∆y [u(t, y + ξ) -u(t, y)] ν(ξ)dξ ≈ ∆y R l=-R (u(t, y + ξ l ) -u(t, y)) ν(ξ l ). (4.9)
We notice that y i + ξ l = Y 0 + (i + l)∆y ∈ Y, so the values u(t, y i + ξ l ) are well defined on the numerical grid Y for any i, l. These are technical settings and can be modified and calibrated for different Lévy measures ν. But in practice one cannot solve the PIDE problem over the whole real line. So, we have to choose artificial bounds and impose numerical boundary conditions. We take a positive integer M > 0 and we define a finite grid Y M = {y i = Y 0 + i∆y} i∈J M , with J M = {-M, . . . , M }, and we assume that M > R. Notice that for y = y i ∈ Y M then the integral term in (4.9) splits into two parts: one part concerning nodes falling into the numerical domain Y M and another part concerning nodes falling out of Y M . As an example, at time t = nh we have

R l=-R u(nh, y i + ξ l )ν(ξ l ) ≈ R l=-R u n i+l ν(ξ l ) = l : |l|≤R,|i+l|≤M u n i+l ν(ξ l ) + l : |l|≤R,|i+l|>M ũn i+l ν(ξ l ),
where ũn

• stands for (unknown) values that fall out of the finite numerical domain Y M . This implies that we must choose some suitable artificial boundary conditions. In a financial context, in [START_REF] Cont | A finite difference scheme for option pricing in jump-diffusion and exponential Lévy models[END_REF] it has been shown that a good choice for the boundary conditions is the payoff function. Although this is the choice we will do in our numerical experiments, for the sake of generality we assume here the boundary values outside Y M to be settled as ũn

i = b(nh, y i ), where b = b(t, y) is a fixed function defined in [0, T ] × R.
Going back to the numerical scheme to solve the differential part of the equation (4.6), as already done in [START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF], we apply an implicit in time approximation. However, to avoid to solve at each time step a linear system with a dense matrix, the non-local integral term needs anyway an explicit in time approximation. We then obtain an implicit-explicit (hereafter IMEX) scheme as proposed in [START_REF] Cont | A finite difference scheme for option pricing in jump-diffusion and exponential Lévy models[END_REF] and [START_REF] Briani | Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory[END_REF]. Notice that more sophisticated IMEX methods may be applied, see for instance [START_REF] Briani | Implicit-Explicit Numerical Schemes for Jump-Diffusion Processes[END_REF][START_REF] Salmi | IMEX schemes for pricing options under jump-diffusion models[END_REF]. Let us stress that these techniques could be used in our framework, being more accurate but expensive.

As done in [START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF], to achieve greater precision we use the centered approximation for both first and second order derivatives in space. The discrete solution u n at time nh is then computed in terms of the known value u n+1 at time (n + 1)h by solving the following discrete problem: for all i ∈ J M ,

u n+1 i -u n i h + μY (v, x) u n i+1 -u n i-1 2∆y + 1 2 ρ 2 3 v u n i+1 -2u n i + u n i-1 ∆y 2 + ∆y R l=-R u n+1 i+l -u n+1 i ν(ξ l ) = 0.
(4.10) We then get the solution u n = (u n -M , . . . , u n M ) T by solving the following linear system

A u n = Bu n+1 + d, (4.11) 
where A = A(v, x) and B are (2M + 1) × (2M + 1) matrices and d is a (2M + 1)-dimensional boundary vector defined as follows.

1. The matrix A. From (4.10), we set A as the tridiagonal real matrix given by

A =        1 + 2β -α -β α -β 1 + 2β -α -β . . . . . . . . . α -β 1 + 2β -α -β α -β 1 + 2β        , (4.12) with α = h 2∆y µ(nh, v, x) and β = h 2∆y 2 ρ 2 3 v, (4.13) 
µ being defined in (3.12). We stress on that at each time step n, the quantities v and x are constant and known values (defined by the tree procedure for (V, X)) and then α and β are constant parameters.

2. The matrix B. Again from (4.10), B is the (2M + 1) × (2M + 1) real matrix given by

B = I + h∆y      ν(0) -Λ ν(∆y) . . . ν(R∆y) 0 ν(-∆y) ν(0) -Λ ν(∆y) . . . ν(R∆y) . . . . . . . . . 0 ν(-R∆y) . . . ν(-∆y) ν(0) -Λ      , (4.14) 
where I is the identity matrix and

Λ = R l=-R ν(ξ l ).
3. The boundary vector d. The vector d ∈ R 2M +1 contains the numerical boundary values:

d = a n b + a n+1 b , (4.15) 
with

a n b = ((β -α)b n -M -1 , 0, . . . , 0, (β + α)b n M +1 ) T ∈ R 2M +1 and a n+1 b ∈ R 2M +1 is such that (a n+1 b ) i =                    h∆y -M -i-1 l=-R ν(x l ) b n+1 i+l , for i = -M, . . . , -M + R -1, 0 for i = -M + R, . . . , M -R, h∆y R l=M -i+1 ν(x l ) b n+1 i+l , for i = M -R + 1, . . . , M -1,
where we have used the standard notation b n i = b(nh, y i ), i ∈ J M . In practice, we numerically solve the linear system (4.11) with an efficient algorithm (see next Remark 6.2). We notice here that a solution to (4.11) really exists because for β = |α|, the matrix A = A(v, x) is invertible (see e.g. Theorem 2.1 in [START_REF] Brugnano | Tridiagonal matrices: Invertibility and conditioning[END_REF]). Then, at time nh, for each fixed v ≥ 0 and x ∈ R, we approximate the solution y → u(nh, y; v, x) of (4.6) on the points y i 's of the grid in terms of the discrete solution u n = {u n i } i∈J M , which in turn is written in terms of the value

u n+1 = {u n+1 i } i∈J M at time (n + 1)h. In other words, we set u(nh, y i ; v, x) ≈ u n i , i ∈ J M , where u n = (u n i ) i∈J M solves (4.11) (4.16)

The final local finite-difference approximation

We are now ready to tackle our original problem: the computation of the function Ψ f (ζ; y, v, x) in (4.4) allowing one to numerically compute the expectation in (4.5). So, at time step n, the pair (v, x) is chosen on the lattice

V n × X n : v = v n k , x = x n j for 0 ≤ k, j ≤ n.
We call A n k,j the matrix A in (4.12) when evaluated in (v n k , x n j ) and d n the boundary vector in (4.15) at time-step n. Then, (4.16) gives

Ψ f (ζ; y i , v n k , x n j ) u n i,k,j , where u n •,k,j = (u n i,k,j ) i∈J M solves the linear system A n k,j u n •,k,j = Bf (y • + ζ) + d n .
Therefore, by taking the expectation w.r.t. the tree-jumps, the expectation in (4.5) is finally computed on Y M × V n × X n by means of the above approximation:

E(f ( Ȳ h (n+1)h ) | Ȳ h nh = y i , V h nh = v n k , Xh nh = x n j ) u n i,k,j , where u n •,k,j = (u n i,k,j ) i∈J M solves the linear system A n k,j u n •,k,j = a,b∈{u,d} p ab (n, k, j)Bf y • + ρ 1 σ V (v n+1 ka(n,k) -v n k ) + ρ 2 √ v(x n+1 j b (n,j) -x n j ) + d n .
Finally, if f is a function on the whole triple (y, v, x), by using standard properties of the conditional expectation one gets

E(f ( Ȳ h (n+1)h , V h (n+1)h , Xh (n+1)h ) | Ȳ h nh = y i , V h nh = v n k , Xh nh = x n j ) u n i,k,j , where u n •,k,j = (u n i,k,j ) i∈J M solves the linear system A n k,j u n •,k,j = a,b∈{u,d} p ab (n, k, j)Bf y • + ρ 1 σ V (v n+1 ka(n,k) -v n k ) + ρ 2 √ v(x n+1 j b (n,j) -x n j ), v n+1 ka(n,k) , x n+1 j b (n,j) + d n .
(4.17)

Pricing European and American options

We are now ready to approximate the function P h solution to the dynamic programming principle (4.1). We consider the discretization scheme ( Ȳ h , V h , Xh ) discussed in Section 4.1 and we use the approximation (4.17) for the conditional expectations that have to be computed at each time step n. So, for every point (y i , v n k , x n j ) ∈ Y M × V n × X n , by (4.17) we have

E P h (n + 1)h, Y nh,y i ,v n k ,x n j (n+1)h , V nh,v n k (n+1)h , X nh,x n j (n+1)h u n i,k,j
where u n •,k,j = (u n i,k,j ) i∈J M solves the linear system

A n k,j u n •,k,j = B a,b∈{u,d} p ab (n, k, j)× ×P h (n + 1)h, y • + ρ 1 σ V (v n+1 ka(n,k) -v n k ) + ρ 2 √ v(x n+1 j b (n,j) -x n j , v n k , x n j ), v n+1 ka(n,k) , x n+1 j b (n,j) + d n . (4.18)
We then define the approximated price Ph (nh, y, v, x) for (y, v, x) ∈ Y M × V n × X n and n = 0, 1, . . . , N as Ph (T, y i , v N,k , x N,j ) = Ψ(y i ) and as n = N -1, . . . , 0:

