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Abstract
Changes inmean sea level (MSL) are amajor, but not the unique, cause of changes in high-percentile
sea levels (HSL), e.g. the annual 99.9th quantile of sea level (among other factors, climate variability
may also have huge influence). To unravel the respective influence of each contributor, we propose to
use structural time seriesmodels considering sixmajor climate indices (CI) (ArticOscillation,North
AtlanticOscillation, AtlanticMultidecadalOscillation, SouthernOscillation Index, Niño 1+2 and
Niño 3.4) as well as a reconstruction ofMSL. Themethod is applied to eight century-long tide gauges
across theworld (Brest (France), Newlyn (UK), Cuxhaven (Germany), Stockholm (Sweden), Gedser
(Danemark), Halifax (Canada), San Francisco (US), andHonolulu (US)). The treatment within a
Bayesian setting enables to derive an importance indicator, whichmeasures howoften the considered
driver is included in themodel. The application to the eight tide gauges outlines thatMSL signal is a
strong driver (except forGedser), but is not unique. In particular, the influence of ArticOscillation
index at Cuxhaven, Stockholm andHalifax, and ofNiño Sea Surface Temperature index 1+2 at San
Francisco appear to be very strong aswell. A similar analysis was conducted by restricting the time
period of interest to the 1st part of the 20th century. Over this period, we show that theMSL
dominance is lower, whereas an ensemble of CI contribute to a large part toHSL time evolution as
well. The proposed setting isflexible and could be applied to incorporate any alternative predictive
time series such as river discharge, tidal constituents or vertical groundmotions where relevant.

1. Introduction

Changes in extreme sea levels are recognized mainly
driven by variations in mean sea level (MSL), as
pointed out in the 2013 IPCC report (IPCC 2013).
Previous studies have shown and extensively docu-
mented the relation between variability and trends in
extremes and MSL; see for instance, Menéndez and
Woodworth (2010), Woodworth et al (2011), Wahl
and Chambers (2015). However, MSL being themajor
contributor does not necessarily mean that it is the
only one. Today, extreme sea level events associated
with storm surges are already prominent threats for
populations and ecosystems on the coasts. The combi-
nation of such extreme events with MSL rise and the

related damages are a significant concern (Wahl 2017)
for present day and for the future. Therefore, planning
adaptation strategies (like hard protection, soft protec-
tion, accommodation, retreat) and designing protec-
tive infrastructures (like dikes, and seawalls) for the
future both require improving the understanding and
the predictability of such extreme events via a deeper
knowledge of their drivers.

On top of the MSL, forcing related to ocean and
atmosphere variations influence extreme sea levels at
inter-annual and decadal time scales. To investigate
such large-scale climate variability, climate indices
(denoted CI) like North Atlantic Oscillation (NAO) or
Atlantic Multidecadal Oscillation (AMO) have been
used; see e.g. Menéndez and Woodworth (2010),
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Woodworth et al (2011), Talke et al (2014), Marcos
et al (2015), Wahl and Chambers (2015, 2016),
Mawdsley and Haigh (2016), Marcos andWoodworth
(2017), Wong et al (2018). Far from being theoretical,
these research studies bring societal benefits. First,
understanding and quantifying the role of each influ-
encing factor is a prerequisite to a formal detection
and attribution of coastal extreme water levels, which
is a perceived important to stimulate mitigation of cli-
mate change (Schwab et al 2017). Second, assuming
that MSL is the only driver of extreme sea levels, and
neglecting the influence of other evolving factors such
as CIs, might reduce confidence in current estimates
and future projections of extreme coastal water levels,
and might even mislead coastal adaptation practi-
tioners in theworst case.

The most widespread method to address the pro-
blem of controls on extreme sea levels is the use of lin-
ear (Pearson) correlation coefficients (e.g. Marcos and
Woodworth (2017): section 4)with possible combina-
tion with significance testing techniques. Though effi-
cient and easy-to-implement, this approach remains
global and does not account for: (1) the nature of the
data, which are time series i.e. the considered time
series may be correlated at different time instants;
(2) multiple possible drivers (i.e. predictors), which
may act in interaction. To overcome both limitations,
Wahl andChambers (2016) proposed the use ofmulti-
ple regression models. Yet, this approach ignores
structural uncertainty, which arises when different
alternative models can be proposed to explain the data
and appear ‘equally appropriate’ from a statistical
perspective.

