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Abstract 9 

The aim of this study is to unravel the tectono-sedimentary evolution of a hyper-thinned rift, 10 

based on the example of the Mauléon Basin, a basin filled by thick synrift deposits. The 11 

integrated study combines field data, detailed geological mapping and seismic interpretation. 12 

The field study focuses on the Iberian margin of the Mauléon Basin. Seismic interpretation 13 

and well calibration along a N-S transect of the Mauléon Basin enable imaging the transition 14 

with the northern conjugate margin. The synrift records are very different on either side of the 15 

basin: the southern margin is composed of a proximal turbiditic s.l. siliciclastic system, 16 

whereas the northern margin is characterized by a carbonate system extending from the 17 

platform to the basin. We recognize the Mauléon rift as an apparent symmetric hyper-thinned 18 

rift, related to a southward dipping Albian detachment and a northward dipping Cenomanian 19 

one. Two stages of continental crustal thinning are inferred to explain the development of the 20 

Mauléon Basin. First, a Barremian to earliest Albian “ductile pure-shear thinning phase”, 21 

responsible for the lower crustal thinning and the formation of a symmetric sag basin. Second, 22 

an Albian-Cenomanian simple-shear thinning phase, responsible for the onset of the 23 

southward dipping Saint-Palais detachment faulting and for evolution to an asymmetric basin. 24 

The Iberian margin appears as an upper plate and the European one as a lower plate during 25 

Albian time. At Early Cenomanian time, the basin was affected by structural changes of the 26 
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margins resulting from shift in detachment direction, interpreted as "flip-flop detachment 27 

tectonics". 28 

Key words: Hyper-extended rift - Pyrenees - Detachment faulting - Mauléon Basin - Early 29 

Cretaceous. 30 

1. Introduction 31 

Since the 1980's, conceptual rifting models have evolved from the pure-shear model 32 

(McKenzie, 1978), to the simple-shear model (Wernicke 1981, 1985; Wernicke & Burchfiel 33 

1982; Davis, 1983; Spencer 1984; Davis et al. 1986; Wernicke & Axen 1988; Brun & van den 34 

Driessche 1994) and, more recently, to numerical polyphasing models (Huismans and 35 

Beaumont, 2003, 2008, 2011, 2014; Tirel et al., 2004; Lavier and Manatschal, 2006; Brune et 36 

al., 2014, 2016; Svartman Dias et al., 2015). Much recent work describes the crustal thinning 37 

and modalities of mantle exhumation at actual hyper-thinned passive margins such as the 38 

Iberia-Newfoundland (Péron-Pinvidic et al., 2007; Haupert et al., 2016), Angola-Brazil 39 

(Unternehr et al., 2010; Péron-Pinvidic et al., 2015), and Australia-Antarctic (Gillard et al., 40 

2015) margins. These have been modelled numerically in order to reproduce the geometry of 41 

the continental margins and to understand the development of crustal thinning detachment 42 

faults. Although the distal part of these extensional systems is well constrained offshore by 43 

seismic interpretation, few studies currently describe the proximal onshore domain. One of 44 

the most studied examples is the Jurassic Adriatic margin in the Alps (Masini et al., 2011, 45 

2012, 2013). These authors describe the crustal detachment faults and sedimentary evolution 46 

of this starved system. Unlike the situation in the Mauléon rift basin, the hyper-thinning 47 

crustal models are based on real continental margins bordering oceanic domains. Where the 48 

Pyrenees are concerned, development of these conceptual models has led some authors to 49 

propose different models to explain the location of the Pyrenean mantle outcrops (Lagabrielle 50 
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& Bodinier 2008, Jammes et al. 2009, 2010a, 2010b; Lagabrielle et al. 2010, 2016; Clerc & 51 

Lagabrielle, 2014; Masini et al. 2014; Tugend et al. 2015a; Corre et al. 2016; Hart et al. 2016; 52 

Teixell et al. 2016). However, most of the hyper-thinning crustal models are based on mature 53 

passive continental margins characterized by mantle exhumation at the ocean-continent 54 

transition. The Mauléon Basin is an exceptional "laboratory" for the unravelling of the 55 

tectono-sedimentary evolution of a highly subsiding, thick, sedimentary, hyper-thinned rift. 56 

The evolution of this basin is synchronous to that of the hyper-thinned Parentis rift basin 57 

(Pinet et al. 1987; Bois & ECORS Scientific team 1990; Jammes et al. 2010b, Ferrer et al. 58 

2012; Masini et al. 2014) and to that of the Bay of Biscay continental margins, which are 59 

characterized by a hyper-thinned continental crust and a probably exhumed mantle at the 60 

ocean-continent transition (Ferrer et al., 2008; Roca et al., 2011; Tugend et al., 2014). Even 61 

though the Mauléon Basin was inverted during the Pyrenean orogeny, it has retained the 62 

tectono-sedimentary record from its creation to its reactivation. Recently published 63 

geodynamical models of the Mauléon Basin are mainly based on structural observations. The 64 

aim of this article is to analyze the stratigraphic and sedimentological characteristics of the 65 

syn-thinning deposits recording hyper-extension. This approach will make it possible to test 66 

the validity of the various models proposed and to bring new elements of interpretation. We 67 

propose a new model to explain the thinning of the continental crust beneath the Mauléon 68 

hyper-thinned rift basin, taking into account the sedimentary evolution of the basin through 69 

Cretaceous. 70 

2. Geological setting 71 

Present day structure of the western Pyrenees 72 

The Pyrenean mountain belt results from a north-south convergence and collision between 73 

Iberian and European continental blocks from the Late Santonian to the Early Miocene 74 
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(Puigdefàbregas and Souquet, 1986; Olivet, 1996; Rosenbaum et al., 2002; Sibuet et al., 2004; 75 

Gong et al., 2008). The deformation of this intracontinental domain is linked to the northward 76 

migration of the Iberian plate and to inversion of the previous Cretaceous north-Pyrenean 77 

basin (Ducasse and Vélasque, 1988). The central and eastern parts of the Pyrenees can be 78 

divided into three structural zones: the North-Pyrenean Zone (NPZ), the Axial Zone, and the 79 

South-Pyrenean Zone (SPZ) (Fig. 1A; Choukroune, 1976). The NPZ – located between two 80 

major faults, the North Pyrenean Fault (NPF) to the south, and the North Pyrenean Frontal 81 

Thrust (NPFT) to the north (Fig. 1B; Choukroune and ECORS Team, 1989; Daignières et al., 82 

1994) – is composed of folded Mesozoic cover and Paleozoic units. The commonly named 83 

Metamorphic Internal Zone (MIZ), along the southern part of the NPZ, corresponds to a 84 

narrow, east-west, vertically metamorphosed and severely deformed zone (Ravier, 1957). The 85 

MIZ is characterized by high-temperature and low-pressure metamorphism related to Albian-86 

Cenomanian rifting (Albarède and Michard-Vitrac, 1978; Montigny et al., 1986; Golberg and 87 

Maluski, 1988; Golberg and Leyreloup, 1990; Boulvais et al., 2006; Clerc et al., 2015). 88 

In the western Pyrenees, the NPZ is represented by the Cretaceous Mauléon Basin, thrusted to 89 

the north onto the Aquitaine Basin and bordered to the south by the Axial Zone, where 90 

Paleozoic rocks are unconformably overlain by Late Cretaceous shallow marine carbonates 91 

(Souquet, 1967). The Mauléon Basin is bounded to the west by Paleozoic blocks commonly 92 

known as the "Massifs Basques" (Heddebaut, 1973; Muller and Roger, 1977). The MIZ and 93 

the NPF disappear in the western part of the Pyrenees (Choukroune, 1976; Hall and Johnson, 94 

1986; Canérot et al., 2004). The compressive phase is responsible for a greater shortening rate 95 

in the central and eastern Pyrenees (Muñoz, 1992; Vergés et al., 1995; Beaumont et al., 2000; 96 

Mouthereau et al., 2014) than in the western Pyrenees (Teixell, 1996, 1998), inducing better 97 

preservation of the Mauléon Basin. The minor deformation of the western NPZ is linked to 98 

diachronism at onset of the thrusting of the Pyrenean compressive phase, older to the east 99 
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(Santonian) and younger to the west (Middle Eocene), due to Iberian plate kinematics 100 

(Souquet et al., 1977; Séguret and Daignières, 1986; Olivet, 1996). This diachronism is the 101 

result of the configuration of the plates before convergence, with a more stretched domain in 102 

the western Pyrenees. The MIZ re-appears in the commonly named “Nappes des Marbres” 103 

corresponding to the center of the Albian basco-cantabric basin (Rat et al., 1983). 104 

The Mauléon Basin 105 

The Mauléon Basin corresponds to a Cretaceous subsiding domain, filled by thick Albian to 106 

Upper Cretaceous deep basin deposits. The Mendibelza-Igountze southern Unit correspond to 107 

the inverted elements of the paleo-southern Mauléon Basin margin (Muller and Roger, 1977; 108 

Canérot et al., 1978; Puigdefàbregas and Souquet, 1986). This unit is composed of a 109 

Devonian-Carboniferous sedimentary substratum (Laverdière, 1930; Paris, 1964; Casteras et 110 

al., 1967; Mirouse, 1967), and a thick Albian synrift Mendibelza Formation (Lamare, 1946). 111 

The Mendibelza-Igountze Unit is thrusted towards the south onto the Larrau-Saint Engrâce 112 

Triassic window (Galharague, 1966) and the Late Cretaceous carbonate cover of the Axial 113 

Zone, along the Lakhoura Thrust (Lamare 1941; Casteras 1943; Ducasse et al. 1986; Teixell 114 

1993). 115 

The Arbailles Unit is separated from the Mendibelza Unit by the steeply dipping Arbailles 116 