Ph (nh, y i , v n k , x n j ) = max Ψ(y i ), e -(σrx n j +ϕ nh )h ũn i,k,j (4.19) 
in which ũn •,k,j = (ũ n i,k,j ) i∈J M is the solution to the system in (4.18) with P h replaced by Ph . Note that the system in (4.18) requires the knowledge of the function y → Ph ((n + 1)h, y, v, x) in points y's that do not necessarily belong to the grid Y M . Therefore, in practice we compute such a function by means of linear interpolations, working as follows. For fixed n, k, j, a, b, we set I n,k,j,a,b (i), i ∈ J M , as the index such that

y i + ρ 1 σ V (v n+1 ka(n,k) -v n k ) + ρ 2 v n k (x n+1 j b (n,j) -x n j ) ∈ [y I n,k,j,a,b (i) , y I n,k,j,a,b (i)+1 ), with I n,k,j,a,b (i) = -M if y i + ρ 1 σ V (v n+1 ka(n,k) -v n k ) + ρ 2 v n k (x n+1 j b (n,j) -x n j ) < -M and I n,k,j,a,b (i) + 1 = M if y i + ρ 1 σ V (v n+1 ka(n,k) -v n k ) + ρ 2 v n k (x n+1 j b (n,j) -x n j ) > M . We set q n,k,j,a,b (i) = y i + ρ 1 σ V (v n+1 ka(n,k) -v n k ) + ρ 2 v n k (x n+1 j b (n,j) -x n j ) -y I n,k,j,a,b (i) ∆y .
Note that q n,k,j,a,b (i) ∈ [0, 1). We define

(I a,b Ph )((n + 1)h, y i , v n+1 ka(n,k) , x n+1 j b (n,j) ) = Ph ((n + 1)h, y I n,k,j,a,b (i) , v n+1 ka(n,k) , x n+1 j b (n,j) ) (1 -q n,k,j,a,b (i)) + Ph ((n + 1)h, y I n,k,j,a,b (i)+1 , v n+1 ka(n,k) , x n+1 j b (n,j) ) q n,k,j,a,b (i) and we set Ph (n + 1)h, y i + ρ 1 σ V (v n+1 ka(n,k) -v n k ) + ρ 2 √ v(x n+1 j b (n,j) -x n j ), v n+1 ka(n,k) , x n+1 j b (n,j) = (I a,b Ph )((n + 1)h, y i , v n+1 ka(n,k) , x n+1 j b (n,j) ).
Therefore, starting from (4.18), in practice the function ũn [START_REF] Cont | A finite difference scheme for option pricing in jump-diffusion and exponential Lévy models[END_REF]) is taken as the solution to the linear system

•,k,j = (ũ n i,k,j ) i∈J M in (4.
A n k,j ũn •,k,j = B a,b∈{u,d} p ab (n, k, j)(I a,b Ph )((n + 1)h, y • , v n+1 ka(n,k) , x n+1 j b (n,j) ) + d n . (4.20) 
We can then state our final numerical procedure: Ph (T, y i , v N,k , x N,j ) = Ψ(y i ) and as n = N -1, . . . , 0:

Ph (nh, y i , v n k , x n j ) = max Ψ(y i ), e -(σrx n j +ϕ nh )h ũn i,k,j (4.21) ũn 
•,k,j = (ũ n i,k,j ) i∈J M being the solution to the system (4.20).

Remark 4.1 In the case of infinite grid, that is

M = +∞, i → I n,k,j,a,b (i) is a translation: I n,k,j,a,b (i) = I n,k,j,a,b (0) + i. So, y i → (I a,b Ph )((n + 1)h, y i , v n+1 ka(n,k) , x n+1 j b (n,j)
) is just a linear convex combination of a translation of y i → Ph ((n + 1)h, y i , v n+1 ka(n,k) , x n+1 j b (n,j) ).

Stability analysis of the hybrid tree/finite-difference method

For the study of the stability, we consider a norm on the functions of (y, v, x) which is uniform with respect to the volatility and the interest rate components (v, x) and coincides with the standard l 2 norm with respect to the direction y (see next (5.6)). The choice of the l 2 norm allows one to perform a von Neumann analysis in the component y on the infinite grid Y = {y i = Y 0 +i∆y} i∈Z , that is, without truncating the domain and without imposing boundary conditions. Therefore, our stability analysis does not take into account boundary effects. This approach is extensively used in the literature, see e.g. [START_REF] Duffy | Finite difference methods in financial engineering. A partial differential equation approach[END_REF], and yields good criteria on the robustness of the algorithm independently of the boundary conditions.

Let us first write down explicitly the scheme (4.21) on the infinite grid Y = {y i } i∈Z . For a fixed function f = f (t, y, v, x), we set g = f either g = 0 and we consider the numerical scheme given by

F h (T, y i , v N,k , x N,j ) = f (T, y i , v N,k , x N,j
) and as n = N -1, . . . , 0:

F h (nh, y i , v n k , x n j ) = max g(nh, y i , v n k , x n j ), e -(σrx n j +ϕ nh )h u n i,k,j (5.1) 
where

u n •,k,j = (u n i,k,j ) i∈Z is the solution to (α n,k,j -β n,k )u n i-1,k,j + (1 + 2β n,k )u n i,k,j -(α n,k,j + β n,k )u n i+1,k,j = a,b∈{d,u} p ab (n, k, j) × (I a,b F h )((n + 1)h, y i , v n+1 ka(n,k) , x n+1 j b (n,j) )+ +h∆y l ν(ξ l ) (I a,b F h )((n + 1)h, y i+l , v n+1 ka(n,k) , x n+1 j b (n,j) ) -(I a,b F h )((n + 1)h, y i , v n+1 ka(n,k) , x n+1 j b (n,j) ) ,
(5.2) in which α n,k,j and β n,k,j are the coefficients α and β defined in (4.13) when evaluated in the pair (v n k , x n j ). Note that (5.2) is simply the linear system (4.20) on the infinite grid, with d n ≡ 0 (no boundary conditions are needed). Let us stress that in next Remark 5.2 we will see that, since β n,k ≥ 0, a solution to (5.2) does exist, at least for "nice" functions f . It is clear that the case g = f is linked to the American algorithm whereas the case g = 0 is connected to the European one: (5.1) gives our numerical approximation of the function

F (t, y, v, x) =      E e -(σr T t X t,x s ds+ T t ϕsds) f (T, Y t,y,v,x T , V t,v T , X t,x T ) if g = 0, sup τ ∈T t,T E e -(σr τ t X t,x s ds+ τ t ϕsds) f (τ, Y t,y,v,x τ , V t,v τ , X t,x τ ) if g = f, (5.3) 
at times nh and in the points of the grid Y × V n × X n .

The "discount truncated scheme" and its stability

In our stability analysis, we consider a numerical scheme which is a slightly modification of (5.1): we fix a (possibly large) threshold L > 0 and we consider the scheme

   F L h (T, y i , v N,k , x N,j ) = f (T, y i , v N,k , x N,j
) and as n = N -1, . . . , 0:

F L h (nh, y i , v n k , x n j ) = max g(nh, y i , v n k , x n j ), e -(σrx n j 1 {x n j >-L} +ϕ nh )h u n i,k,j (5.4) 
with g = f or g = 0, where u n •,k,j = (u n i,k,j ) i∈Z is the solution to (5.2), with (I a,b F h ) replaced by (I a,b F L h ). Let us stress that the above scheme (5.4) really differs from (5.1) only when σ r > 0 (stochastic interest rate). And in this case, in the discounting factor of (5.4) we do not allow x n j to run everywhere on its grid: in the original scheme (5.1), the exponential contains the term x n j whereas in the present scheme (5.4) we put x n j 1 {x n j >-L} , so we kill the points of the grid X n below the threshold -L. And in fact, (5.4) aims to numerically compute the function

F L (t, y, v, x) =        E e -(σr T t X t,x s 1 {X t,x s >-L} ds+ T t ϕsds) f (T, Y t,y,v,x T , V t,v T , X t,x T ) if g = 0, sup τ ∈T t,T E e -(σr τ t X t,x s 1 {X t,x s >-L} ds+ τ t ϕsds) f (τ, Y t,y,v,x τ , V t,v τ , X t,x τ ) if g = f,
(5.5) at times nh and in the points of the grid Y × V n × X n . Recall that in practice h is small but fixed, therefore there is a natural threshold which actually comes on in practice (see for instance the tree given in Figure 1). And actually, in our numerical experiments we observe a real stability. However, we will discuss later on how much one can loose with respect to the solution of (5.1).

For n = N, . . . , 0, the scheme (5.4) gives back a function in the variables (y, v, x)

∈ Y × V n × X n . Note that V n × X n ⊂ I V n × I X n
, where

I V n = [v n 0 , v n n ] and I X n = [x n 0 , x n n ],
that is, the intervals between the smallest and the biggest node at time-step n:

v n 0 = V 0 - σ V 2 n √ h 2 1 { √ V 0 - σ V 2 n √ h>0} , v n n = V 0 + σ V 2 n √ h 2 , x n 0 = -n √ h, x n n = n √ h.
As n decreases to 0, the intervals I V n and I X n are becoming smaller and smaller and at time 0 they collapse to the single point v 0 0 = V 0 and x 0 0 = X 0 = 0 respectively. So, the norm we are going to define takes into account these facts: at time nh we consider for φ = φ(t, y, v, x) the norm

φ(nh, •) n = sup (v,x)∈I V n ×I X n φ(nh, •, v, x) l 2 (Y) = sup (v,x)∈I V n ×I X n i∈Z |φ(nh, y i , v, x)| 2 ∆y 1 2 .
(5.6)

In particular,

φ(0, •) 0 = φ(0, •, V 0 , X 0 ) l 2 (Y) = i∈Z |φ(y i , V 0 , X 0 )| 2 ∆y 1/2 and φ(T, •) N ≤ sup (v,x)∈R + ×R φ(y i , v, x) l 2 (Y) = sup (v,x)∈R + ×R i∈Z |φ(y i , v, x)| 2 ∆y 1/2
.

We are now ready to give our stability result.