A possible option for handling this type of uncer-
tainty is to fit a multiple regression model within a
Bayesian setting, which enables to examine a large
number of possible variable configurations with
respect to the observations (Hoeting et al 1999). The
Bayesian treatment of the fitting process then provides
an importance measure (here the posterior inclusion
probability as defined for instance by Scott and
Varian 2014), whichmeasures how often each driver is
included in the regression model. This is can be used
to unravel the respective influence of each driver of
extreme sea levels.

In the present study, we propose to rely on this
Bayesian approach to quantify the respective contrib-
ution of the different drivers to the time evolution of
high-percentile sea levels (denoted HSL), such as 99 or
99.9th quantile, over inter-annual to centennial time-
scales. Multiple possible predictors are accounted for,
namely, the annualMSL and six large-scale CI (see fur-
ther details in section 2). A more advancedmethod for
time series modelling thanmultiple regression model-
ling is chosen, namely the technique of Bayesian struc-
tural time series model (denoted bsts in the following),
as developed by Scott and Varian (2014, 2015), which
is particularly flexible to model the complex multi-
variable, correlational structure of any temporal data.

The paper is organised as follows. In a first section,
we describe the century-long sea level time series used
for the study, the pre-processing that we conducted
and the CI. In a second section, we provide full details
of the proposed procedure based on bsts method. In
section 4, we analyse and discuss the results of the pro-
cedure applied to eight tide gauges across theworld.

2.Data

We have extracted from the Global Extreme Sea Level
Analysis (GESLA, version 21, Woodworth et al 2017)
tide gauge data repository, eight of the longest (quasi
century-long) time series of sea levels sampled at a
hourly frequency, namely: Brest, France (1846–2014);
Newlyn, UK (1915–2014); Cuxhaven, Germany
(1918–2015); Gedser, Danemark (1891–2012);
Stockholm, Sweden (1889–2012); Halifax, Canada
(1920–2011); San Francisco, US (1897–2012);
Honolulu US (1905–2012). See locations in supple-
mentary materials, available online at: stacks.iop.org/
ERL/14/014008/mmedia.

These data present very limited missing values
except for Brest for the time interval between
1943–1953 and for Stockholm for the year 1982. These
missing data were replaced bymeans of an imputation
approach based on aKalman smoothing approach (see
e.g. Moritz and Bartz-Beielstein 2017). The impact of
this choice on the results presented in section 4
was tested by using other imputation approaches
(mean value, linear interpolation, etc), but appears to
be very limited (see supplementary materials). We
adopted the percentile time series analysis described
by Woodworth and Blackman (2004), and we extrac-
ted the annual 99.9th percentile from the hourly SL
data. Note that the annual 99.9th percentile approxi-
mately corresponds to the level of the eight highest
hourly sea level values over the considered year. This
constitutes the annual HSL time series used in the fol-
lowing. The influence of the quantile level is investi-
gated in section 4.3.

The annual MSL was estimated at each time step
by post-processing the annual data provided by
PSMSL2 using a forward–backward Kalman-filter (e.g.
Visser et al 2015); see further details in supplementary
materials. This procedure allows separating nonlinear
changes in MSL from inter-annual modes of varia-
bility, which are part of the residual signal to be detec-
ted in HSL time series. Figure 1 shows the different
time series for the eight locations. Note that the scaling
betweenMSL andHSL are different due to differences
in the processing (reference value, detrending and
scaling) of both dataset (i.e. from PSMSL and from
GESLA).

1
http://gesla.org/.