Thrust (Lamare, 1948), also called the "Licq Fault" (Teixell et al., 2016). The Arbailles Unit 117 

is characterized by a preserved Jurassic-Lower Cretaceous carbonate sequence folded in a 118 

N110° trending syncline. This syncline is bounded to the north by a major normal fault 119 

separating it from the Saint-Palais Unit. This latter is represented by a thick (~ 6,000 m) 120 

Albian to Late Cretaceous flysch sequence deformed in N110° trending folds of various wave 121 

lengths. The north-eastern part of this unit is affected by the Saint-Palais, Bellevue and 122 

Sainte-Suzanne (NPFT) northward Pyrenean thrusts (Daignières et al., 1994; Teixell, 1998). 123 
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During Cretaceous time, the Mauléon Basin is separated from the Aquitaine Basin by the 124 

"Grand-Rieu" Ridge (Serrano et al., 2006). 125 

The Labourd and Aldudes Units are composed of an Ordovician to Carboniferous sedimentary 126 

basement (Laverdière, 1930; Lamare, 1944; Heddebaut, 1967, 1973), overlain respectively by 127 

Permian-Triassic continental deposits (Lucas, 1985) and an Upper Cretaceous carbonate 128 

platform (Souquet, 1967). The Labourd-Aldudes N20° Units, forming the western margin of 129 

the Mauléon rift Basin (Fig. 2), coincide with the commonly named Pamplona Fault 130 

identified by the authors Richard, 1986; Razin, 1989; Claude, 1990; Larrasoaña et al., 2003; 131 

Pedreira et al., 2007. The northern part of the Labourd Unit is composed of the Ursuya 132 

granulites (Viennot and Kieh, 1928; Lamare, 1939; Boissonnas et al., 1974; Hart et al., 2016). 133 

The eastern part of the Mauléon Basin is materialized by the “Chaînons Béarnais”, 134 

corresponding to a N110° anticline and syncline system, affecting a Jurassic to Early 135 

Cretaceous carbonate cover (Canérot, 1988). This sedimentary cover is associated with 136 

lherzolite outcrops: “Urdach, Tos de la Coustette, Saraillé, Turon de la Técouère” (Fabriès et 137 

al., 1991, 1998). The Urdach mantle body is reworked into Late Albian to Cenomanian 138 

synrift breccias, composed of Paleozoic basement and mantle clasts (Roux, 1983; Fortané et 139 

al., 1986; Jammes et al., 2009; Debroas et al., 2010; Lagabrielle et al., 2010). 140 

Tectono-sedimentary evolution of the Mauléon Basin 141 

The Permian-Triassic post-Hercynian continental deposits filled extensional basins, such as 142 

the Bidarray Basin (Fig. 2), located in the Labourd-Aldudes Units (Bixel and Lucas, 1983, 143 

1987). The Late Triassic deposits are characterized by a Lower Triassic Sandstone Unit, a 144 

Middle Triassic Carbonate Unit and an Upper Triassic shale, evaporite and ophite complex 145 

(Curnelle, 1983; Lucas, 1985; Rossi et al., 2003). During the Jurassic, a carbonate platform 146 

developed in a relatively stable tectonic context (Delfaud and Henry, 1967; Lenoble, 1992; 147 
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James, 1998). The end of the Jurassic is characterized by large scale exposure of the Aquitain-148 

Pyrenean domain. The Neocomian is lacking on this part of Pyrenees and is recorded by the 149 

development of the bauxites (Combes et al., 1998; James, 1998; Canérot., 2008). During 150 

Early Barremian, localized subsidence of the previously emerged domain favored the 151 

transgression of carbonate platform deposits that continued until the earliest Albian (Delfaud 152 

and Villanova, 1967; Arnaud-Vanneau et al., 1979). The end of this period is marked locally 153 

by extensive halokinetic deformation, associated with the first normal faults and the 154 

development of distal spicules marls (Canérot, 1988, 1989; Canérot and Lenoble, 1993; James 155 

and Canérot, 1999; Canérot et al., 2005). 156 

The deposition of a thick, deep-marine conglomeratic sequence on the southern margin 157 

(Mendibelza-Igountze Unit) of the newly formed Mauléon Basin is considered as marking the 158 

onset of the Albian rifting basin, with a strong differentiation between an uplifted southern 159 

domain being the source of the conglomerates and a strongly subsiding deep-marine basin to 160 

the north (Boirie, 1981; Boirie and Souquet, 1982; Fixari, 1984; Souquet et al., 1985; Fig. 2). 161 

In the basin axis, more distal turbidites of the Black Flysch group, time-equivalent to the 162 

Mendibelza Conglomerates on the southern margin, constitute the first stratigraphic unit of the 163 

North-Pyrenean rift. At the same time, along the more gently-dipping northern margin, the 164 

albian shallow-marine carbonate deposits grade southwards to more distal marl-dominated 165 

sedimentation (Biteau et al., 2006). 166 

The Mauléon Basin widened during the Cenomanian to Santonian (Canérot, 2017). Active 167 

carbonate turbiditic systems supplied by the Aquitain platform to the north are responsible for 168 

the deposition of a thick carbonate flysch sequence at the basin axis (Razin, 1989). At the 169 

southern margin, the transgressive "Calcaires des Cañons" carbonate platform onlaps the 170 

previously emerged Paleozoic basement, currently exposed in the Axial Zone (Casteras and 171 

Souquet, 1964; Souquet, 1967; Alhamawi, 1992). Chaotic gravity-flow sedimentation 172 



8 
 

characterized the southern tectonically-controlled erosional slope (Durand-Wackenheim et al., 173 

1981). From Late Santonian to Eocene times, a thick deep-water sequence deriving from 174 

eastern syn-tectonic siliciclastic systems accumulated in the Mauléon Basin. Finally, the basin 175 

was deformed and inverted by the Pyrenean compression from the Middle Eocene to the 176 

Miocene (Puigdefàbregas and Souquet, 1986; Bosch et al., 2016; Labaume et al., 2016). 177 

Present day deep structure of the Mauléon Basin 178 

Gravimetric studies highlight a strong positive gravity anomaly under the Mauléon Basin 179 

(Grandjean, 1992, 1994; Casas et al., 1997). This was previously considered as a dense intra-180 

crustal anomaly (Grandjean, 1994) but is now interpreted, by some authors,  as being induced by 181 

the proximity of the lithospheric mantle below a thinned crust (Wang et al., 2016; Wang, 182 

2017). Recent research efforts focusing on mantle exhumation have linked denudation of the 183 

“Chaînons Béarnais” mantle outcrops to Albian hyper-thinning crustal mechanisms along a 184 

low angle detachment fault (Jammes et al. 2009; Lagabrielle et al. 2010; Masini et al. 2014; 185 

Tugend et al. 2014; Corre et al. 2016; Teixell et al. 2016). The inversion of this rift basin is 186 

responsible for the Iberian northward underplating (Mattauer, 1985; Engeser and Schwentke, 187 

1986; McCaig, 1988; Choukroune et al., 1990). 188 

Available geodynamic models of the Mauléon rift basin 189 

The crustal thinning process of the Mauléon rift basin during Albian times has been debated 190 

recently (Jammes et al., 2009; Masini et al., 2014; Tugend et al., 2014, 2015a; Corre et al., 191 

2016; Teixell et al., 2016; Fig. 3). Rifting reconstructions differ from crustal thinning models, 192 

salt tectonics and synrift filling geometries. The first models describe this basin as a classical 193 

rift, thinned by basinward-dipping, crustal, normal faults, responsible for the development of 194 

tilted blocks on the southern margin of the rift (Boirie and Souquet, 1982; Fixari, 1984; 195 

Souquet et al., 1985; Canérot and Delavaux, 1986; Canérot, 1988; Ducasse and Vélasque, 196 
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1988; Souquet, 1988). In recent models of crustal hyper-thinning processes, sub-continental 197 

mantle exhumation is interpreted as being related to northward-dipping detachment faults in 198 

the distal part of the basin (Jammes et al. 2009; Tugend et al. 2014, 2015a; Masini et al. 2014; 199 

Fig 3A). According to these models, the southern margin of the Mauléon Basin corresponds 200 

to the “lower plate” and the northern Grand-Rieu Ridge to the “upper plate” (sensu Wernicke, 201 

1985; Lister et al., 1986). The Ursuya granulites are also considered as lower to middle crust 202 

exhumed during this Albian extensional stage. Two extensional fault systems, the north and 203 

south Mauléon detachments, could be responsible for the southward tilting of the Mendibelza 204 

and Arbailles Units (Masini et al., 2014). An alternative model suggests that the Albian 205 

thinning of the continental crust was caused by a process of crustal boudinage and led to the 206 

creation of a symmetric basin and sliding of the Mesozoic cover from the margins towards the 207 

basin axis on each margin (Lagabrielle et al., 2010; Corre et al., 2016; Teixell et al., 2016; 208 

Fig. 3B). 209 

Our working approach was to reconstruct a N-S cross-section of the present-day Mauléon 210 

Basin, using a field approach on the southern margin and seismic data to illustrate the 211 

northern one. The Albian reconstitution of this cross-section allows to consider the tectono-212 

sedimentary evolution of the basin, focusing on the Albian-Cenomanian rifting phase. The 213 

first part of this paper focuses on a description of the southern margin of the Mauléon rift 214 

basin based on outcrop data. The second part focuses on the deep geometry of the Mauléon 215 

Basin, using the interpretation of a N-S reprocessed composite seismic reflection profile. This 216 

line shows the deep geometry of the conjugate rift margins. The third part of the paper 217 

presents a new N-S composite crustal section of the entire Mauléon Basin, and a 218 

reconstitution at Cenomanian time. We propose a new model of crustal thinning highlighting 219 

the individualization of the Iberian and European conjugate rift margins. 220 
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3. The southern margin of the Mauléon Basin from field observations 221 