Theorem 5.1 Let f ≥ 0 and, in the case g = f , suppose that

sup t∈[0,T ] |f (t, y, v, x)| ≤ γ T |f (T, y, v, x)|,
for some γ T > 0. Then, for every L > 0 the numerical scheme (5.4) is stable with respect to the norm (5.6):

F L h (0, •) 0 ≤ C N,L T F L h (T, •) N = C N,L T f (T, •) N , ∀h, ∆y,
where

C N,L T =    e 2λcT +σrLT -N n=1 ϕ nh h N →∞ -→ C L T = e 2λcT +σrLT -T 0 ϕtdt if g = 0, max γ T , e 2λcT +σrLT -N n=1 ϕ nh h N →∞ -→ C L T = max γ T , e 2λcT +σrLT -T 0 ϕtdt if g = f, in which c > 0 is such that l ν(ξ l )∆y ≤ λc.
Proof. In order to weaken the notation, we set g n i,k,j = g(nh, y i , v n k , x n j ) and, similarly,

F n i,k,j = F L h (nh, y i , v n k , x n j ), (I a,b F n+1 h ) i,ka,j b = (I a,b F L h )((n + 1)h, y i , v n+1 ka(n,k) , x n+1 j b (n,j
) ) (we have also dropped the dependence on L). The scheme (5.4) says that, at each time step n < N and for each fixed 0 ≤ k, j ≤ n,

F n i,k,j = max g n i,k,j , e -(σrx n j 1 {x n j >-L} +ϕ nh )h u n i,k,j , (5.7) 
where, according to (5.2), u n i,k,j solves

(α n,k,j -β n,k )u n i-1,k,j + (1 + 2β n,k )u n i,k,j -(α n,k,j + β n,k )u n i+1,k,j = a,b∈{d,u} p ab (n, k, j) (I a,b F n+1 ) i,ka,j b + h∆y l ν(ξ l ) (I a,b F n+1 ) i+l,ka,j b -(I a,b F n+1 ) i,ka,j b .
(5.8)

Let Fϕ denote the Fourier transform of ϕ ∈ l 2 (Y), that is,

Fϕ(θ) = ∆y √ 2π s∈Z ϕ s e -i s∆yθ , θ ∈ R,
i denoting the imaginary unit. We get from (5.8)

(α n,k,j -β n,k )e -i θ∆y + 1 + 2β n,k -(α n,k,j + β n,k )e i θ∆y Fu n k,j (θ) 
= 1 + h∆y l ν(ξ l )(e i lθ∆y -1) a,b∈{d,u} p ab (n, k, j)F(I a,b F n+1 ) ka,j b (θ).

(5.9)

Note that

|(α n,k,j -β n,k )e -i θ∆y + 1 + 2β n,k -(α n,k,j + β n,k )e i θ∆y | ≥ Re (α n,k,j -β n,k )e -i θ∆y + 1 + 2β n,k -(α n,k,j + β n,k )e i θ∆y = 1 + 2β n,k (1 -cos(θ∆y)) ≥ 1,
for every θ ∈ [0, 2π) (recall that β n,k ≥ 0). And since l ν(ξ l )∆y ≤ λc, we obtain

|Fu n k,j (θ)| ≤ 1 + h∆y l∈Z |e i lθ∆y -1|ν(ξ l ) a,b∈{d,u} p ab (n, k, j)|F(I a,b F n+1 ) ka,j b (θ)| ≤ (1 + 2λch) a,b∈{d,u} p ab (n, k, j)|F(I a,b F n+1 ) ka,j b (θ)|.
Therefore,

Fu n k,j L 2 ([0,2π),Leb) ≤ (1 + 2λch) a,b∈{d,u} p ab (n, k, j) F(I a,b F n+1 ) ka,j b L 2 ([0,2π),Leb) .
We use now the Parseval identity Fϕ L 2 ([0,2π),Leb) = ϕ l 2 (Y) and we get

u n •,k,j l 2 (Y) ≤ (1 + 2λch) a,b∈{d,u} p ab (n, k, j) (I a,b F n+1 ) •,ka,j b l 2 (Y) = (1 + 2λch) a,b∈{d,u} p ab (n, k, j) F n+1 •,ka,j b l 2 (Y) ,
the first equality following from the fact that i

→ (I a,b F n+1 ) i,ka,j b is a linear convex combination of translations of i → F n+1 i,ka,j b (see Remark 4.1). This gives sup 0≤k,j≤n e -(σrx n j 1 {x n j >-L} +ϕ nh )h u n •,k,j l 2 (Y) ≤ (1 + 2λch)e σrLh-ϕ nh h sup 0≤k,j≤n+1 F n+1 •,k,j l 2 (Y)
and from (5.7), we obtain sup 0≤k,j≤n

F n •,k,j l 2 (Y) ≤ max sup 0≤k,j≤n g n •,k,j l 2 (Y) , (1 + 2λch)e σrLh-ϕ nh h sup 0≤k,j≤n+1 F n+1 •,k,j l 2 (Y) .
We now continue assuming that g = f , the case g = 0 following in a similar way. So, sup 0≤k,j≤n

F n •,k,j l 2 (Y) ≤ max γ T f (T, •) N , (1 + 2λch)e σrLh-ϕ nh h sup 0≤k,j≤n+1 F n+1 •,k,j l 2 (Y) .
For n = N -1 we then obtain sup 0≤k,j≤n

F N -1 •,k,j l 2 (Y) ≤ max γ T f (T, •) N , (1 + 2λch)e σrLh-ϕ (N -1)h h f (T, •) N
and by iterating the above inequalities, we finally get

F 0 0 = F 0 •,0,0 l 2 (Y) ≤ max γ T f (T, •) N , (1 + 2λch) N e N σrLh-N n=1 ϕ nh h f (T, •) N .
Remark 5.2 In the above proof we have actually proved that, as n varies, the solution u n •,k,j to the infinite linear system (5.2) does exist and is unique if f (T, •) N < ∞. In fact, starting from equality (5.9), we define the function ψ k,j (θ), θ ∈ [0, 2π), by

(α n,k,j -β n,k )e -i θ∆y + 1 + 2β n,k -(α n,k,j + β n,k )e i θ∆y ψ k,j (θ) = 1 + h∆y l ν(ξ l )(e i lθ∆y -1) a,b∈{d,u} p ab (n, k, j)F(I a,b F n+1 ) ka,j b (θ).
As noticed in the proof of Proposition 5.1, the factor multiplying ψ k,j (θ) is different from zero because β n,k ≥ 0. So, the definition of ψ k,j is well posed and moreover, ψ k,j ∈ L 2 ([0, 2π, ), Leb). We now set u n •,k,j as the inverse Fourier transform of ψ k,j , that is,

u n l,k,j = 1 ∆y √ 2π 2π 0 ψ k,j ( 
θ)e i lθ∆y dθ, l ∈ Z.

Straightforward computations give that u n •,k,j fulfils the equation system (5.2).

Of course, Theorem 5.1 gives a stability property for the scheme introduced in [START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF] for the Heston-Hull-White model (just take λ = 0 -no jumps are considered). Moreover, for the standard Bates model, that is, σ r = 0 (deterministic interest rate), Theorem 5.1 applies to the original (untruncated) scheme (5.1).

Back to the original scheme (5.1)

Let us now discuss what may happen when one introduces the threshold L. We recall that the original scheme (5.1) gives the numerical approximation of the function F in (5.3) whereas the discount truncated scheme (5.4) aims to numerically compute the function F L in (5.5). Proposition 5.3 below shows that, under standard hypotheses, F L tends to F as L → ∞ very fast. This means that, in practice, we loose very few in using (5.4) in place of (5.1). Proposition 5.3 Suppose that f = f (t, y, v, x) has a polynomial growth in the variables (y, v, x), uniformly in t ∈ [0, T ]. Let F and F L , with L > 0, be defined in (5.3) and (5.5) respectively. Then there exist positive constants c T and C T (y, v, x) such that for every L > 0

|F (t, y, v, x) -F L (t, y, v, x)| ≤ σ r C T (y, v, x)e -c T |L+xe -κr (T -t) | 2 , for every t ∈ [0, T ] and (y, v, x) ∈ R × R + × R.
Proof. In the following, C denotes a positive constant, possibly changing from line to line. We have

|F (t, y, v, x) -F L (t, y, v, x)| ≤ σ r CE sup t≤u≤T |f (u, Y t,y,v,x u , V t,v u , X t,v )| × e -σr u t X t,x s 1 {X t,x s >-L} ds × e -σr u t X t,x s 1 {X t,x s <-L} ds -1 . Set τ t,x -L = inf{s ≥ t : X t,x s ≤ -L}. One has 1 {X t,x s <-L} ≤ 1 {τ t,x -L <s} so that, for u ≤ T , 0 ≤ -σ r u t X t,x s 1 {X t,x s <-L} ds ≤ σ r u t |X t,x s | 1 {τ t,x -L <s} ds ≤ σ r T t |X t,x s |ds 1 {τ t,x -L ≤T } .
Then,

sup t≤u≤T e -σr u t X t,x s 1 {X t,x s >-L} ds e -σr u t X t,x s 1 {X t,x s <-L} ds -1 ≤ e σr T t |X t,x s |ds e σr T t |X t,x s |ds -1 1 {τ t,x -L ≤T } ≤ 2e 2σr T t |X t,x s |ds 1 {τ t,x -L ≤T }
By inserting,

|F (t, y, v, x) -F L (t, y, v, x)| ≤ σ r CE sup t≤u≤T |f (u, Y t,y,v,x u , V t,v u , X t,v u )| e 2σr T t |X t,x s |ds 1 {τ t,x -L ≤T } ≤ σ r CE sup t≤u≤T |f (u, Y t,y,v,x u , V t,v u , X t,v u )| 2 e 4σr T t |X t,x s |ds 1/2 P(τ t,x -L ≤ T ) 1/2 .
Since f has a polynomial growth in the space variables, uniformly in the time variable, by standard estimates one gets that sup t≤u≤T |f (u, Y t,y,v,x u , V t,v u , X t,v )| has all moments. Moreover, for a Brownian motion W , sup 0<s<T |W s | has finite exponential moments of any order, and this gives that e 4σr T t |X t,x s |ds has finite moments of any order. It follows that

|F (t, y, v, x) -F L (t, y, v, x)| ≤ CP(τ t,x -L ≤ T ) 1/2 .
As for the above probability, recall that X t,x s = xe -κr(s-t) + s t e -κr(s-u) dW 2 u so that

P(τ t,x -L ≤ T ) = P( inf s∈[t,T ] X t,x s < -L) = P inf s∈[t,T ] xe -κr(s-t) + s t e -κr(s-u) dW 2 u < -L ≤ P sup s∈[t,T ] s t e κru dW 2 u > L + xe -κr(T -t) ≤ 2 exp - |L + xe -κr(T -t) | 2 2 T t e 2κru du .
By inserting above, we get the result.