2
http://psmsl.org/.
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Table 1 provides the source of the CI selected in
the present study. Six major CI were selected, namely
NAO, AMO, Arctic Oscillation (AO), Southern Oscil-
lation Index (SOI), Niño 1+2 SST Index (NINO12),
and Niño 3.4 SST Index (NINO34). These indices
were selected because previous studies have shown
their role in controlling HSL variability (e.g. Marcos
et al 2015), and because the time series currently avail-
able are in the order of 150 years (with a starting date
before 1900) and therefore allow to detect the influ-
ence of predictors at low frequency (table 1). The
monthly time series are converted to annual data by
taking the mean value for each year. The starting date
is selected as the maximum value between the CI’

times series and the considered MSL data (in figure 2,
it corresponds to 1915 in theNewlyn case).

3.Method

We aim at modelling the observed HSL series by
accounting for two sources of information, namely:
(1) the time series behaviour of HSL prior to the
considered time instant (i.e. the trend); (2) the
behaviour of other (control) time series that is known
to be predictive of HSL, namely MSL and d different
climate indices CI1,K,d (here termed as the predictors).
Both sources of information are combined using a

Figure 1.Time series of annualmean sea levelMSL, inmeters (red line) and high-percentile (at 99.9th) sea levelHSL, inmeters (blue
line) for the eight tide gauges considered in the present study.MSL is derived from the PSMSLdataset using aKalman-filter approach;
HSL is post-processed from the global extreme sea level analysis (GESLA, version 2) tide gauge data repository. Note that the scaling
betweenMSL andHSL are different due to differences in the processing (reference value, detrending and scaling) of both dataset (i.e.
fromPSMSL and fromGESLA).

Table 1.Climate indices selected in the present study.

Climate index Starting date Source (last access on 19/09/2018)

NorthAtlantic Oscillation (NAO) 1821 https://esrl.noaa.gov/psd/gcos_wgsp/Timeseries/NAO/

AtlanticMultidecadal Oscillation (AMO—smoothed

version)
1861 Enfield et al (2001), Rayner et al (2003)

https://esrl.noaa.gov/psd/gcos_wgsp/Timeseries/AMO/

ArcticOscillation (AO) 1871 https://esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/

ao20thc.long.data

SouthernOscillation Index (SOI) 1866 Ropelewski and Jones (1987), Allan et al (1991), Können et al
(1998)

https://esrl.noaa.gov/psd/gcos_wgsp/Timeseries/SOI/

ElNino 12 1870 Rayner et al 2003

https://esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino12/

ElNino 34 1870 Rayner et al 2003

https://esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino34/
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structural time series model trained within a Bayesian
setting denoted bsts (full details are provided by Scott
andVarian 2014) as follows:

HSL trend regressors noiset = + +

HSL MSL CI

CI CI ,

1

t t t t

t d t t

0 MSL CI 1,

CI 2, CI ,d

1

2

m b b b
b b e

= + + ´ + ´
+ ´ + ¼ + ´ +

( )

where β are the regression coefficients (with β0 a
constant value termed as intercept), which are related
toMSL and the dCI. The noise term te follows a zero-
meanGaussian distribution with fixed standard devia-
tion σt and is assumed to be independent from the
other parameters (i.e. the evolution is driven by an
independentGaussian randomwalk).

The term tm at time instant t is modelled via a 1-lag
autoregressivemodel:

, 2t tt 1 1 ,m f m e= + m- ( )

where t,em follows a zero-mean Gaussian distribution
(with fixed standard deviation σμ), and is independent
from the other parameters; f are the regression
coefficients.

The model fitting is conducted within a Bayesian
setting, which allows accounting for empirical priors
on the afore-described parameters (i.e. the regression
coefficient f1, the regression coefficients β and the dif-
ferent variance parameters of the error terms ε) and
the initial states (i.e. the term ,tm and the predictors).