Field work has enabled updating of the 1/ 50 000 BRGM geological maps. The latter image 222 

the Iberian margin of the Mauléon Basin: (1) Mendibelza Unit; and (2) Arbailles Unit (Fig. 223 

4A). The southern margin of the Mauléon Basin was deformed during the Eocene alpine 224 

compression along several southward-verging thrusts. The most significant of these, known as 225 

the Lakhoura Thrust, is responsible for the under-thrusting of the Axial Zone beneath the 226 

North-Pyrenean units (Fig. 4). Five structural units bounded by tectonic contacts have been 227 

defined from south to north on this inverted margin (Fig. 4B): (1) The Axial Zone, formed by 228 

the Paleozoic basement and its Late Cretaceous cover (over-thrust by the northern units along 229 

the Lakhoura Thrust); (2) The Saint-Engrâce/Bedous Unit, composed of a complex 230 

assemblage of Triassic rocks thrusted onto the Axial Zone to the south; (3) The Mendibelza-231 

Igountze Unit, including Albian deep-marine synrift deposits onlapping the Paleozoic 232 

sedimentary basement (Fig. 5); (4) The Arbailles Unit, represented by carboniferous rocks 233 

overlain by a continental to shallow marine Triassic to earliest Albian sequence; and (5) the 234 

Saint-Palais Unit formed, essentially, of a thick Albian to Late Cretaceous turbiditic sequence 235 

overlying a deformed Jurassic to Early Cretaceous Carbonate unit. 236 

The Axial Zone  237 

The Palaeozoic basement of the Axial Zone is stratigraphically covered by a shallow marine 238 

carbonate sequence, Cenomanian to Santonian in age, known as the "Calcaires des Cañons" 239 

(Souquet, 1967; Fig. 6A). This carbonate platform succession is overlain by deeper Late 240 

Santonian to Maastrichtian marine sediments composed of argillaceous mudstone 241 

(“calcshists”) containing planktonic foraminifera, grading upward and laterally to siliciclastic 242 

deposits. This deep marine depositional setting continues at least until the Early Lutetian in 243 

this domain. The Paleozoic rocks are not greatly deformed near the contact with the Late 244 

Cretaceous carbonates (Ehujarré and Kakoueta areas).  245 
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The Saint-Engrâce – Bedous Unit  246 

This unit has extensive eastward continuity (Aspe Valley), justifying its name Bedous. The 247 

Saint-Engrâce-Bedous Unit observed in the Larrau tectonic window is a discontinuous thin 248 

band of Triassic rocks delimited by two thrusts and squeezed between the Axial Zone to the 249 

south and the Mendibelza – Igountze Unit to the north (Ducasse and Vélasque, 1988; Teixell, 250 

1993). The Saint-Engrâce-Bedous Unit is composed of the Middle Triassic Carbonate Unit 251 

and the Upper Triassic shale, evaporite and ophite complex. These Triassic rocks are affected 252 

by EW-trending folds indicating a southward displacement of the Lakhoura Thrust system. 253 

The Mendibelza-Igountze Unit: contacts between the Paleozoic basement 254 

and the synrift deposits 255 

The Mendibelza-Igountze Unit is composed of Albian deep-marine synrift deposits onlapping 256 

the Paleozoic sedimentary basement. The Mendibelza synrift conglomeratic gravity flow 257 

deposits have already been studied, by the following authors: Fournier 1905, 1908; Lamare 258 

1939, 1946, 1948; Gubler et al. 1947; Magné 1948; Viers 1956; Paris 1964; Poignant 1965; 259 

Galharague 1966; Merle 1974, Boirie 1981; Fixari 1984; Souquet et al. 1985. The Palaeozoic 260 

substratum of the Mendibelza Formation (Fm.) is composed of Late Devonian to 261 

Carboniferous sedimentary rocks (Fig. 5). This substratum is exposed at two highs: the 262 

Esterençuby high to the north and the Occabe high to the south. The Albian conglomeratic 263 

Mendibelza Fm. is very thick (2,000 m; Fig. 6A) at the northern block, much thinner at the 264 

southern one. The pebbles in this conglomerates are made up of Paleozoic sedimentary 265 

basement and Early Albian carbonate platform in the Igountze area (“Floridées limestones”). 266 

In this area, the base of this conglomeratic sequence is composed of discontinuous calci-267 

turbidites reworking the Early Albian carbonate platform and the Paleozoic basement. In the 268 

Mendibelza area, the base of this formation is characterized by discontinuous base-of-slope 269 
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sedimentary breccias reworking the Lower Triassic Sandstone Unit (Figs. 7A and B). These 270 

discontinuous Igountze calci-turbidites and Mendibelza breccias materialized the base of the 271 

Mendibelza Formation, that is overlied by three southward back-stepping mega-sequences 272 

defined by Souquet et al., 1985. The Mendibelza conglomerates are overlain by Cenomanian 273 

to Santonian polymictic chaotic breccias reworking the “Calcaires des Cañons” carbonate 274 

platform of the Axial Zone and angular blocks of the Paleozoic sedimentary basement. These 275 

deposits attest a base-of-slope palaeogeographic boundary between the Axial Zone and the 276 

Mendibelza-Igountze Unit during the Late Cretaceous. Along the N-S geological cross-section 277 

(Fig. 4), the Mendibelza-Igountze Unit is overthrust southward by the Lakhoura Thrust, onto 278 

the Axial Zone and the Saint-Engrâce Unit. The Mendibelza-Igountze Unit is also thrusted 279 

towards the west, onto the Aldudes Unit. The Cretaceous to Paleocene synrift and post-rift 280 

strata are affected by the Lakhoura Thrust, as shown by their vertical to overturned position 281 

along the front of the Lakhoura Thrust on the southern limit of the Mendibelza Unit, 282 

indicating that this thrust is post Cretaceous. 283 

First rift models described the Mendibelza-Igountze Unit as turbiditic proximal cones installed 284 

on the southward tilted blocks affecting the Iberian margin of the Mauléon Albian Basin 285 

(Boirie and Souquet, 1982; Fixari, 1984; Souquet et al., 1985; Canérot and Delavaux, 1986; 286 

Canérot, 1988; Ducasse and Vélasque, 1988; Souquet, 1988). However, in the light of recent 287 

understanding of crustal hyper-thinning processes, Masini et al. (2014) have interpreted the 288 

southward tilting of the Mendibelza-Arbailles Unit as resulting from the development of a 289 

northward detachment fault. To evaluate these different hypotheses, a detailed field analysis 290 

was conducted to determine the nature of the substratum / cover contacts and the synrift 291 

deposit geometry. All the contacts observed in the field between the substratum and the 292 

synrift deposits are primary contacts that were not reactivated during the Pyrenean orogeny. 293 

Two kinds of contacts have been distinguished: (1) depositional surfaces; and (2) syn-294 
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sedimentary faults. All these surfaces have been corrected for post-depositional tilting in order 295 

to reconstruct their geometries at the time of the syn-rift deposition (Fig. 8). 296 

Albian depositional surfaces 297 

The depositional surfaces (yellow and blue lines in Fig. 5) are in all cases characterized by an 298 

angular unconformity with the Albian synrift strata. This unconformity is between 15–40° 299 

(Fig. 8). Our facies analysis of the Mendibelza Fm. confirms that this unit consists of 300 

conglomeratic gravity-flow deposits (Boirie, 1981; Boirie and Souquet, 1982; Fixari, 1984; 301 

Souquet et al., 1985). The composition, the very coarse granulometry and the roundness of the 302 

clasts suggest that this base-of-slope gravity system was fed by non-preserved shelf-edge fan-303 

deltas, reworking the Paleozoic meta-sedimentary units in an uplifted southern area located in 304 

the present day Axial Zone. In this context, these deep marine conglomerates are considered to 305 

have been deposited in a close to horizontal position. In addition, the Mendibelza Fm. is 306 

currently stacked with an average regional dip of N120°–30 to 40°SW, without any wedge-307 

shaped syn-tectonic growth strata. These characteristics make it possible to reconstruct the 308 

inclination of the depositional surfaces of the synrift albian deposits on the Palaeozoic 309 

substratum (Fig. 8). The surfaces are generally tilted from 15° to 40° towards the NE to NNE, 310 

with an average value of 30°, once the Mendibelza Fm. strata have been reseated in the 311 

original horizontal position. This shows that the Albian substratum of the proximal part of the 312 

Mauléon Basin was inclined towards the basin axis at the time of the synrift Mendibelza Fm. 313 

deposition. Locally, the Esterençuby high is characterized by an albian surface inclined at 30° 314 

to 50° towards the east. 315 

Albian synsedimentary vertical normal faults 316 

Two fault systems have been identified: (1) the N110°–45°NNE North Occabe Fault (NOF, in 317 

orange in Figs. 5 and 8); and (2) the N20° vertical normal Esterençuby faults (in purple in Fig. 318 
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5). These faults have an angular relationship of between 75° and 90° with the strata of 319 

Mendibelza conglomerates. Reconstruction of these faults indicates an original orientation and 320 

dip of N120°–75 to 85° NE for the NOF and an unchanged N20° vertical for the Esterençuby 321 

faults. The Early-Middle Albian megasequences 1 and 2 of the Black Flysch (Souquet et al., 322 

1985) were deposited during the activity of the NOF which is sealed by the upper part of 323 

megasequence 2 (Fig. 5). The stratal geometries and geological mapping show that the 324 

activity of the N20° Esterençuby fault system was contemporary with the NOF, i.e. during the 325 

Early-Middle Albian. 326 

Megasequence 3 onlapped the Occabe high during the Late Albian. The occurrence of chaotic 327 

gravity flow deposits from the Late Albian to Santonian, on the Occabe domain implies the 328 

presence of a tectonically controlled scarp in between the emerged to shallow marine Axial 329 