Further remarks

As already stressed, the introduction of the threshold -L allows one to handle the discount term.

In order to let the discount disappear, an approach consists in the use of a transformed function, as developed by several authors (see e.g. Haentjens and in't Hout [START_REF] Haentjens | Alternating direction implicit finite difference schemes for the Heston-Hull-White partial differential equation[END_REF] and references therein). This is a nice fact for European options (PIDE problem), being on the contrary a non definitive tool when dealing with American options (obstacle PIDE problem). Let us see why. First of all, let us come back to the model for the triple (Y, V, X), see (2.5). The infinitesimal generator is

L t u = σ r x + ϕ t -η - 1 2 v ∂ y u + κ V (θ V -v)∂ v u -κ r x∂ x u + 1 2 v∂ 2 yy u + σ 2 V v∂ 2 vv u + ∂ 2 xx u + 2ρ 1 σ V v∂ 2 yv u + 2ρ 2 √ v ∂ 2 yx u + +∞ -∞
[u(t, y + ξ; v, x) -u(t, y; v, x)] ν(ξ)dξ.

(5.10)

We set G(t, x) = E e -σr T t X t,x s ds .

Recall that (see e.g. [START_REF] Lamberton | Introduction to stochastic calculus applied to finance[END_REF])

G(t, x) = e -xσrΛ(t,T )- σ 2 r 2κ 2 r (Λ(t,T )-T +t)- σ 2 r 4κr Λ 2 (t,T ) , Λ(t, T ) = 1 -e -κr(T -t) κ r (5.11) 
and, moreover, G solves the PDE

∂ t G -κ r x∂ x G + 1 2 ∂ 2 xx G -σ r xG = 0, t ∈ [0, T ), x ∈ R, G(T, x) = 1.
(5.12) Lemma 5.4 Let L t denote the infinitesimal generator in (5.10). Set u = u • G -1 . Then

∂ t u + L t u -xu = G ∂ t u + L t u , where L t = L t -σ r 1 -e -κr(T -t) κ r ρ 2 √ v∂ y + ∂ x .
Proof. Since G depends on t and x only, straightforward computations give

∂ t u + L t u -xu =G ∂ t u + L t u + ∂ x G(t, x) ρ 2 √ v∂ y u + ∂ x u + u ∂ t G -κ r x∂ x G + 1 2 ∂ 2 xx G -σ r xG .
By (5.12), the last term is null. The statement now follows by observing that ∂ x ln G(t, x) = -σ r

1-e -κr (T -t) κr .

We notice that the operator L t in Lemma 5.4 is the infinitesimal generator of the jump-diffusion process (Y , V , X) which solves the stochastic differential equation as in (2.5), with the same diffusion coefficients and jump-terms but with the new drift coefficients

µ Y (t, v, x) = µ Y (v, x)-σ r 1 -e -κr(T -t) κ r ρ 2 √ v, µ V (v) ≡ µ V (v), µ X (x) = µ X (t, x)-σ r 1 -e -κr(T -t) κ r .
Let us first discuss the scheme (5.1) for F in the case g = 0 (European options). By passing to the associated PIDE, Lemma 5.4 says that

F (t, y, v, x) = G(t, x)F (t, y, v, x),
where

F (t, y, v, x) = E(e -T t ϕsds f (T, Y t,y,v,x T , V t,v T , X t,x T 
)). Therefore, in practice one has to numerically evaluate the function F . By using our hybrid tree/finitedifference approach, this means to consider the scheme in (5.4), with the new coefficient α n,k,j (written starting from the new drift coefficients) but with a discount depending on the (deterministic) function ϕ only, that is, with e -(σrx n j 1 {x n j >-L} +ϕ nh )h replaced by e -ϕ nh h . And the proof of the Proposition 5.1 shows that one gets

F h (0, •) 0 ≤ max γ T , e 2λcT -N n=0 ϕ nh h f (T, •) N .
In other words, by a suitable transformation, the European scheme is always stable and no thresholds are needed. Let us discuss now the American case, that is, the scheme (5.1) with g = f . One could think to use the above transformation in order to get rid of the exponential depending on the process X. Set again

F (t, y, v, x) = G(t, x) -1 F (t, y, v, x).
By using the associated obstacle PIDE problem, Lemma 5.4 suggests that

F (t, y, v, x) = sup τ ∈T t,T E(e -τ t ϕsds f (τ, Y t,y,v,x τ , V t,v τ , X t,x τ )), with f (t, y, v, x) = G -1 (t, x)f (t, y, v, x).
So, in order to numerically compute F , one needs to set up the scheme (5.4) with the new coefficient α n,k,j , with f replaced by f , g = f and with the discounting factor e -(σrx n j 1 {x n j >-L} +ϕ nh )h replaced by e -ϕ nh h . So, again one is able to cancel the unbounded part of the discount. Nevertheless, the unpleasant point is that even if f (T, •) N has a bound which is uniform in N then f (T, •) N may have not because G -1 (t, x) has an exponential containing x, see (5.11). In other words, the unboundedness problem appears now in the obstacle. [START_REF] Ballestra | A fast numerical method to price American options under the Bates model[END_REF] The hybrid Monte Carlo and tree/finite-difference approach algorithms in practice

The present section is devoted to our numerical experiments. We first resume the main steps of our algorithms and then we present several numerical tests.

A schematic sketch of the main computational steps in our algorithms

To summarize, we resume here the main computational steps of the two proposed algorithms. First, the procedures need the following preprocessing steps, concerning the construction of the bivariate tree:

(T1) define a discretization of [0, T ] in N subintervals [nh, (n + 1)h], n = 0, . . . , N -1, with h = T /N ; (T2) for the process V , set the binomial tree v n k , 0 ≤ k ≤ n ≤ N , by using (3.1), then compute the jump nodes k a (n, k) and the jump probabilities p V a (n, k), a ∈ {u, d}, by using (3.3)-(3.4) and (3.7);

(T3) for the process X, set the binomial tree x n j , 0 ≤ j ≤ N , by using (3.2), then compute the jump nodes j b (n, j) and the jump probabilities p X b (n, j), b ∈ {u, d}, by using (3.5)-(3.6) and (3.8);

(T4) for the 2-dimensional process (V, X), merge the binomial trees in the bivariate tree (v n k , x n j ), 0 ≤ k, j ≤ n ≤ N , by using (3.9), then compute the jump-nodes (k a (n, k), j b (n, j)) and the transitions probabilities p ab (n, k, j), (a, b) ∈ {d, u}, by using (3.10).

The bivariate tree for (V, X) is now settled. Our hybrid tree/finite-difference algorithm can be resumed as follows:

(FD1) set a mesh grid y i for the solution of all the PIDEs; (FD2) for each node (v N,k , x N,j ), 0 ≤ k, j ≤ N , compute the option prices at maturity for each y i , i ∈ Y M , by using the payoff function;

(FD3) for n = N -1, . . . 0: for each (v n k , x n j ), 0 ≤ k, j ≤ n, compute the option prices for each y i ∈ Y M , by solving the linear system (4.20).

Notice that, at each time step n, we need only the one-step PIDE solution in the time interval [nh, (n + 1)h]. Moreover, both the (constant) PIDE coefficients and the Cauchy final condition change according to the position of the volatility and the interest rate components on the bivariate tree at time step n.

We conclude by briefly recalling the main steps of the hybrid Monte Carlo method:

(MC1) let the chain ( V h n , Xh n ) evolve for n = 1, . . . , N , following the probability structure in (T4);

(MC2) generate ∆ 1 , . . . , ∆ N i.i.d. standard normal r.v.'s independent of the noise driving the chain ( V h , Xh );

(MC3) generate K 1 h , . . . , K N h i.i.d. positive Poisson r.v.'s of parameter λh, independent of both the chain ( V h , Xh ) and the Gaussian r.v.'s ∆ 1 , . . . , ∆ N , and for every n = 1, . . . , N , if K n h > 0 simulate the corresponding amplitudes log(1 + J n 1 ), . . . , log(1

+ J n K n h );
(MC4) starting from Ŷ h 0 = Y 0 , compute the approximate values Ŷ h n , 1 ≤ n ≤ N , by using (3.14);

(MC5) following the desired Monte Carlo method (European or Longstaff-Schwartz algorithm [START_REF] Longstaff | Valuing American options by simulations: a simple least squares approach[END_REF] in the case of American options), repeat the above simulation scheme and compute the option price.

Remark 6.1 In next Section 6.2 we develop numerical experiments also in the standard Bates model, that is, with a constant interest rate. Recall that in the standard Bates model the dynamic reduces to

dS t S t - = (r -η)dt + V t dZ S t + dH t , dV t = κ V (θ V -V t )dt + σ V √ V t dZ V t , (6.1) 
with S 0 , V 0 > 0, r ≥ 0 constant parameters, d Z S , Z V t = ρdt, |ρ| < 1 and H t is the compound Poisson process already introduced in Section 2, see (2.2). We can apply our hybrid approach to this case as well: it suffices just to follow the computational steps listed above except for the construction of the binomial tree for the process X. Consequently, we do not need the bivariate tree for (V, X), specifically we omit steps (T3)-(T4) and we replace step (MC1) with (MC1') let the chain V h n evolve for n = 1, . . . , N , following the probability structure in (T2).

And of course, in all computations we set equal to 0 the parameters involved in the dynamics for r, except for the starting value r 0 . In particular, we have σ r = 0 and ϕ t = r 0 for every t.