A spike-and-slab prior is assumed to express a
prior belief that a sparse set of variables can explain the
response, i.e. that most of the regression coefficients
β are exactly zero (Scott and Varian 2015). Full details
on the regressor priors’ definition and parametrisation
are provided in supplementary materials. The full
model is estimated via a Bayesian model averaging

procedure (Hoeting et al 1999), which combines infor-
mation from the priors and uses a Markov chain
Monte Carlo procedure (see technical details in Scott
and Varian 2014: section 4). A space of large number
(typically 1000–10 000) of likely variable configura-
tions that explain the response are computed using
Gibbs sampling techniques and treated within a sto-
chastic search variable selection framework (George
andMcCulloch 1993).

From the random sampling procedure, the mar-
ginal posterior inclusion probability for each predictor
can be evaluated, i.e. the proportion of Monte Carlo
draws with a regression coefficient β≠0. This means
that the inclusion probability measures how often
each predictor is selected during theMonte Carlo pro-
cedure. Thus, the larger the inclusion probability, the
larger the influence of the considered predictor. By
using the bsts-derived inclusion probability, it is then
possible to measure the influence of each driver (MSL
or CI) while accounting for the complex multivariable
(i.e. presence of multiple predictors), correlational
structure (i.e. we are dealing with time series) of
the data.

The capability of the bsts model to reproduce the
observations over the considered time period is mea-
sured using the coefficient of determination (denoted
R2) considering the error between the posterior pre-
dictive mean for the modelled (denoted HSL

~m
) and

the observedHSL as follows:

R
t t

t
1

HSL HSL

HSL HSL
, 3t

t T

t

t T
2 1

2

1
2

å
å

= -
-

-

~

m

=
=

=
=

( ( ) ( ))

( ( ) )
( )

where HSLm is the average value of HSL over the
considered time interval. If R2 is close to 1, this means

Figure 2.Time series of annualmean for six different climate indices (see table 1). The starting date is selected as themaximumvalue
between the climate indices’ times series and the consideredMSL data (hereNewlyn tide gauge).
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that the posterior predictive mean of the bsts model
explains almost thewholeHSL variability.

In practice, the bsts model is fitted using the R
package called ‘bsts’ available at: https://cran.r-project.
org/web/packages/bsts/index.html

4. Application

4.1. Application toNewlyn tide gauge
To illustrate the different steps described in section 3,
the procedure is first applied to the Newlyn tide gauge.
All time series (HSL, MSL, and CI) are first standar-
dized, i.e. the mean was subtracted and the time series
was divided by their respective standard deviation.
The evolution of the observed (standardized) HSL is
modelled using the afore-described bsts approach by
using 10 000 random draws (figure 3). The influence
of the number of random samples is investigated in
supplementarymaterials.

The coefficient of determination R2 here reaches
values larger than 90% with a full coverage of the 99%
posterior predictive intervals, hence yielding very
satisfactory goodness offit.

Figure 4 displays the posterior inclusion prob-
ability and shows that for all of 10 000 random draws,
MSL is almost systematically selected (inclusion prob-
ability of nearly 100%), hence confirming the domi-
nant influence of MSL to explain changes in HSL. The
two other important drivers of HSL time evolution
appears to be the NAO and AO with inclusion prob-
ability values of respectively 37% and 33%. The bars
are shaded on a continuous [0, 1] scale in proportion
to the probability of a positive coefficient, so that nega-
tive coefficients are black, positive coefficients are
white, and gray indicates indeterminate sign. This
shows that MSL has a positive relationship with HSL
(i.e. positive effect), whereas NAO and AO have a
negative one.

Figure 3. Fit of the bstsmodel to the observedHSL (standardized) atNewlyn tide gauge. The blue dots are the observations. The
posteriormedian is colored black, and each 1%quantile away from themedian is shaded slightly lighter, until the 99th and 1st
percentiles are shadedwhite.