Zone and the deep marine Mendibelza domain. However this fault scarp is now overprinted 330 

by the Lakhoura Thrust. Therefore, these faults are diachronous and increasingly younger 331 

towards the southern margin of the Mauléon Basin, since the North Occabe Fault is sealed by 332 

Middle Albian deposits. These observations are in agreement with the southward back-333 

stepping of the Albian deposits (Souquet et al., 1985). 334 

The Palaeozoic rocks are affected locally by low temperature weak deformations (Fig. 7C). 335 

But several of these cataclasites are sealed by Permian sediments indicating a Late-Hercynian 336 

age for this deformation (Fig. 5). These observations do not therefore confirm the occurrence 337 

of cataclasites punctuating a detachment fault between the Hercynian basement and the 338 

Albian synrift deposits, as proposed by Jammes et al. (2009), Masini et al. (2014). 339 

The Mendibelza Unit: preliminary interpretations 340 

Most previous publications describe the Mendibelza Unit as an Early Albian southward tilted 341 

block, characterized by a stratigraphic or tectonic contact between the substratum and the 342 
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Albian Mendibelza conglomerates (Ducasse et al. 1986; Souquet et al. 1985; Ducasse & 343 

Vélasque 1988; Souquet 1988; Masini et al. 2014). However, the present study, based on field 344 

analysis and structural reconstruction, does not support these interpretations. Quite the 345 

opposite in fact: it shows an absence of wedge-shaped syn-tectonic growth strata in the Albian 346 

synrift sequence and depositional surface on the hercynian substratum inclined from 15 to 40° 347 

towards the NE. The hercynian substratum of the Mendibelza Unit dips towards the Mauléon 348 

Basin axis. The tilt of this unit towards the NE is marked by the development of diachronous 349 

N120° normal faults that are increasingly younger towards the south. The present day tilting 350 

of the Albian sequence, about 45° towards the south, postdates the Mendibelza Formation. 351 

The Arbailles Unit: tectonic and stratigraphic framework 352 

The contact between the Arbailles and the Mendibelza Units corresponds currently to a 353 

vertical fault. Due to the overturned and northward-dipping position of the Albian sequence of 354 

the Mendibelza Unit to the south, this fault is interpreted as a verticalized southward-directed 355 

thrust fault called the Arbailles Thrust (Ducasse and Vélasque, 1988, Fig. 4). This thrust is 356 

locally retro-thrusting towards the north, indicating a later northward displacement of the 357 

Mendibelza Unit responsible for the verticalization of the previous Arbailles Thrust (Dumont 358 

et al., 2015). The Arbailles Unit is bounded northward by a set of northward-dipping to sub-359 

vertical normal faults, known as the North Arbailles Fault (NAF, Fig. 9). These N120° faults 360 

result in a juxtaposition of Barremian - Aptian shallow-marine carbonate deposits to the 361 

south, and deeper marine marl-dominated Albian deposits to the north. This set of faults 362 

disappears eastward. In fact, the Arbailles Unit is overlapped eastward by the Albian-363 

Cenomanian Tardets Black Flysch group deposits (Souquet et al., 1985). Westward, the 364 

Arbailles Unit is bounded by the Saint-Jean-Pied-de-Port Upper Triassic Unit. 365 
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The Arbailles Unit consists of a carboniferous basement, a Late Triassic sequence and a 366 

Mesozoic cover (Figs. 4 and 9). In this sector, the Late Triassic shales and evaporites overlie 367 

the Lower Triassic sandstone unit, without any Middle Triassic carbonate Unit. The Upper 368 

Triassic Unit is widely exposed on the south-west and consists of ophites and numerous 369 

cargneules indicating a wide zone of deformation. There is a classical Jurassic sequence 370 

above the Upper Triassic Unit (Lenoble, 1992). This Jurassic sequence is limited at the top by 371 

an erosional surface marked by greater and greater truncation towards the south-west, 372 

explaining the lack of most of the Late Jurassic in the southern part of the Arbailles Unit (Fig. 373 

6A). This unconformity is linked to the Late Jurassic - Early Cretaceous emersion phase, 374 

associated regionally with the development of bauxites (Combes et al., 1998; James, 1998; 375 

Canérot et al., 1999). The geometry of this surface reflects the tilt of the Jurassic deposits 376 

towards the north during this period. This emersion extends as far as the base of the 377 

Barremian, as evidenced by the lack of Neocomian deposits in the Arbailles Unit (Fig. 6A). 378 

The Barremian to earliest Albian carbonate platform deposits onlap the Jurassic carbonate 379 

platform towards the south-west (Fig. 6A). This onlapping is highlighted by the southward 380 

thinning of the Barremian deposits and the interbedding of transgressive conglomerates 381 

including pebbles reworked from the pre-existing Kimmeridgian carbonates (Fig. 7D). The 382 

Aptian carbonates (Urgonian facies) overlying the Barremian to the north backstep towards 383 

the south and onlap the eroded Jurassic sequence directly in this direction. The thickness of 384 

the Aptian deposits increases northward without significant facies change, indicating a 385 

northward increase in subsidence (towards basin axis, Figs. 4, 6A and 9). 386 

From Late Aptian to earliest Albian, algal carbonates ("Mélobésiées" limestone) onlap the 387 

eroded Jurassic sequence in the southern part of the Arbailles Unit (Fig. 7E). Intraformational 388 

breccias (Fig. 7F) attest to the presence at that time of an unstable depositional setting and 389 

probably a slight inclination of the depositional profile. This is confirmed by the northward 390 
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change in facies from shallow marine carbonates to deeper marine spicule marls with 391 

intercalations of some carbonate debrites towards the north (Fig. 7G and H). This Late 392 

Aptian-Early Albian sequence is affected by two kinds of progressive unconformity: (1) a 393 

generalized and progressive northward thickening of this sequence at the scale of the 394 

Arbailles Unit, linked to a northward increase in the subsidence rate; and (2) a growth strata 395 

unconformity of shorter wavelength that could result from diapiric movements along the 396 

southern edge of the Arbailles Unit (Canérot, 1988, 1989, 2008; Canérot and Lenoble, 1993). 397 

The Saint-Palais Unit  398 

The Saint-Palais Unit is located between the Arbailles Unit and the Saint-Palais Thrust. The 399 

Saint-Palais Unit formed the Albian - Late Cretaceous depocenter of the Mauléon Basin. At 400 

outcrop scale, this unit is folded into N120° synclines / anticlines of pluri-kilometric 401 

wavelength, composed of Early Albian spicule marls and Middle Cenomanian - Turonian 402 

carbonate distal turbidites. The northern part of this unit is affected by the N110-120° 403 

overturned Saint-Palais anticline. Field work confirms that the distal Late Cretaceous 404 

carbonate turbidites are sourced from the north by the European carbonate platform, as shown 405 

by the N150–200° directed paleocurents measured in the field. These Late Cretaceous 406 

carbonate deposits overlaid the Albian sequence unconformably. This is shown by the 407 

southward distal onlap of the Late Cretaceous deposits on the Albian synrift sequence, on the 408 

southern edge of the Saint-Palais Unit.  409 

4. Seismic interpretation of the Mauléon Basin and the southern part of the 410 

Aquitain Basin 411 

Unlike the southern margin that has been observed directly in the field (Mendibelza and 412 

Arbailles Units), the architecture of the central part and the northern conjugate margin of the 413 
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Mauléon Basin have been explored from seismic data and well calibration (Figs. 6 and 10). 414 

This section focuses on the deep geometry of the Mauléon Basin from the interpretation of a 415 

N-S composite seismic reflection profile, reprocessed by the BRGM in 2017 (MT104 and 416 

MT112 acquired by ESSO-Rep in 1969 on the Mauléon-Tardets exploration permit, cf 4.2). 417 

The seismic line interpreted is a merger of lines MT104, MT112 and 83HBS02 (acquired by 418 

SNEAP in 1981 and reprocessed by BRGM in 2014; Fig. 10). The seismic interpretation was 419 

carried out using the Geographix® Discovery Suite that allows for each CDP of the seismic 420 

profile to export its X, Y, time, amplitude and depth values. Seismic/well tie is obtained by 421 

using the time / depth curves acquired in the boreholes and derived from the recording of 422 

checkshots. The time / depth conversion was performed using a mean velocity field calculated 423 

on the basis of all the time / depth data of the calibration wells, integrating their deviations 424 

(Fig. 11). The top basement has been calibrated taking into account the ECORS seismic 425 

reflection profile (Daignières et al., 1994). The composite line presented in this paper is 426 

calibrated with six wells (Fig. 6), from south to north: Ainhice-1 (3,540.85 m depth); Uhart-427 

Mixe-1 (1,868.8 m depth); Bellevue-1 (6,909 m depth); Orthez-102 (5,489.10 m depth); 428 

Amou-1 (5,543 m depth); and Bastennes-Gaujacq-1.bis (4,442.10 m depth). Only the Ainhice-429 

1 well reaches the Paleozoic basement of the Mauléon Basin. The studied SSW-NNE seismic 430 

line through the Mauléon Basin cuts across four distinct structural units, separated from one 431 

another by thrust faults (Fig. 10). From south to north, the units are as follows: (1) Saint-432 

Palais; (2) Bellevue; (3) Sainte-Suzanne; and (4) Grand-Rieu/Arzacq (Figs. 6 and 10). The 433 

Saint-Palais Unit corresponds to the central and deepest part of Mauléon Basin, while the 434 

Bellevue and Sainte Suzanne Units belong to its northern margin. The Bellevue and Sainte 435 

Suzanne thrusts involved the European basement. Using the field cross-section (Fig. 4B) and 436 

well-velocity models calibrating the interpreted composite seismic reflection profile (Fig. 10), 437 

we propose a depth migrated section of the entire Mauléon Basin (Fig. 11). 438 
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The Saint-Palais Unit 439 