Remark 6.2 We observe that in order to compute the option price by the hybrid tree/finite-difference procedure, in step (FD3) we need to solve many times the tridiagonal system (4.20). This is typically solved by the LU-decomposition method in O(M ) operations (recall that the total number of the grid values y i ∈ Y M is 2M + 1). However, due to the approximation of the integral term (4.9), at each time step n < N we have to compute the sum

ũn+1 i+l ν(ξ l ), (6.2)
which is the most computationally expensive step of this part of the algorithm: when applied directly, it requires O(M 2 ) operations. Following the Premia software implementation [START_REF]Premia: An Option Pricer[END_REF], in our numerical tests we use the Fast Fourier Transform to compute the term (6.2) and the computational costs of this step reduce to O(M log M ). According to the Bates (respectively the Bates-Hull-White) model, the hybrid algorithm requires N (N + 1)/2 (respectively (N (N + 1)/2) 2 ) resolutions of linear systems, each of them having a linear complexity. Therefore, the overall complexity is

O(N 2 M log M ) (respectively O(N 4 M log M )).

Numerical results

We develop several numerical results in order to asses the efficiency and the robustness of the hybrid tree/finite-difference method and the hybrid Monte Carlo method in the case of plain vanilla options. The Monte Carlo results derive from our hybrid simulations and, for American options, the use of the Monte Carlo algorithm by Longstaff and Schwartz in [START_REF] Longstaff | Valuing American options by simulations: a simple least squares approach[END_REF].

We first provide results for the standard Bates model (see Remark 6.1) and secondly, for the case in which the interest rate process is assumed to be stochastic, see (2.1).

Following Chiarella et al. [START_REF] Chiarella | The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines[END_REF], in our numerical tests we assume that the jumps for the log-returns are normal, that is,

log(1 + J 1 ) ∼ N γ - 1 2 δ 2 , δ 2 , (6.3) 
N denoting the Gaussian law (we also notice that the results in [START_REF] Chiarella | The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines[END_REF] correspond to the choice γ = 0). In Section 6.2.1, we first compare our results with the ones provided in Chiarella et al. [START_REF] Chiarella | The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines[END_REF]. Then in Section 6.2.2 we study options with large maturities and when the Feller condition is not fulfilled. Finally, Section 6.2.3 is devoted to test experiments for European and American options in the Bates model with stochastic interest rate. The codes have been written by using the C++ language and the computations have been all performed in double precision on a PC 2,9 GHz Intel Core I5 with 8 Gb of RAM.

The standard Bates model

We refer here to the standard Bates model as in (6.1). In the European and American option contracts we are dealing with, we consider the following set of parameters, already used in the numerical results provided in Chiarella et al. [START_REF] Chiarella | The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines[END_REF]: initial price S 0 = 80, 90, 100, 110, 120, strike price K = 100, maturity T = 0.5; (constant) interest rate r = 0.03, dividend rate η = 0.05; initial volatility V 0 = 0.04, longmean θ V = 0.04, speed of mean-reversion κ V = 2, vol-vol σ V = 0.4, correlation ρ = -0.5, 0.5; intensity λ = 5, jump parameters γ = 0 and δ = 0.1 (recall (6.3)). It is known that the case ρ > 0 may lead to moment explosion, see. e.g. [START_REF] Andersen | Moment explosions in stochastic volatility models[END_REF]. Nevertheless, we report here results for this case as well, for the sake of comparisons with the study in Chiarella et al. [START_REF] Chiarella | The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines[END_REF].

In order to numerically solve the PIDE using the finite difference scheme, we first localize the variables and the integral term to bounded domains. We use for this purpose the estimates for the localization domain and the truncation of large jumps given by Voltchkova and Tankov [START_REF] Voltchkova | Deterministic methods for option pricing in exponential Lévy models[END_REF]. For example, for the previous model parameters the PIDE problem is solved in the finite interval [ln S 0 -1.59, ln S 0 + 1.93].

The numerical study of the hybrid tree/finite-difference method HTFD is split in two cases HTFDa: time steps N t = 50 and varying mesh grid ∆y = 0.01, 0.005, 0.0025, 0.00125;

HTFDb: time steps N t = 100 and varying mesh grid ∆y = 0.01, 0.005, 0.0025, 0.00125.

Concerning the Monte Carlo method, we give the results from the hybrid simulation scheme in Section 3.3, that we call HMC. We give comparisons with the accurate third-order Alfonsi [START_REF] Alfonsi | High order discretization schemes for the CIR process: application to affine term structure and Heston models[END_REF] discretization scheme for the CIR stochastic volatility process and by using an exact scheme for the interest rate. In addition, we simulate the jump component in the standard way. The resulting Monte Carlo scheme is here called AMC. We consider varying number of Monte Carlo iterations N MC and two cases for the number of time discretization steps iterations:

HMCa and AMCa: N t = 50 and N MC = 10000, 50000, 100000, 200000;

HMCb and AMCb: N t = 100 and N MC = 10000, 50000, 100000, 200000.

All Monte Carlo results include the associated 95% confidence interval.

Table 1 reports European call option prices. Comparisons are given with a benchmark value obtained using the Carr-Madan pricing formula CF in [START_REF] Carr | Option valuation using the Fast Fourier Transform[END_REF] that applies Fast Fourier Transform methods (see the Premia software implementation [START_REF]Premia: An Option Pricer[END_REF]).

In Table 2 we provide results for American call option prices. In this case we compare with the values obtained by using the method of lines in [START_REF] Chiarella | The evaluation of barrier option prices under stochastic volatility[END_REF], called MOL, with mesh parameters 200 time-steps, 250 volatility lines, 2995 asset grid points, and the PSOR method with mesh parameters 1000, 3000, 6000 that Chiarella et al. [START_REF] Chiarella | The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines[END_REF] used as the true solution. Moreover, we consider the Longstaff-Schwartz [START_REF] Longstaff | Valuing American options by simulations: a simple least squares approach[END_REF] Monte Carlo algorithm both for AMC and HMC. In particular HMCLSa and AMCLSa: 10 exercise dates, N t = 50 and N MC = 10000, 50000, 100000, 200000;

HMCLSb and AMCLSb: 20 exercise dates, N t = 100 and N MC = 10000, 50000, 100000, 200000.

Tables 3 and4 refer to the computational time cost (in seconds) of the various algorithms for ρ = -0.5 in the European and American case respectively.

In order to study the convergence behavior of our approach HTFD, we consider the convergence ratio proposed in [START_REF] D'halluin | A semi-Lagrangian Approach for American Asian options under jump-diffusion[END_REF], defined as ratio =

P N 2 -P N 4 P N -P N 2 , (6.4) 
where P N denotes here the approximated price obtained with N = N t number of time steps. Recall that P N = O(N -α ) means that ratio = 2 α . Table 5 suggests that the convergence ratio for HTDFb is approximatively linear. The numerical results in Table 1-4 show that HTFD is accurate, reliable and efficient for pricing European and American options in the Bates model. Moreover, our hybrid Monte Carlo algorithm HMC appears to be competitive with AMC, that is the one from the simulations by Alfonsi [START_REF] Alfonsi | High order discretization schemes for the CIR process: application to affine term structure and Heston models[END_REF]: the numerical results are similar in term of precision and variance but HMC is definitely better from the computational times point of view. Additionally, because of its simplicity, HMC represents a real and interesting alternative to AMC.

As a further evidence of the accuracy of our hybrid methods, in Figure 2 and 3 we study the shapes of implied volatility smiles across moneyness K S 0 and maturities T using HTFDa and HMCa. We compare the graphs with the results from the benchmark values CF. The parameters used for these two tests cases are: T = 0.5, S 0 = 100, K = 100, r = 0.03, η = 0.05, V 0 = 0.04, θ V = 0.04, κ V = 2, σ V = 0.4, λ = 5, γ = 0, δ = 0.1, ρ = -0.5. 

Options with large maturity in the standard Bates model

In order to verify the robustness of the proposed algorithms we consider experiments when the Feller condition 2κ V θ V ≥ σ 2

V is not fulfilled for the CIR volatility process. We additionally stress our tests by considering large maturities. For this purpose we consider the parameters from Chiarella et al. [START_REF] Chiarella | The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines[END_REF] already used in Section 6.2.1 with ρ = -0.5, except for the maturity and the vol-vol, which are modified as follows: T = 5 and σ V = 0.7 respectively.

Table 6 reports European call option prices, which are compared with the true values (CF). In Table 7 we provide results for American call option prices. The settings for the experiments HTFDab, HMCa-b and AMCa-b are the same as described at the beginning of Section 6. In the American case the benchmark values B-AMC are obtained by the Longstaff-Schwartz [START_REF] Longstaff | Valuing American options by simulations: a simple least squares approach[END_REF] Monte Carlo algorithm with 300 exercise dates, combined with the accurate third-order Alfonsi method with 3000 discretization time steps and 1 million iterations.

The numerical results suggest that large maturities bring to a slight loss of accuracy for HTFD and HMC, even if both methods provide a satisfactory approximation of the true option prices, being in turn mostly compatible with the results from the Alfonsi Monte Carlo method. It is worth noticing that for long maturity T = 5 we have developed experiments with the same number of steps both in time (N t ) and space step (∆y) as for T = 0.5. So, the numerical experiments are not slower, and it is clear that one could achieve a better accuracy for larger values of N t . 

= 100, T = 5, r = 0.03, η = 0.05, V 0 = 0.04, θ V = 0.04, κ V = 2, σ V = 0.7, λ = 5, γ = 0, δ = 0.1, ρ = -0.5. Case 2κ V θ V < σ 2 V .

Bates model with stochastic interest rate

We consider now the case of Bates model associated with the Vasiceck model for the stochastic interest rate. For the Bates model we consider the parameters from Chiarella et al. [START_REF] Chiarella | The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines[END_REF] already used in Section 6.2.3. Moreover, for the interest rate parameter we fix the following parameters: initial interest rate r 0 = 0.03, speed of mean-reversion κ r = 1, interest rate volatility σ r = 0.2; time-varying long-term mean θ r (t) fitting the theoretical bond prices to the yield curve observed on the market, here set as P r (0, T ) = e -0.03T . We study the cases ρ 1 = ρ SV = -0.5 and ρ 2 = ρ Sr = -0.5, 0.5. No correlation is assumed to exist between r and V . We consider the mesh grid ∆y = 0.02, 0.01, 0.005, 0.0025, the case ∆y = 0.00125 being removed because it requires huge computational times. The numerical results are labeled HTFDa-b, HMCa-b, AMCa-b, HMCLSa-b, AMCLSa-b, their settings being given at the beginning of Section 6.2.1. 