Figure 4. Inclusion probability derived from the bstsmodel fitted to the 99.9th percentile of sea levels atNewlyn tide gauge over a time
periodwithfinal date of 2011. Thisfigure allows identifying the influence each contributorHSL evolution (seemethod section). The
colorbar corresponds to the probability of positive effect, i.e. negative relationshipwithHSL are black, positive ones arewhite, and
gray indicates indeterminate sign. The term Intercept corresponds to a constant scalar value in equation (1).
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4.2. Application to the set of tide gauges
The procedure described for Newlyn is performed for
the seven other tide gauges using 10 000 random
samples. The influence of the number of samples is
tested in supplementary materials. The starting date is
selected as the maximum value between the CI times
series and the consideredMSL data and the final date is
2011. The goodness of fit of the bstsmodel is checked
for each tide gauge, which shows that theR2 coefficient
reaches for all cases values of around 90% (see the
fittedmodels in supplementarymaterials).

Figure 5 presents the inclusion probability for each
tide gauge. Several observations can bemade.

• Figure 5 clearly shows that MSL dominates the
HSL time evolution of most tide gauges (except
for Gedser)with an inclusion probability superior
to 90% and a positive effect (indicated by the
white colored bar infigure 5).

• For Brest, Newlyn and Honolulu, the CI contrib-
ution remains low-to-moderate with an inclusion
probability not larger than≈40%, hence indicat-
ing thatMSL is themain driver.

• No particular tendency can be identified for
Gedser, where all predictors (MSL and CI) appear
to have a low-to-moderate inclusion probability
of the order of 20%.

• For Cuxhaven, Stockholm, Halifax, and San
Francisco, a combination of two drivers exist,
namely MSL+AO for the three first tide gauges,
andMSL+NINO12 for the latter. The inclusion
probability of the CI is larger than 90%, i.e. as
large as the one of MSL or even larger at
Cuxhaven. The sign of the AO effect is positive for

Cuxhaven and Stockholm, but negative for Hali-
fax. The difference in the sign effectmay be related
to the location of each tide gauges with respect to
the sea level anomalies characterizing AO in
North Atlantic, which corresponds to a positive
pattern at latitudes 37°–45° N (Halifax latitude is
44.6° N) and a negative above 45° N (Cuxhaven
and Stockholm latitudes are 53.8°Nand 59.3°N).

• Surprisingly, our study little highlights NAO as
a strong driver at the exception for Newlyn
contrary to previous studies, (e.g. Marcos and
Woodworth 2017). A possible explanation is the
strong relationship between AO and NAO (e.g.
Ambaum et al 2001) so that the signal held by
NAO may be ‘viewed’ as redundant with the one
of AOby the bstsmodel.

• A clear evidence of strong Niño 1+2 SST
influence is evidenced at San Francisco. This
appears consistent with conclusions of different
studies on the link between extreme coastal
response and El Niño events (see e.g. Barnard et al
2017 and references therein).

4.3. Influence of the assumptions
In this section, we investigate the implications of two
assumptions. First, the length of the training time
period is investigated. In section 4.2, the dominance of
MSL and of AO and NINO12 was identified over a
time-period with a final date of 2011; we now
investigate the prevalence of this influence in the first
half of the 20th century, i.e. when the final date is set at
1950. Figure 6 shows that the corresponding inclusion
probability values have largely changed from the ones
of figure 5. Clearly, the large dominance of MSL has

Figure 5. Inclusion probability derived from the bstsmodel fitted to the 99.9th percentile of sea levels for all tide gauges over a time
period before 2011. The colorbar corresponds to the probability of positive effect, i.e. negative relationshipwithHSL are black,
positive ones arewhite, and gray indicates indeterminate sign. The term Intercept corresponds to a constant scalar value in equation (1).
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decreased for most tide gauges; in particular, the
inclusion probability of MSL has lowered to 40%–

60% at Brest, Newlyn, Cuxhaven, and Halifax. Con-
trary to the analysis on the whole time period before
2011, the HSL evolution before 1950 appears to be
driven not only by two predictors, but by an ensemble
of them as exemplified at Halifax, where both AO and
SOI have a large influence with inclusion probability
larger than 60%. For Stockholm, San Francisco, and
Honolulu, the large dominance ofMSL persists before
1950, but with larger influence of other CI, whose
inclusion probability values are of the order of 60%.
For Gedser, a larger dominance of AO is identified
before 1950. A possible interpretation holds as follows.
During the 20th century, MSL is rising at all stations

considered in this study, except for Stockholm. This
means that extreme sea levels are more influenced by
the cumulative effects of sea level rise during the 2nd
half of the 20th century than during earlier periods of
time. Furthermore, it can be noticed that the longest
time series (Brest) includes records before the onset of
sea level rise, during which the influence of NAO is
expected to be prominent, as quantitatively confirmed
infigure 6 (top left panel).