The Palaeozoic substratum below the Saint-Palais Unit is tilted towards the north, being at a 440 

depth of around 2,900 m in the Ainhice-1 well (Fig. 6) and of 7,000 m in the central part of 441 

the basin. The base of this well is characterized by Paleozoic basement, overlain by the thick 442 

Upper Triassic salt Unit materializing a major decoupling level between the basement and the 443 

sedimentary cover. This Triassic salt unit is grading upward to two Mesozoic cover units 444 

characterized by a normal polarity and separated by a tectonic contact. The Lower Unit, U1, 445 

consists of a complete Jurassic sequence, up to the Kimmeridgian, covered by Late Aptian 446 

Urgonian limestones. Unit U1 is characterized by a hiatus of the Neocomian to the Early 447 

Aptian. The Upper Unit, U2, is composed of the same Jurassic but the Kimmeridgian marls 448 

are thinner than in U1, grading upward to Earliest Albian carbonate platform deposits (Fig. 449 

6A). These cover units are overlain by Middle to Late Albian spicule marls and siliciclastic 450 

turbidites. The Albian basinal deposits thicken towards the north and reach their maximum 451 

thickness in the Saint-Palais Anticline, clearly identified in the field. The Saint-Palais domain 452 

corresponds to the depocenter of the Albian basin, with an estimated thickness of up to 4,000–453 

5,000 m (Roux, 1983; Fixari, 1984; Souquet et al., 1985). The upper part of the Saint-Palais 454 

Unit is formed by the Upper Cretaceous carbonate-dominated flysch, which reaches a 455 

thickness of more than 1,500 m in the Uhart Mixe well. 456 

The Bellevue Unit 457 

The Bellevue Unit is located between the Saint-Palais and the Bellevue Thrusts. The Bellevue 458 

Thrust is responsible for the offset of the Jurassic-Cretaceous cover and the displacement of 459 

the Bellevue Unit onto the Sainte Suzanne Unit. The Paleozoic basement is located at a depth 460 

of around 8,000 m under the Bellevue Unit. This unit is composed of a complex structure 461 

whose most obvious feature is the Bellevue Anticline affecting the Mesozoic cover 462 
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intersected in the Bellevue well. The northward Bellevue Thrust is marked by a 1,800 m thick 463 

tectonized zone composed of Late Triassic salt and Barremian carbonate slices. These 464 

Barremian units could be tectonically incorporated to the Triassic salt forming the overturned 465 

flank of the overlying anticline evidenced in the Bellevue well (Fig. 6). In fact, this tectonized 466 

interval is overlain by an overturned Jurassic carbonate unit composed of Dogger to 467 

Kimmeridgian deposits. Above, the Bellevue Unit is made up of a complete Jurassic to Late 468 

Cretaceous sequence in a normal position. The Early cretaceous sequence is characterized by 469 

a lack of Neocomian. The Barremian to Aptian carbonate platform unit lying unconformably 470 

on the Portlandian is more than 1,500 m thick. The Barremian deposits are composed of 471 

limestones with annelids and 500 m thick of more distal Sainte-Suzanne marls. The Aptian is 472 

mainly composed of Urgonian limestones. The Albian thins towards the North and is 473 

represented by spicule marls including intercalations of carbonate mudstone indicating the 474 

proximity of the northern Aquitanian carbonate platform. The Late Cretaceous sequence is 475 

made up of Cenomanian to Coniacian carbonate turbidites. 476 

The Sainte-Suzanne Unit 477 

The Sainte-Suzanne Thrust corresponds to the major north verging thrust responsible for a 478 

displacement of more than 17 km of the Mauléon Basin deposits onto the south Aquitain 479 

Grand Rieu Unit (Fig. 10). It can be considered as the North-Pyrenean Frontal Thrust in this 480 

part of the Pyrenees. The Sainte Suzanne Unit is made up of a very thick Jurassic to 481 

Campanian sequence, slightly inclined and thickening towards the south. It has been crosscut 482 

by the Orthez-102 well where the Sainte Suzanne Thrust has been identified at a depth of 483 

4,320 m (Fig. 6). The Jurassic is made up of a complete sequence of marine carbonate 484 

platform deposits from Hettangian to Kimmeridgian, truncated under the Early Cretaceous 485 

deposits, as evidenced by the north-directed erosional truncations. The 1 000m thick Early 486 

Cretaceous sequence is characterized by a lack of Neocomian. The Barremian is characterized 487 
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by shallow marine carbonate deposits with annelids showing that this unit is more proximal 488 

than the Bellevue Unit. The Aptian is sub-isopachous and is composed of shallow marine 489 

carbonate platform deposits (Urgonian facies). The Albian deposits are also made up of 490 

carbonate platform deposits thickening towards the south. These facies are therefore more 491 

proximal than the Albian deposits of the Bellevue Unit. A clear truncation of the Albian 492 

reflections is seen towards the north, below the Late Cretaceous calcareous flysch. This latter 493 

calci-turbidite sequence is thinning and onlapping to the north on top of the eroded Albian 494 

sequence. 495 

The Grand-Rieu/Arzacq Unit 496 

The Grand-Rieu – Arzacq Unit is the footwall of the Sainte Suzanne Thrust and corresponds 497 

to the southern part of the Aquitain Basin. From the seismic data, the Paleozoic basement 498 

below the Sainte Suzanne Thrust can be estimated to be at a depth of 8,500 m. It is assumed to 499 

be overlain by a more or less continuous Triassic Unit. The inferred Liassic Unit present in 500 

the Aquitain Basin to the north appears to pinch-out southwards against a diapiric structure 501 

associated with a normal fault. This Mesozoic tectonic structure marks the boundary between 502 

the Grand-Rieu Ridge to the South and the commonly named Arzacq Basin corresponding to 503 

a highly subsiding domain during Albian times. The overlying Middle to Late Jurassic 504 

carbonates are more continuous and isopachous. The top of the Jurassic sequence corresponds 505 

to a major exposure surface marked by north-directed erosional truncations under the 506 

Barremian transgressive carbonate deposits, as indicated in the Amou well. This unconformity 507 

is time-equivalent to the one describe in the Arbailles Unit on the southern margin of the 508 

Mauléon Basin. During the latest Jurassic and the Neocomian period, the northern margin of 509 

the Mauléon Basin was tilted towards the south, unlike the southern margin that was tilted 510 

towards the north. The Barremian to Aptian sequence of the Grand-Rieu Unit is relatively 511 

isopachous and consists mainly of shallow marine carbonate platform deposits. The Albian 512 



22 
 

deposits form a thick unit of fairly deep marine spicule marls indicating a strong subsidence 513 

rate of the Arzacq Basin, as indicated in the Amou and Bastennes-Gaujacq (Fig. 6). A large 514 

wave-length anticline affects the Jurassic - Albian sequence at the transition between the 515 

Grand-Rieu Ridge and the Arzacq Basin (Grand-Rieu Anticline). A major truncation of the 516 

folded strata below the Cenomanian carbonate platform deposits attests to the Late-Albian to 517 

Early Cenomanian age of this deformation. In the Grand-Rieu – Arzacq Unit the Late 518 

Cretaceous is represented by sub-isopachous carbonate platform deposits. During the Tertiary, 519 

this domain was characterized by a very high subsidence rate, increasing towards the South, 520 

as attested by the very thick Tertiary sequence at the front of the Sainte Suzanne Thrust. Local 521 

southward dipping clinoforms can be observed south of the Bastennes-Gaujacq well, 522 

probably related to the growth of this diapiric structure. The very great thickness of the 523 

Tertiary sequence attests to the strong flexural subsidence of the Grand-Rieu – Arzacq Unit 524 

but also to the large displacement and uplift of the Mauléon Basin along the Sainte-Suzanne 525 

Thrust, since no Tertiary deposits have been preserved in the Mauléon Basin (even if they 526 

were deposited over this entire flexure domain). Most of the Tertiary flexural subsidence 527 

occurs before the Late Lutetian, as shown by the thickening of the Danian to Lower Ypresian 528 

deposits towards the south. 529 

5. Top Jurassic to Cenomanian tectono sedimentary and geodynamic 530 

evolution of the Mauléon Basin 531 

Latest Jurassic to Neocomian uplift phase 532 

The Jurassic is characterized by an extensive and relatively continuous carbonate platform 533 

spreading between the southern Mauléon Basin margin (Arbailles Unit) and the Arzacq Basin 534 

(Fig. 12A). At its top, the platform is limited by a major unconformity resulting from an 535 

emersive and erosional phase dated from the latest Jurassic to Barremian (Fig. 12B). This 536 
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event is evidenced by the development of bauxites and the lack of Neocomian deposits both in 537 

the Pyrenees and the Arzacq Basin (Combes et al., 1998; James, 1998; Canérot et al., 1999). 538 

Before the Early Cretaceous transgression, the Jurassic platform is characterized by a synform 539 

morphology extending from the southern margin of the Mauléon Basin to the Arzacq Basin. It 540 

is revealed respectively by the south-directed and north-directed erosional truncations 541 

affecting the Jurassic in the Arbailles and the Arzacq Units (Fig. 11). This deformation stage 542 

implies the uplift of these domains, corresponding partly to the Early Cretaceous Mauléon 543 

Basin edges; while in the meantime, subsidence stops in the synform axis. Mechanism 544 

responsible for the uplift of the entire Pyrenean-Aquitaine domain might be related to an 545 

asthenosphere upwelling preceding the Early Cretaceous rifting. 546 

Barremian to earliest Albian rifting stage 1: symmetric basin 547 

After the Late Jurassic – Early Cretaceous exposure/weathering stage, onset of transgression 548 

leads to the development of an extensive restricted carbonate platform during the Barremian. 549 

From Barremian to Aptian time, the balance between carbonate production and creation of 550 

available space favors the aggradation of 1 600m thick shallow marine carbonate facies, 551 

witnessing a highly subsiding stage controlling a relative-flat depositional profile (Figs. 6 and 552 