= 100, T = 5, r = 0.03, η = 0.05, V 0 = 0.04, θ V = 0.04, κ V = 2, σ V = 0.7, λ = 5, γ = 0, δ = 0.1, ρ = -0.5. Case 2κ V θ V < σ 2 V .
When the interest rate is assumed to be stochastic, no references are available in the literature. Therefore, we propose benchmark values obtained by using a Monte Carlo method in which the CIR paths are simulated through the accurate third-order Alfonsi [START_REF] Alfonsi | High order discretization schemes for the CIR process: application to affine term structure and Heston models[END_REF] discretization scheme and the interest rate paths are generated by an exact scheme. For these benchmark values, called B-AMC, the number of Monte Carlo iterations and of the discretization time steps are set as N MC = 10 6 and N t = 300 respectively. In the American case, B-AMC is evaluated through the Longstaff-Schwartz [START_REF] Longstaff | Valuing American options by simulations: a simple least squares approach[END_REF] algorithm with 20 exercise dates. All Monte Carlo results report the 95% confidence intervals.

European and American call option prices are given in tables 8 and 9 respectively. Tables 10 and11 refer to the computational time cost (in seconds) of the different algorithms in the European Call case and American Call case respectively. The numerical results confirm the good numerical behavior of HTFD and HMC in the Bates-Hull-White model as well. 9 for S 0 = 100, ρ Sr = -0.5.

Conclusions

In this paper we have studied the numerical stability of the hybrid tree/finite-difference method already introduced in [START_REF] Briani | A hybrid approach for the implementation of the Heston model[END_REF][START_REF] Briani | A hybrid tree/finite-difference approach for Heston-Hull-White type models[END_REF]. We have extended the method to the Bates model with a possible stochastic interest rate. We have also considered a Monte Carlo approach. We have used our numerical schemes to evaluate European and American options. The results can be considered good and reliable, and the comparison with existing pricing methods has shown a good efficiency also in terms of computing time costs.

Figure 1 :

 1 Figure 1: The tree for the process V (left) and for X (right). The figure shows possible instances of the up and down jumps.

  Test parameters: K = 100, T = 0.5, r = 0.03, η = 0.05, V 0 = 0.04, θ V = 0.04, κ V = 2, σ V = 0.4, λ = 5, γ = 0, δ = 0.1, ρ = -0.5, 0.5.

  Test parameters: K = 100, T = 0.5, r = 0.03, η = 0.05, V 0 = 0.04, θ V = 0.04, κ V = 2, σ V = 0.4, λ = 5, γ = 0, δ = 0.1, ρ = -0.5, 0.5.

Table 5 :

 5 Standard Bates model. HTFDb-ratio (6.4) for the price of American call options as the starting point S 0 varies with fixed space step ∆y = 0.0025. Test parameters: T = 0.5, r = 0.03, η = 0.05, V 0 = 0.04, θ = 0.04, κ = 2, σ = 0.4, λ = 5, γ = 0, δ = 0.1, ρ = -0.5.

Figure 2 :

 2 Figure 2: Standard Bates model. Moneyness vs implied volatility for European call options with N t = 50. The red line refers to HTFDa with ∆y = 0.005, the blue line refers to HMCa with N MC = 50000 and the green line refers to the benchmark values CF. The accuracy of our hybrid methods is evident.

Figure 3 :

 3 Figure 3: Standard Bates model. Maturity vs implied volatility for European call options with N t = 50. The red line refers to HTFDa with ∆y = 0.005, the blue line refers to HMCa with N MC = 50000, and the green line refers to the benchmark values CF. Also in this case the accuracy of our hybrid methods is evident.

  2.1. The settings for the experiments in the American case HMCLSa-b and AMCLSa-b are changed HMCLSa and AMCLSa: 20 exercise dates, N t = 100 and N MC = 10000, 50000, 100000, 200000; HMCLSb and AMCLSb: 40 exercise dates, N t = 200 and N MC = 10000, 50000, 100000, 200000.

  Test parameters: K = 100, T = 0.5, η = 0.05, , r 0 = 0.03, κ r = 1, σ r = 0.2, V 0 = 0.04, θ V = 0.04, κ V = 2, σ V = 0.4, λ = 5, γ = 0, δ = 0.1, ρ SV = -0.5,ρ Sr = -0.5, 0.5.

Table 9 :

 9 Bates-Hull-White model. Prices of American call options. Test parameters: K = 100, T = 0.5, η = 0.05, r 0 = 0.03, κ r = 1, σ r = 0.2, V 0 = 0.04, θ V = 0.04, κ V = 2, σ V = 0.4, λ = 5, γ = 0, δ = 0.1, ρ SV = -0.5,ρ Sr = -0.5, 0.5.

Table 1 :

 1 Standard Bates model. Prices of European call options.

	5 ∆y	HTFDa HTFDb	CF	NMC	HMCa	HMCb	AMCa	AMCb
		0.01	1.1302	1.1302		10000	1.08±0.09	1.11±0.09	1.00±0.09	1.08±0.09
		0.005	1.1293	1.1294		50000	1.12±0.04	1.17±0.04	1.07±0.04	1.10±0.04
	S0 = 80	0.0025	1.1291	1.1292	1.1293	100000	1.14±0.03	1.14±0.03	1.13±0.03	1.13±0.03
		0.00125	1.1291	1.1292		200000	1.13±0.02	1.14±0.02	1.11±0.02	1.12±0.02
		0.01	3.3331	3.3312		10000	3.27±0.17	3.27±0.17	3.19±0.16	3.22±0.16
		0.005	3.3315	3.3301		50000	3.32±0.08	3.40±0.08	3.24±0.07	3.26±0.0
	S0 = 90	0.0025	3.3311	3.3298	3.3284	100000	3.34±0.05	3.34±0.05	3.32±0.05	3.33±0.05
		0.00125	3.3310	3.3297		200000	3.32±0.04	3.35±0.04	3.28±0.04	3.31±0.04
		0.01	7.5245	7.5239		10000	7.46±0.25	7.46±0.25	7.37±0.24	7.36±0.25
		0.005	7.5236	7.5224		50000	7.53±0.11	7.62±0.11	7.40±0.11	7.43±0.11
	S0 = 100 0.0025	7.5231	7.5221	7.5210	100000	7.54±0.08	7.52±0.08	7.53±0.08	7.52±0.08
		0.00125	7.5230	7.5220		200000	7.50±0.06	7.54±0.06	7.46±0.06	7.50±0.06
		0.01	13.6943	13.6940		10000 13.69±0.34 13.69±0.34 13.52±0.33 13.48±0.33
		0.005	13.6923	13.6924		50000 13.71±0.15 13.81±0.15 13.55±0.15 13.58±0.15
	S0 = 110 0.0025	13.6918	13.6921 13.6923 100000 13.72±0.11 13.69±0.11 13.67±0.11 13.70±0.11
		0.00125 13.6917	13.6920		200000 13.64±0.08 13.71±0.08 13.63±0.07 13.69±0.08
		0.01	21.3173	21.3185		10000 21.40±0.41 21.40±0.41 21.08±0.40 21.03±0.41
		0.005	21.3156	21.3168		50000 21.35±0.18 21.46±0.19 21.17±0.18 21.21±0.18
	S0 = 120 0.0025	21.3152	21.3164 21.3174 100000 21.36±0.13 21.32±0.13 21.29±0.13 21.33±0.13
		0.00125 21.3152	21.3163		200000 21.25±0.09 21.33±0.09 21.26±0.09 21.33±0.09
						(b)				
	ρ = 0.5	∆y	HTFDa HTFDb	CF	NMC	HMCa	HMCb	AMCa	AMCb
		0.01	1.4732	1.4751		10000	1.42±0.12	1.40±0.12	1.37±0.12	1.35±0.12
		0.005	1.4724	1.4744		50000	1.49±0.06	1.47±0.05	1.40±0.05	1.42±0.05
	S0 = 80	0.0025	1.4723	1.4742	1.4760	100000	1.48±0.04	1.46±0.04	1.46±0.04	1.49±0.04
		0.00125	1.4722	1.4741		200000	1.47±0.03	1.48±0.03	1.48±0.03	1.48±0.03
		0.01	3.6849	3.6859		10000	3.63±0.19	3.63±0.19	3.48±0.19	3.49±0.19
		0.005	3.6836	3.6849		50000	3.70±0.09	3.70±0.09	3.57±0.09	3.60±0.09
	S0 = 90	0.0025	3.6832	3.6847	3.6862	100000	3.67±0.06	3.67±0.06	3.66±0.06	3.71±0.06
		0.00125	3.6832	3.6847		200000	3.66±0.04	3.70±0.04	3.69±0.04	3.68±0.04
		0.01	7.6247	7.6245		10000	7.58±0.28	7.58±0.28	7.35±0.28	7.36±0.27
		0.005	7.6238	7.6232		50000	7.66±0.13	7.65±0.13	7.47±0.12	7.52±0.12
	S0 = 100 0.0025	7.6234	7.6229	7.6223	100000	7.61±0.09	7.59±0.09	7.58±0.09	7.66±0.09
		0.00125	7.6233	7.6228		200000	7.58±0.06	7.64±0.06	7.62±0.06	7.61±0.06
		0.01	13.4863	13.4835		10000 13.48±0.36 13.48±0.36 13.21±0.36 13.19±0.36
		0.005	13.4842	13.4818		50000 13.55±0.17 13.49±0.16 13.27±0.16 13.35±0.16
	S0 = 110 0.0025	13.4837	13.4814 13.4791 100000 13.47±0.12 13.41±0.12 13.44±0.12 13.54±0.12
		0.00125 13.4836	13.4813		200000 13.42±0.08 13.49±0.08 13.47±0.08 13.48±0.08
		0.01	20.9678	20.9661		10000 21.04±0.44 21.04±0.44 20.67±0.44 20.64±0.43
		0.005	20.9659	20.9642		50000 21.05±0.20 20.98±0.20 20.71±0.20 20.81±0.20
	S0 = 120 0.0025	20.9655	20.9636 20.9616 100000 20.96±0.14 20.87±0.14 20.92±0.14 21.04±0.14
		0.00125 20.9654	20.9635		200000 20.88±0.10 20.96±0.10 20.97±0.10 20.98±0.10