12C). This homogeneous subsidence stage evolves during Late Aptian to the earliest Albian. 553 

The basin’s edges were characterized by the back-stepping of the shallow carbonate platform, 554 

while the Mauléon and Arzacq Basins center are composed of deeper spicule marls. In this 555 

domain, creation of available space exceeded the carbonate production, resulting in the 556 

relocating of the carbonate factory on the basin’s edges. Paleogeography reorganization was 557 

thus controlled by the differential subsidence regime responsible for a steeper depositional 558 

profile. 559 
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As a consequence, during the Barremian - earliest Albian time the Mauléon Basin was a 560 

symmetric basin, characterized by shallow marine carbonate platforms on each basin edges. 561 

The absence of brittle deformation within the upper-crust excludes the application of the pure-562 

shear model developed by McKenzie (1978) to explain the subsidence regime of this basin. A 563 

symmetric synrift sag basin with no brittle deformation in the upper crust has been proposed 564 

from numerical modeling (Karner et al., 2003). In this model, the subsidence of the basin 565 

results from lower crustal ductile thinning favored by decoupling between the upper and 566 

lower crusts. We propose that the initiation of the Mauléon sag basin results from thinning of 567 

the lower crust, without any major deformation of the upper crust. The isostatic response to 568 

the lower crustal thinning induces regional sagging and onlapping of the syn-thinning deposits 569 

on each side of the basin. The rifting stage 1 can be interpreted as a "ductile crustal pure-shear 570 

thinning phase". 571 

Albian rifting stage 2: asymmetric basin 572 

At Albian time, the southern margin of the Mauléon Basin was affected by differential 573 

vertical movements: (1) uplift of the southern part of the basin; and (2) tectonic subsidence 574 

towards the north (Fig. 12E). They are responsible for the onset of the Mendibelza deep 575 

gravity flow deposits passing distally to the Black Flysch group towards the Saint-Palais 576 

depocenter (Fig. 12E). At this time, the Iberian margin substratum was characterized by a 577 

northward dipping surface with an average slope angle of 15–30° (Fig. 8). This surface was 578 

affected by syn-sedimentary albian N120° southward-propagating high-angle normal faults, 579 

controlling the destabilization of the fan-delta system into the deep basin (Fig. 12E). These 580 

faults were sealed by younger synrift back-stepping deposits of the Mendibelza Fm. towards 581 

the south.  582 
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The conglomerates directly overlain the Paleozoic substratum of the Mendibelza Unit, 583 

indicating the entire Mesozoic lacks (Fig. 5), while it was continuous throughout the 584 

Pyrenean-Aquitaine domain. Thus, the Mesozoic cover of this unit need to be subtracted prior 585 

to the sedimentation of the Albian synrift Mendibelza sequence. It leads to the development of 586 

an emerged Axial Zone during the rifting stage 2. The sliding level consists of the thick Upper 587 

Triassic shale, evaporite and ophite complex systematically brecciated and / or deformed 588 

under the prerift cover of the Iberian margin. This mass-sliding is recorded within the 589 

Ainhice-1 well Mesozoic cover unit overlap (Units U1 and U2, Fig. 6). The stratigraphic 590 

differences between these two Mesozoic cover units, suggest an origin of the upper one from 591 

a southern marginal part of the basin where the Jurassic-Cretaceous hiatus is greatest. Thus, 592 

the Early Albian Axial Zone denudation is linked to the northward mass sliding of the 593 

Mesozoic cover towards the Mauléon Basin axis in response to the Iberian margin northward 594 

tilting (Fig. 12D). 595 

At the same period, the European margin of the Mauléon Basin recorded less vertical 596 

movements and tectonic activity than the southern margin. Unlike the Iberian conjugate 597 

margin, this northern domain is not subject to gravitational sliding of the Mesozoic cover. 598 

Indeed, no regional uplift and associated coarse-grained alluvial-derived gravity-flow deposits 599 

are evidenced in the Arzacq, Sainte-Suzanne and Bellevue Units. The Albian period is mainly 600 

represented by a shallow marine carbonate platform recognized in the Arzacq and Sainte-601 

Suzanne Units (Figs. 6 and 13). The slightly southward-dipping depositional profile is 602 

responsible for a facies transition between shallow-marine algae limestones and deeper 603 

spicule marls in the Sainte Suzanne Unit. In Saint Palais and Bellevue Units, the Jurassic-604 

Aptian sedimentary cover is significantly normally offset, which allows the accumulation of 605 

thick deep Albian facies to the south of the Saint-Palais Thrust, suggesting that this latter 606 

corresponds to a southward dipping Albian normal fault (Figs. 11 and 13). This fault is part of 607 
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the northern Mauléon Albian Basin’s margin. The thick interval with very deformed Triassic 608 

material intersected at the base of the Bellevue well is interpreted as an Albian diapiric ridge 609 

developing on the northern edge of the Albian Mauléon Basin (Fig. 6). 610 

Comparison between the southern and northern margins shows that the Mauléon Basin 611 

acquired asymmetry during the Early Albian time: (1) deep basin turbiditic deposits on the 612 

Iberian margin and (2) carbonate platform on the European one. According to most of the 613 

models that consider a simple-shear deformation process to explain the asymmetry of a rift 614 

(Wernicke, 1985; Lister et al., 1986), the Mauléon Basin’s asymmetry is interpreted as 615 

resulting from the activation of the southward dipping Saint-Palais Detachment during the 616 

Early Albian (Fig. 13). Following Lister et al. (1986) the Albian Iberian margin corresponds 617 

to the upper plate and the European one to the lower plate. The Saint-Palais Detachment 618 

might be responsible for the northward Iberian margin tilting, this former being part of a 619 

major crustal scale roll-over. The roll-over structure is accommodated by N120° oriented and 620 

steeply dipping normal faults that propagate towards the south (i.e. NAF, NOF). They are 621 

antithetic to the Saint-Palais structure. During Albian time, the width of the Mauléon deep 622 

basin, measured from platform to platform, was around 50 km. 623 

Late Cretaceous rifting stage 3: apparent symmetric basin 624 

During the Late Cretaceous period, a carbonate platform developed on both edges of the 625 

Mauléon Basin, and the deep basin became wider (Figs. 6 and 13). Indeed, the width of the 626 

Mauléon deep basin, measured from platform to platform, was around 100 km wide. The 627 

Grand-Rieu Ridge represents a major palaeogeographic boundary between the carbonate 628 

platform of the European margin and the center of the Mauléon Basin (Razin, 1989; Serrano 629 

et al., 2006). The transition between the carbonate platform and the basinal carbonate 630 

turbidites is governed by a southward dipping normal fault between the Sainte Suzanne Unit 631 



27 
 

and the Arzacq Basin. The calcareous flysch deposited in the Mauléon Basin was derived 632 

mainly by gravity flows coming from the northern Aquitain carbonate platform. These 633 

calcareous turbidites onlap the previous Albian deposits towards the Sainte-Suzanne Unit to 634 

the north and the Saint-Palais to Mendibelza Units to the south (Fig. 13). The development of 635 

the Grand-Rieu Anticline attests of salt movement at Early Cenomanian time. 636 

On the southern margin the commonly named Late Cretaceous "Calcaires des Cañons" 637 

carbonate platform deposits lie unconformably over the previously exposed Palaeozoic 638 

basement of the Axial Zone (Fig. 13). Towards the north, in the Mendibelza Unit, base-of-639 

slope chaotic breccias attest of a normal fault-controlled platform-basin transition between the 640 

southern carbonate platform developing on the Axial Zone and the Mauléon Basin (Fig. 13). 641 

Several arguments indicate that a second and opposite detachment occurred at Early 642 

Cenomanian time: the northward verging Lakhoura Detachment (Fig. 13). This syn-643 

sedimentary fault, currently inverted as the Lakhoura Thrust (Fig. 5), is interpreted as being 644 

responsible for the southward tilting of the Mendibelza/Arbailles Units. The Early 645 

Cenomanian age of this tilting is attested by: (1) the absence of wedge-shaped syn-tectonic 646 

growth strata in the Albian synrift sequence of the Mendibelza Unit; (2) the 98 Ma cooling 647 

age obtained on the (Hart et al., 2017), responsible for the southward tilt of the Lower Triassic 648 

Sandstone Unit in the Saint-Jean-Pied-de-Port area (Masini et al., 2014); and (3) the onlap of 649 

the Late Cretaceous deposits on the tilted and eroded Albian sequence in the north of the 650 

Arbailles Unit (Casteras et al., 1971; Ducasse and Vélasque, 1988; Fig. 9). This observation 651 

implies that the northern edge of the Arbailles Unit becomes a structural high in the basin 652 

during Early Cenomanian. This structural high is fossilized at Santonian time as highlighted 653 

by the age of the first deposits passing over it. 654 
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6. Discussion and Conclusion 655 

The northwestern Pyrenees present a strong positive gravity anomaly under the Mauléon rift 656 

Basin (Grandjean, 1994; Casas et al., 1997) resulting from the presence at low depth (~10 km) 657 

of lithospheric mantle (Wang et al., 2016). This high mantle body position implies the 658 

existence of a very thin continental crust arguing for a hyper-thinning Cretaceous rifting 659 

stage. In this work, we assume that the Saint-Palais and Lakhoura structures affect the 660 

lithospheric mantle. They are responsible for the hyper-thinning of the Mauléon Basin 661 

continental crust. However, this rift basin have not underwent oceanic spreading as classical 662 

basins along the Atlantic Ocean (Manatschal., 2004; Péron-Pinvidic et al., 2007; Haupert et 663 

al., 2016), or in the Alps fossil margins (Manatschal et al., 2006, Masini et al., 2011, Mohn et 664 

al., 2014 et Decarlis et al., 2015). Another significant difference with these classical hyper-665 

extended magma poor margins is the thickness of the syn-thinning deposits in the hyper-666 

extended domain (~ 8 km thick in Mauléon Basin vs. less than 1 km thick on the Atlantic and 667 