Table 2 :

 2 Standard Bates model. Prices of American call options.

	5 ∆y	HTFDa HTFDb	PSOR	MOL	NMC	HMCLSa	HMCLSb	AMCLSa	AMCLSb
		0.01	1.1365	1.1365			10000	1.03±0.08	1.14±0.09	1.06±0.09	1.03±0.09
		0.005	1.1356	1.1358			50000	1.19±0.04	1.14±0.04	1.18±0.04	1.12±0.04
	S0 = 80	0.0025	1.1354	1.1356	1.1359	1.1363	100000	1.15±0.03	1.13±0.03	1.13±0.03	1.13±0.03
		0.00125	1.1353	1.1355			200000	1.14±0.02	1.14±0.02	1.14±0.02	1.14±0.02
		0.01	3.3579	3.3563			10000	3.39±0.15	3.44±0.16	3.38±0.15	3.48±0.16
		0.005	3.3564	3.3551			50000	3.46±0.07	3.33±0.07	3.46±0.07	3.32±0.07
	S0 = 90	0.0025	3.3560	3.3548	3.3532	3.3530	100000	3.35±0.05	3.35±0.05	3.33±0.05	3.36±0.05
		0.00125	3.3559	3.3547			200000	3.35±0.03	3.33±0.03	3.35±0.03	3.34±0.03
		0.01	7.6010	7.6006			10000	7.68±0.23	7.88±0.24	7.63±0.23	7.80±0.24
		0.005	7.6001	7.5992			50000	7.75±0.11	7.59±0.10	7.76±0.10	7.53±0.10
	S0 = 100 0.0025	7.5997	7.5989	7.5970	7.5959	100000	7.56±0.07	7.61±0.07	7.56±0.07	7.61±0.07
		0.00125	7.5996	7.5989			200000	7.58±0.05	7.55±0.05	7.58±0.05	7.57±0.05
		0.01	13.8853	13.8854			10000 13.90±0.29 14.28±0.30 13.84±0.29 14.10±0.29
		0.005	13.8836	13.8842			50000 14.05±0.13 13.89±0.12 14.07±0.13 13.86±0.12
	S0 = 110 0.0025	13.8832	13.8839 13.8830 13.8827 100000 13.80±0.09 13.91±0.09 13.84±0.09 13.89±0.09
		0.00125 13.8831	13.8838			200000 13.86±0.06 13.84±0.06 13.87±0.06 13.83±0.06
		0.01	21.7180	21.7199			10000 21.83±0.34 22.07±0.33 21.71±0.30 22.04±0.34
		0.005	21.7168	21.7187			50000 21.91±0.15 21.76±0.13 21.90±0.15 21.72±0.13
	S0 = 120 0.0025	21.7166	21.7184 21.7186 21.7191 100000 21.59±0.10 21.78±0.10 21.64±0.10 21.72±0.10
		0.00125 21.7165	21.7183			200000 21.68±0.07 21.65±0.07 21.68±0.07 21.67±0.07
						(b)					
	ρ = 0.5	∆y	HTFDa HTFDb	PSOR	MOL	NMC	HMCLSa	HMCLSb	AMCLSa	AMCLSb
		0.01	1.4817	1.4837			10000	1.32±0.11	1.03±0.09	1.51±0.13	0.66±0.08
		0.005	1.4809	1.4830			50000	1.51±0.05	1.31±0.05	1.54±0.05	1.47±0.05
	S0 = 80	0.0025	1.4807	1.4828	1.4843	1.4848	100000	1.50±0.04	1.50±0.04	1.51±0.04	1.48±0.04
		0.00125	1.4807	1.4828			200000	1.50±0.03	1.49±0.02	1.49±0.03	1.47±0.02
		0.01	3.7134	3.7148			10000	3.83±0.19	3.79±0.17	3.89±0.19	3.95±0.19
		0.005	3.7121	3.7139			50000	3.81±0.08	3.70±0.08	3.84±0.08	3.69±0.08
	S0 = 90	0.0025	3.7118	3.7137	3.7145	3.7146	100000	3.69±0.06	3.75±0.06	3.72±0.06	3.70±0.06
		0.00125	3.7118	3.7137			200000	3.70±0.04	3.71±0.04	3.72±0.04	3.70±0.04
		0.01	7.7044	7.7051			10000	7.74±0.26	7.85±0.25	7.96±0.26	7.99±0.26
		0.005	7.7036	7.7039			50000	7.85±0.12	7.68±0.11	7.87±0.12	7.68±0.11
	S0 = 100 0.0025	7.7033	7.7036	7.7027	7.7018	100000	7.66±0.08	7.75±0.08	7.65±0.08	7.73±0.08
		0.00125	7.7032	7.7036			200000	7.69±0.06	7.67±0.05	7.68±0.06	7.69±0.05
		0.01	13.6770	13.6756			10000 13.57±0.32 13.98±0.31 13.88±0.32 14.12±0.33
		0.005	13.6752	13.6742			50000 13.83±0.14 13.67±0.13 13.89±0.14 13.64±0.13
	S0 = 110 0.0025	13.6747	13.6739 13.6722 13.6715 100000 13.56±0.09 13.74±0.10 13.58±0.10 13.71±0.10
		0.00125 13.6747	13.6738			200000 13.65±0.07 13.65±0.07 13.64±0.07 13.64±0.07
		0.01	21.3668	21.3671			10000 21.45±0.32 21.60±0.35 21.39±0.33 21.84±0.34
		0.005	21.3655	21.3658			50000 21.54±0.15 21.40±0.14 21.61±0.16 21.40±0.13
	S0 = 120 0.0025	21.3653	21.3655 21.3653 21.3657 100000 21.26±0.10 21.43±0.10 21.27±0.10 21.38±0.10
		0.00125 21.3652	21.3653			200000 21.31±0.07 21.33±0.07 21.31±0.07 21.31±0.07

Table 3 :

 3 Standard Bates model. Computational times (in seconds) for European call options in Table1for S 0 = 100, ρ = -0.5.

	∆y	HTFDa HTDFb	NMC HMCLSa HMCLSb AMCLSa AMCLSb
	0.01	0.10	0.37	10000	0.09	0.23	0.20	0.45
	0.005	0.19	0.77	50000	0.47	1.11	1.01	2.25
	0.0025	0.48	1.77	100000	1.07	2.25	2.01	4.57
	0.00125	0.95	3.61	200000	1.94	4.55	4.05	8.98

Table 4 :

 4 Standard Bates model. Computational times (in seconds) for American call options in Table2for S 0 = 100, ρ = -0.5.

	N	S0 = 80	S0 = 90	S0 = 100 S0 = 110 S0 = 120
	200 1.919250 1.961063 1.894156 2.299666 2.109026
	400 2.172836 2.209762 2.556021 1.673541 1.996332
	800 1.544849 1.851932 1.463712 2.935697 2.106880

Table 6 :

 6 Standard Bates model. Prices of European call options. Test parameters: K

Table 7 :

 7 Standard Bates model. Prices of American call options. Test parameters: K

Table 8 :

 8 03±0.[START_REF] Cox | A theory of the term structure of interest rates[END_REF] 21.09±0.18 20.92±0.18 21.03±0.18 S0 = 120 0.0050 21.1222 21.1214 21.1070±0.04 100000 21.01±0.13 21.17±0.13 21.04±0.13 21.17±0.13 0.0025 21.1215 21.1207 200000 21.06±0.09 21.16±0.09 21.12±0.09 21.06±0.09 Bates-Hull-White model. Prices of European call options.

	5 ∆y	HTFDa HTFDb	B-AMC	NMC	HMCa	HMCb	AMCa	AMCb
		0.02	1.0169	1.0079		10000	1.00±0.09	0.96±0.09	1.00±0.09	1.06±0.10
		0.01	1.0201	1.0188		50000	1.02±0.04	0.97±0.04	0.98±0.04	1.01±0.04
	S0 = 80	0.0050	1.0199	1.0194	1.0153±0.01	100000	1.00±0.03	1.00±0.03	1.01±0.03	1.03±0.03
		0.0025	1.0197	1.0193		200000	1.01±0.02	1.01±0.02	1.02±0.02	1.00±0.02
		0.01	3.1172	3.1032		10000	3.05±0.16	3.05±0.16	3.07±0.16	3.14±0.17
		0.01	3.1186	3.1137		50000	3.10±0.07	3.03±0.07	3.02±0.07	3.09±0.07
	S0 = 90	0.0050	3.1174	3.1135	3.1008±0.02	100000	3.07±0.05	3.08±0.05	3.09±0.05	3.14±0.05
		0.0025	3.1174	3.1136		200000	3.09±0.04	3.10±0.04	3.11±0.04	3.08±0.04
		0.02	7.2528	7.2472		10000	7.17±0.24	7.17±0.24	7.20±0.24	7.24±0.25
		0.01	7.2528	7.2479		50000	7.21±0.11	7.18±0.11	7.12±0.11	7.21±0.11
	S0 = 100	0.0050	7.2528	7.2480	7.2315±0.02	100000	7.18±0.08	7.24±0.08	7.20±0.08	7.27±0.08
		0.0025	7.2528	7.2480		200000	7.22±0.05	7.25±0.05	7.24±0.05	7.20±0.05
		0.02	13.4553	13.4565		10000 13.30±0.32 13.30±0.32 13.41±0.33 13.39±0.33
		0.01	13.4465	13.4440		50000 13.37±0.15 13.40±0.15 13.27±0.15 13.38±0.15
	S0 = 110	0.0050 13.4435	13.4407 13.4256±0.03 100000 13.35±0.10 13.46±0.10 13.38±0.10 13.48±0.10
		0.0025 13.4432	13.4404		200000 13.40±0.07 13.47±0.07 13.43±0.07 13.39±0.07
		0.02	21.1320	21.1356		10000 20.89±0.40 20.89±0.40 21.08±0.40 20.99±0.41
		0.01	21.1243	21.1239		50000 21.(b)			
	ρSr = 0.5 ∆y	HTFDa HTFDb	B-AMC	NMC	HMCa	HMCb	AMCa	AMCb
		0.02	1.3459	1.3379		10000	1.29±0.11	1.28±0.11	1.32±0.10	1.41±0.11
		0.01	1.3482	1.3471		50000	1.34±0.05	1.30±0.05	1.32±0.05	1.35±0.05
	S0 = 80	0.0050	1.3479	1.3475	1.3446±0.01	100000	1.32±0.03	1.31±0.03	1.34±0.03	1.34±0.03
		0.0025	1.3477	1.3473		200000	1.33±0.02	1.34±0.02	1.35±0.02	1.32±0.02
		0.01	3.7320	3.7233		10000	3.62±0.18	3.62±0.18	3.64±0.18	3.76±0.19
		0.01	3.7323	3.7304		50000	3.69±0.08	3.65±0.08	3.64±0.18	3.76±0.19
	S0 = 90	0.0050	3.7311	3.7298	3.7263±0.02	100000	3.66±0.06	3.68±0.06	3.71±0.06	3.73±0.06
		0.0025	3.7311	3.7299		200000	3.69±0.04	3.72±0.04	3.73±0.04	3.68±0.04
		0.02	8.0100	8.0073		10000	7.83±0.26	7.83±0.26	7.82±0.26	8.00±0.27
		0.01	8.0112	8.0102		50000	7.92±0.12	7.93±0.12	7.93±0.12	7.97±0.12
	S0 = 100 0.0050	8.0114	8.0107	8.0069±0.03	100000	7.91±0.08	7.97±0.08	7.99±0.08	8.02±0.08
		0.0025	8.0114	8.0107		200000	7.95±0.06	8.02±0.06	8.00±0.06	7.95±0.06
		0.02	14.1482	14.1505		10000 13.89±0.35 13.89±0.35 13.88±0.35 14.07±0.36
		0.01	14.1413	14.1414		50000 14.01±0.16 14.05±0.16 14.03±0.16 14.09±0.16
	S0 = 110 0.0050 14.1388	14.1388 14.1323±0.03 100000 14.01±0.11 14.10±0.11 14.12±0.11 14.14±0.11
		0.0025 14.1386	14.1386		200000 14.06±0.08 14.17±0.08 14.13±0.08 14.07±0.08
		0.02	21.6737	21.6772		10000 21.37±0.42 21.37±0.42 21.35±0.42 21.51±0.43
		0.01	21.6670	21.6674		50000 21.50±0.19 21.55±0.19 21.52±0.19 21.60±0.19
	S0 = 120 0.0050 21.6651	21.6653 21.6501±0.04 100000 21.52±0.13 21.63±0.13 21.64±0.13 21.68±0.14
		0.0025 21.6645	21.6646		200000 21.57±0.10 21.71±0.10 21.65±0.10 21.58±0.09

  35±0.[START_REF] Carr | Option valuation using the Fast Fourier Transform[END_REF] 22.27±0.14 22.24±0.14 22.28±0.14 S0 = 120 0.0050 22.2398 22.2402 22.1736±0.03 100000 22.12±0.10 22.27±0.10 22.19±0.10 22.17±0.10 0.0025 22.2394 22.2397 100000 22.12±0.10 22.27±0.10 22.19±0.10 22.17±0.10

	5 ∆y	HTFDa HTFDb	B-AMC	NMC	HMCLSa	HMCLSb	AMCLSa	AMCLSb
		0.02	1.0561	1.0470		10000	0.76±0.07	0.56±0.06	0.95±0.08	0.82±0.08
		0.01	1.0598	1.0588		50000	1.08±0.04	0.91±0.04	1.01±0.04	0.96±0.04
	S0 = 80	0.0050	1.0597	1.0596	1.0544±0.01	100000	1.07±0.03	1.03±0.03	1.07±0.03	1.04±0.03
		0.0025	1.0596	1.0595		200000	1.05±0.02	1.04±0.02	1.07±0.02	1.05±0.02
		0.01	3.2511	3.2364		10000	3.28±0.15	3.39±0.16	3.35±0.16	3.07±0.15
		0.01	3.2537	3.2493		50000	3.33±0.07	3.21±0.07	3.25±0.07	3.30±0.07
	S0 = 90	0.0050	3.2528	3.2494	3.2273±0.01	100000	3.23±0.05	3.24±0.05	3.27±0.05	3.25±0.05
		0.0025	3.2528	3.2495		200000	3.22±0.03	3.23±0.03	3.25±0.03	3.24±0.03
		0.02	7.6012	7.5952		10000	7.64±0.22	7.99±0.23	7.80±0.23	7.68±0.22
		0.01	7.6020	7.5976		50000	7.72±0.10	7.58±0.09	7.61±0.10	7.65±0.10
	S0 = 100	0.0050	7.6022	7.5980	7.5589±0.02	100000	7.54±0.07	7.62±0.07	7.61±0.07	7.54±0.07
		0.0025	7.6022	7.5980		200000	7.54±0.05	7.54±0.05	7.56±0.05	7.60±0.05
		0.02	14.1510	14.1524		10000 14.22±0.28 14.61±0.29 14.35±0.29 14.07±0.28
		0.01	14.1443	14.1425		50000 14.25±0.13 14.11±0.12 14.16±0.12 14.17±0.13
	S0 = 110	0.0050 14.1420	14.1401 14.0909±0.03 100000 14.03±0.09 14.18±0.09 14.10±0.09 14.06±0.09
		0.0025 14.1419	14.1399		200000 14.05±0.06 14.04±0.06 14.07±0.06 14.13±0.06
		0.02	22.2466	22.2505		10000 22.38±0.32 22.84±0.33 22.46±0.32 22.15±0.32
		0.01	22.2412	22.2419		50000 22.(b)			
	ρSr = 0.5 ∆y	HTFDa HTFDb	B-AMC	NMC	HMCLSa	HMCLSb	AMCLSa	AMCLSb
		0.02	1.3551	1.3470		10000	1.18±0.09	1.29±0.10	1.12±0.09	0.80±0.08
		0.01	1.3576	1.3566		50000	1.35±0.05	1.17±0.04	1.33±0.05	1.25±0.05
	S0 = 80	0.0050	1.3573	1.3570	1.3559±0.01	100000	1.33±0.03	1.30±0.03	1.33±0.03	1.27±0.03
		0.0025	1.3571	1.3569		200000	1.35±0.02	1.31±0.02	1.38±0.02	1.34±0.02
		0.01	3.7696	3.7606		10000	3.72±0.17	3.78±0.17	3.82±0.18	3.72±0.17
		0.01	3.7705	3.7688		50000	3.86±0.08	3.71±0.08	3.80±0.08	3.81±0.08
	S0 = 90	0.0050	3.7694	3.7685	3.7633±0.02	100000	3.75±0.06	3.74±0.05	3.76±0.05	3.74±0.05
		0.0025	3.7694	3.7686		200000	3.75±0.04	3.74±0.04	3.80±0.04	3.79±0.04
		0.02	8.1285	8.1249		10000	8.12±0.24	8.52±0.26	8.25±0.26	8.15±0.25
		0.01	8.1308	8.1301		50000	8.25±0.11	8.08±0.11	8.15±0.11	8.18±0.11
	S0 = 100 0.0050	8.1311	8.1308	8.1122±0.03	100000	8.07±0.08	8.16±0.08	8.11±0.08	8.10±0.08
		0.0025	8.1312	8.1309		200000	8.08±0.06	8.07±0.06	8.14±0.06	8.16±0.06
		0.02	14.4455	14.4468		10000 14.48±0.32 14.84±0.33 14.43±0.32 14.51±0.32
		0.01	14.4409	14.4414		50000 14.60±0.15 14.40±0.14 14.45±0.14 14.47±0.14
	S0 = 110 0.0050 14.4389	14.4395 14.3884±0.03 100000 14.34±0.10 14.47±0.10 14.39±0.10 14.38±0.10
		0.0025 14.4388	14.4394		200000 14.35±0.07 14.37±0.07 14.38±0.07 14.48±0.07
		0.02	22.2859	22.2893		10000 22.23±0.36 22.87±0.39 22.45±0.36 22.29±0.35
		0.01	22.2815	22.2827		50000 22.50±0.17 22.29±0.16 22.27±0.16 22.28±0.16
	S0 = 120 0.0050 22.2802	22.2813 22.2039±0.04 100000 22.17±0.12 22.31±0.12 22.24±0.12 22.22±0.12
		0.0025 22.2798	22.2808		200000 22.17±0.08 22.17±0.08 22.17±0.08 22.32±0.08

Table 10 :

 10 Bates-Hull-White model. Computational times (in seconds) for European call options in Table8for S 0 = 100, ρ Sr = -0.5.

	∆y	HTFDa HTDFb	NMC HMCa HMCb AMCa AMCb
	0.02	2.77	22.95	10000	0.13	0.25	0.36	0.48
	0.01	6.15	48.17	50000	0.66	1.35	1.11	2.48
	0.005	12.12	99.19 100000	1.37	2.56	1.82	4.99
	0.0025	27.61	204.88 200000	2.56	5.08	3.70	9.96

Table 11 :

 11 Bates-Hull-White model. Computational times (in seconds) for American call options in Table
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