Alps margins). The thick synrift deposits record a complex polyphasic thinning history from 668 

Barremian to Early Cenomanian time. 669 

During stage 1, the Mauléon Basin is symmetric as evidenced by the development of a 670 

carbonate platform on each basin edges. The carbonate production counterbalances the high 671 

accommodation, resulting in a near flat sedimentary profile. We interpret the creation of 672 

accommodation as a result of ductile thinning of the lower crust, without affecting the upper-673 

crust (Fig. 14A). This thinning stage shares similarity with the crustal scale boudinage 674 

process, previously proposed at Albian time (Lagabrielle et al, 2010; Corre et al, 2016; Teixell 675 

et al, 2016; Fig. 3B). However, only the lower crust is affected by ductile thinning, favored by 676 

the presence of a decoupling level in between the lower and upper crusts. The resulting synrift 677 

sag basin morphology is quite similar to the Mesozoic Columbrets sag Basin, which does not 678 



29 
 

present any evidence of deep basin gravitary sedimentary infill (Etheve, 2016 and Etheve et 679 

al, 2018).  680 

At Albian time (stage 2), the rift fabric totally changed. The basin was affected by "simple-681 

shear thinning" due to the development of the southward dipping Saint-Palais Detachment 682 

(Fig. 14B). This crustal thinning phase affected the entire lithosphere, forming an asymmetric 683 

rift basin, as previously proposed in the simple-shear models (Jammes et al, 2009; Tugend et 684 

al, 2014, 2015a; Masini et al. 2014, Fig. 3A). However, unlike the previous models, the 685 

Albian rifting stage initiates with simple shear thinning, without distributed extension in the 686 

upper crust (pure shear thinning sensus McKenzie., 1978). Lavier and Manatschal., 2006 have 687 

evidenced using numerical modeling that the continental crust was already thin (~20km) 688 

when simple shear thinning starts. In the case of the Mauléon Basin we propose that the Early 689 

Cretaceous stage favors the ductile thinning of the lower crust before beginning the Albian-690 

Cenomanian simple shear thinning stage. 691 

The Saint-Palais detachment is responsible for the northward Iberian margin roll-over. This 692 

interpretation strongly contrasts with previous models arguing for an Albian southward tilt of 693 

the Iberian margin along a northward dipping normal fault (Boirie., 1981; Fixari., 1984; 694 

Souquet et al., 1985; Ducasse and Vélasque., 1988) or crustal scale detachments (Jammes et 695 

al., 2009; Masini et al., 2014). In this scheme, we propose that rift asymmetry controls the 696 

asymmetric sedimentary profile. Actually, the Iberian margin (roll-over) is composed of a 697 

proximal turbiditic s.l. system whereas the European one (southward gently-dipping) is 698 

characterized by a carbonate platform. Similarly, to the Columbrets Basin (Etheve., 2016 and 699 

Etheve et al., 2018), the onset of simple shear thinning is synchronous with the basinward 700 

prerift cover-sliding along the Late Triassic salt décollement. Such Early Albian gravity 701 

tectonics have already been reported all along the Iberian rift margin (Bouquet, 1986; Ducasse 702 

et al., 1986; Ducasse and Vélasque, 1988; Lagabrielle et al., 2010; Corre et al., 2016; Teixell 703 
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et al., 2016; Fig. 3B). However, one of the major discrepancies with the previous models is 704 

the absence of gravitational cover sliding along the European rift margin (Fig. 3B). The 705 

sliding of the Mesozoic cover led to local diapirism along the Iberian margin, as shown by the 706 

lateral facies variations from shallow carbonate platform to spicule marls around the diapiric 707 

structures (Canérot, 1988, 1989; Canérot and Lenoble, 1993; James and Canérot, 1999; 708 

Canérot et al., 2005). 709 

The paleogeography of the Early Cretaceous Mauléon Basin, derived from the sedimentary 710 

record is not compatible with a major strike-slip drift of the Iberian plate as proposed in 711 

kinematic reconstructions (Le Pichon et al., 1971; Roest and Srivastava, 1991; Olivet, 1996; 712 

Rosenbaum et al., 2002; Sibuet et al., 2004; Gong et al., 2008).  We assume that the Iberia 713 

sinistral strike-slip motion did occur on a more southward structure (Malod., 1982; Canérot., 714 

2016) developed earlier during Late Jurassic (Tugend et al., 2015b) and / or may have been 715 

evenly distributed within the Cretaceous rift system. 716 

At Early Cenomanian time (final stage 3), the southward tilting of the Mendibelza-Arbailles 717 

Units, – formerly considered as Early Albian (Boirie, 1981; Boirie and Souquet, 1982; Fixari, 718 

1984; Souquet et al., 1985; Ducasse and Vélasque, 1988; Masini et al., 2014) – is induced by 719 

the change of detachment vergence and the development of the Lakhoura northward dipping 720 

Detachment. The Arbailles Unit thus becomes a structural high bordering the southern hyper-721 

thinned Mauléon Basin domain. Consequently, we assume that the Arbailles Unit becomes a 722 

tilted block at Early Cenomanian time. 723 

Therefore, the tectono-sedimentary evolution of the Mauléon rift Basin during the stages 2 724 

and 3 is defined by the development of two antithetic and diachronous detachments, i.e. the 725 

Albian southward dipping Saint-Palais detachment during Stage 2 and the Early Cenomanian 726 

northward dipping Lakhoura one during Stage 3. The change in detachment vergence between 727 
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Albian and Cenomanian time can be interpreted as "flip-flop detachment tectonic" (Sauter et 728 

al., 2013; Geoffroy et al., 2014; Gillard et al., 2015), highlighting the diachronous shift from 729 

upper-plate to lower-plate morphology along a same margin section. This double successive 730 

asymmetry is responsible for the apparent final symmetry of this hyper-thinned rift. This work 731 

reconciliates the previous rift models, i.e. symmetric (Souquet, 1988; Ducasse and Vélasque, 732 

1988), asymmetric (Jammes et al., 2009; Masini et al., 2014; Tugend et al., 2015a, Fig. 3A) or 733 

mixed (Lagabrielle et al., 2010; Corre et al., 2016; Teixell et al., 2016, Fig. 3B). The 734 

polyphase thinning history is responsible for the hyper-thinning of the continental crust and 735 

the development of a relatively narrow hyper-thinned rift domain (Fig. 14C).  736 

In three dimensions, the Mauléon Basin appears relatively complex and not cylindrical. On 737 

our synthetic 2D transect (Fig. 14C), the mantle is systematically overlain by a hyper-thinned 738 

crust whereas eastward (Urdach), it has been denuded and partly reworked into synrift 739 

deposits (Roux, 1983; Duée et al., 1984; Fortané et al., 1986; Debroas et al., 2010; Lagabrielle 740 

et al., 2010; Teixell et al., 2016). We consider the Saint-Palais Detachment as responsible for 741 

the hyper-thinning of the continental crust, while the Lakhoura one might be responsible for 742 

partial mantle denudation. This is consistent with the Urdach mantle/crust contact that display 743 

top north-east shear direction (Corre., 2017). Thus, it appears that the basin morphology 744 

changes along strike, due to N0°-20° transverse structures such as the Pamplona (Richard, 745 

1986; Razin, 1989; Claude, 1990; Larrasoaña et al., 2003; Pedreira et al., 2007; Díaz et al., 746 

2012), the Saint-Jean-Pied-de-Port, Saison, Barlanès and Ossau structures (Canérot, 2008, 747 

2017; Debroas et al., 2010). This N0°-20° structuration seems to clearly control the 3D 748 

geometry of the Saint-Palais hyper-extended rift domain, and will be the purposed of future 749 

investigations. 750 
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Figures and Captions: 1319 

Figure. 1 1320 

 1321 

(A) Geological map of the Pyrenees showing the structural domains of the belt: North 1322 

Pyrenean Zone, Axial Zone and South Pyrenean Zone (Mouthereau et al., 2014). NPFT: 1323 

North Pyrenean Frontal Thrust; MB: Mauléon Basin; (B) Geological cross-section across the 1324 

Western Pyrenees showing from north to south, the: Audignon Ridge, Arzacq Basin, Mauléon 1325 

Basin, Mendibelza Unit, Lakhoura Thrust, Isaba Unit and Sierra de Leyre Unit (AGSO and 1326 

BRGM., 2018).  1327 
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Figure. 2 1328 

 1329 

Geological map showing the main structural units of the Iberian Mauléon margin, from west 1330 

to south: Labourd granulites, Bidarray Basin, Aldudes Unit, Mendibelza-Igountze Unit. The 1331 

Mauléon Basin geological map presented in this paper derive from an update of the published 1332 

1/50 000 geological maps (Casteras et al., 1970, 1971; Boissonnas et al., 1974; Le Pochat et 1333 

al., 1976, 1978; Henry et al., 1987).   1334 
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Figure. 3 1335 

 1336 

(A) 2D synthetic tectono-sedimentary model of the Mauléon-Arzacq rift section during the 1337 

Cenomanian to Turonian post-tectonic stage (modified from Masini et al., 2014). The 1338 

continental crust is thinned during Albian time as the result of the development of two 1339 

diachronous northward dipping detachments. SMD: South Mauléon Detachment; NMD: 1340 

North Mauléon Detachment; HE: Hyper-extension; (B) Late Cretaceous restoration of the 1341 

Mauléon Basin. The dashed lines correspond to supposed anastomosed shear zones 1342 

contributing to continental crust thinning (modified from Teixell et al., 2016). This model 1343 

proposes a boudinage-like geometry of the crust, with narrow continental margins (<40 km 1344 

wide).   1345 
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Figure. 4 1346 

 1347 



58 
 

(A) Panoramic view of the Mendibelza and Arbailles Units. The Mendibelza Formation is 1348 

characterized by the absence of wedge-shaped syn-tectonic growth strata in the Albian synrift 1349 

sequence and a N120°-30°SW orientation. These conglomerates stop on the Albian North 1350 

Occabe paleo-normal fault (NOF) whose current orientation is N110°-45°N. The Arbailles 1351 

Unit is characterized by a progressive unconformity affecting the Aptian to earliest Albian 1352 

deposits, showing a northward inclination of the sedimentary profile at this time; (B) Current-1353 

day geological cross-section showing from north to south the: Saint-Palais, Arbailles, 1354 

Mendibelza, Saint-Engrâce/Bedous and Axial Zone Units. The Arbailles Unit is characterized 1355 

by Jurassic cover eroded to the south, overlain by a southward back-stepping Early 1356 

Cretaceous carbonate platform. The Arbailles Unit is separated from the Mendibelza Unit by 1357 

the steep Arbailles Thrust. The Mendibelza Unit overthrust the Axial Zone and the 1358 

Larrau/Saint-Engrâce Units due to the Lakhoura Thrust.  1359 
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Figure. 5 1360 

 1361 

Geological map of the Mendibelza Unit, modified from the 1/50 000 BRGM geological maps 1362 

(Casteras et al., 1970, 1971; Le Pochat et al., 1978). The Mendibelza Formation is composed 1363 

of three main synrift mega-sequences, younger and younger towards the south, defined by 1364 

Souquet et al. (1985). The stereographic representations show the Albian orientation of the 1365 

contact between the Mendibelza conglomerates strata and the sedimentary basement. The 1366 

Mendibelza Unit is separated from the Arbailles Unit by the steep Arbailles fault and is 1367 

overthrust towards the south by the Lakhoura Thrust. The North Occabe Fault (NOF) is 1368 

fossilized by the Albian Megasequences 1 and 2, indicating an Early to Middle Albian age for 1369 

this fault.   1370 
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Figure. 6 1371 

 1372 



61 
 

(A) To the south: synthetic sedimentary succession of the Axial Zone, Mendibelza Unit, 1373 

South Arbailles Unit and North Arbailles Unit; To the north: sedimentary facies of the six 1374 

wells calibrating the interpreted N-S composite seismic reflection profile (Fig. 10). (B) 1375 

Location of the N-S composite seismic reflection profile (Fig. 10) on the 1 / 400 000 BRGM 1376 

geological map of Pyrenees (Baudin and Barnolas, 2008). From south to north the MT104, 1377 

MT112 and 83HBS02 seismic lines. Ai-1: Ainhice-1 well, UM-1: Uhart Mixe-1 well, Bel-1: 1378 

Bellevue-1 well, Ort-102: Orthez-102 well, Am-1: Amou-1 well and BG-1bis: Bastennes 1379 

Gaujacq-1bis well.   1380 
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Figure. 7 1381 

 1382 

See Figs. 5 and 9 for location. (A-B) Early Albian Esterençuby breccias reworking the Lower 1383 

Triassic Sandstone Unit. These discontinuous breccias are located at the base of the 1384 

Megasequence one of the Mendibelza Formation defined by Souquet et al. (1985); (C) 1385 

Cataclasites affecting the sedimentary Paleozoic basement of the Esterençuby high; (D) Early 1386 

Cretaceous transgressive conglomerates reworking the Kimmeridgian carbonate deposits; (E) 1387 

latest Aptian-earliest Albian “Mélobésiées” carbonate platform on the southern part of the 1388 

Arbailles Syncline; (F) In-situ breccias of the Late Aptian-earliest Albian carbonate platform 1389 
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deposits, due to the northward inclination of the sedimentary profile; (G-H) Carbonate 1390 

breccias intercalated with spicule marls on the northern corner of the Arbailles Unit. These 1391 

breccias correspond to the northward reworking of the Late Aptian-earliest Albian carbonate 1392 

platform.  1393 
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Figure. 8 1394 

 1395 

Stereographic representation of the structural data showing the current and the Albian 1396 

orientation of the contacts between the Mendibelza conglomerates strata and the Paleozoic 1397 

sedimentary basement of the Mendibelza Unit. The sites are localized on the map Fig 5. The 1398 

first column represents the current Mendibelza Formation strata. Second column shows the 1399 

current orientation of the contacts between Mendibelza Formation strata and the Paleozoic 1400 

basement. The third column shows the Albian orientation of the contacts. The average value 1401 

of the Albian yellow surface is N131-35°NE. The NOF represented by the site F is 1402 

characterized by a sub-vertical Albian orientation. MP: Measurements planes.   1403 
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Figure. 9 1404 

 1405 

Geological map of the Arbailles Unit and the southern part of the Saint-Palais Unit, using 1406 

updated BRGM 1/50 000 maps (Casteras et al., 1971; Boissonnas et al., 1974; Le Pochat et 1407 

al., 1976, 1978). The Arbailles Unit is separated from the Saint-Palais Unit by N120° normal 1408 

faults known as the North Arbailles Fault (NAF). These maps highlight the southward erosion 1409 

of the Jurassic cover and the southward back stepping of the Barremian to Aptian carbonate 1410 

platform, onlapping the previous eroded Jurassic deposits. In the North of the Arbailles Unit, 1411 

the Late Cretaceous deposits onlapped the Albian rift sequence towards the south from 1412 

Cenomanian to Santonian time.   1413 
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Figure. 10 1414 

 1415 



67 
 

Interpretation of a N-S petroleum reflection composite seismic line, reprocessed by the 1416 

BRGM in 2017 (MT104, MT112 and 83HBS02). This composite seismic line shows the deep 1417 

geometry of the Mauléon Basin and its European margin. This seismic line through the 1418 

Mauléon Basin cuts across four distinct structural units, separated from one another by 1419 

thrusting overlaps. From south to north, the units are as follows: (1) Saint-Palais, (2) 1420 

Bellevue, (3) Sainte Suzanne, and (4) Grand-Rieu/Arzacq. The Saint-Palais Unit corresponds 1421 

to the Albian rift depocenter. The Bellevue and Sainte Suzanne Units materialized the 1422 

northern conjugate margin of the Albian Cretaceous Mauléon rift basin, and the Barremian-1423 

Aptian depocenter.  1424 
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Figure. 11 1425 

 1426 

N-S Composite cross-section of the Mauléon Basin. The southern part corresponds to the field 1427 

cross-section Fig. 4 and the northern part of the section is calibrated by the seismic line. The 1428 

Mendibelza and Arbailles Units correspond to the southern margin of the Mauléon Basin. The 1429 

Saint-Palais Unit represents the Albian rift depocenter. The Bellevue and Sainte Suzanne 1430 

Units materialized the northern rift margin of the Mauléon Basin and are northward overthrust 1431 

onto the Arzacq Basin. 1432 
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Figure. 12 1433 

 1434 

Schematic tectono-sedimentary evolution of the southern margin of the Mauléon Basin from 1435 

the end of Jurassic to Late Cretaceous time. (A) During the Jurassic, this domain is 1436 

characterized by the development of a carbonate platform. (B) The Jurassic platform 1437 

underwent an emersion phase from the end of Jurassic to the base of Barremian time. This 1438 
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emersive phase was responsible for erosion of the previous carbonate platform, as shown by 1439 

the southward erosional truncations affecting the Jurassic under the Early Cretaceous 1440 

deposits. (C) The Early Cretaceous is characterized by a lack of Neocomian and the 1441 

development of a flat carbonate platform during Barremian-Early Aptian time. During Late 1442 

Aptian time, the previous carbonate platform distalized towards the north into more distal 1443 

spicule marls, showing a slight tilt of the depositional profile. (D) At Early Albian time, the 1444 

southern Mauléon margin was affected by the gravitational sliding of the Mesozoic cover 1445 

towards the north leading to local diapirism. (E) The Albian time was characterized by 1446 

differential vertical movements responsible for the uplift of the southern margin and tectonic 1447 

subsidence towards the north. This stage is materialized by the sedimentation of the 1448 

Mendibelza Fm. proximal turbiditic s.l. siliciclastic system, onlapping towards the south a 1449 

Paleozoic basement inclined towards the north. The northward tilt of the Iberian margin is 1450 

affected by southward propagating N120° normal faults. (F) At Cenomanian time, the 1451 

Mendibelza-Arbailles Unit was affected by a tilt towards the south.  1452 
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Figure. 13 1453 

 1454 

Schematic cross-section of the Mauléon Basin during Late Cretaceous showing the 1455 

asymmetry of the rift basin margins and the geometry of the Cretaceous deposits. Lak: 1456 

Lakhoura detachment, NOF: North Occabe fault, SAF: South Arbailles fault, NAF: North 1457 

Arbailles fault, St-P: Saint-Palais detachement.  1458 
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Figure. 14 1459 

 1460 

Geodynamical model of crustal thinning of the Mauléon hyper-thinned rift basin. The genesis 1461 

of the Mauléon Basin comprises two lithospheric thinning stages. (A) Barremian to Aptian 1462 

rifting stage 1: "ductile pure-shear thinning phase" affecting mainly the lower crust, inducing 1463 

the formation of a symmetric synrift sag basin. (B) Albian rifting stage 2: simple-shear 1464 

thinning phase inducing the development of an asymmetric synrift basin, characterized by 1465 

proximal turbiditic system on the southern margin and carbonate platform deposits on the 1466 

northern one. The Saint-Palais southward detachment fault is responsible for the hyper-1467 

thinning of the sub-continental crust during Albian time. (C) Early Cenomanian rifting stage 1468 

3: the southern margin was tilted towards the south along a northward dipping detachment 1469 
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fault responsible for local sub-continental mantle denudation, resulting in the formation of an 1470 

apparent symmetric rift basin. St-P: Saint-Palais, Lak: Lakhoura. 1471 