Second, we analyse whether the dominance of
MSL still prevails when the threshold chosen to select
HSL events is lowered, e.g. down to 99% (approxi-
mately corresponding to the level of the 90 highest
hourly sea level values over the considered year).
Figure 7 shows that the conclusions drawn from

Figure 6. Inclusion probability derived from the bstsmodel fitted to the 99.9th percentile of sea levels over a time period before 1950.
The colorbar corresponds to the probability of positive effect, i.e. negative relationshipwithHSL are black, positive ones are white, and
gray indicates indeterminate sign. The term Intercept corresponds to a constant scalar value in equation (1).

Figure 7. Inclusion probability derived from the bstsmodel fitted to the 99.0th percentile of sea levels over a time periodwith final date
of 2011. The colorbar corresponds to the probability of positive effect, i.e. negative relationshipwithHSL are black, positive ones are
white, and gray indicates indeterminate sign. The term Intercept corresponds to a constant scalar value in equation (1).
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figure 5 are no longer valid for most tide gauges at the
exception of Cuxhaven (which still presents a domi-
nant combined role of AO and MSL) and at Gedser
(where hardly any tendency can be identified). The
decreased influence of MSL is noticeable for Stock-
holm, Halifax, San Francisco and Honolulu with a
clear increased influence of different CI. For instance,
at Halifax, AMO and AO both have inclusion prob-
ability larger than 80%. For Brest and Newlyn, the
influence ofMSL appears to be diminished in compar-
ison to the one ofNAOandAO respectively.

The sensitivity to the threshold chosen to select
extreme sea level can be related to a physical explana-
tion. Since this threshold is lowered from the annual
99.9th to the annual 99th percentile, the number of
events included in the analysis is increased. Conse-
quently, HSL time series corresponding to the lowest
quantile reflect more persistent storm weather condi-
tions, which are themselves more apparent in the
mean annual CI (e.g. Seierstadt et al 2007). Hence,
although consistent with an intuitive analysis, the
results presented in figures 5 and 7 confirm quantita-
tively that the influence of CI increases when lowering
the threshold for selecting extreme sea level.

5. Concluding remarks and furtherwork

The proposed approach based on structural time series
modelling provides a rigorous setting for measuring
the importance of MSL in the evolution of HSL. The
proposed procedure in combination with a Bayesian
treatment of the fitting process enables to deal with the
limitations of current available procedures, namely:
(1) the presence of multiple alternative drivers; (2) the
temporal nature of the data and (3) the uncertainty in
the model construction. By applying bsts modelling
procedure, we evaluate the inclusion probability,
whichmeasures how often a given driver is included in
the regression model to explain HSL. This shows that,
for the considered tide gauges, the MSL signal
dominates theHSL evolution (except for Gedser). This
result is in agreement with past studies, which have
outlined the key role of MSL in extreme sea levels
(see for instance the recent study by Marcos and
Woodworth 2017). Interestingly, the MSL influence is
clearly limited when the analysis is conducted before
1950, hence indicating a more marked influence of
MSL on HSL as the cumulated amount of sea level rise
increases (except for Stockholm). Our study also
highlights that MSL is not the only and unique
contributor. This is particularly evidenced at three tide
gauges where AO index appears to have strong
influence, but with opposite effect, namely positive at
Stockholm and Cuxhaven and negative at Halifax. A
clear evidence of strong Niño 1+2 SST influence is
also evidenced at San Francisco, which appears to be
consistent with the city location on the west coast of
the US. These results may also suggest a connection

between the climate driver and the considered tide
gauge’s location (see e.g. Woodworth et al 2011,
Marcos et al 2015), i.e. Pacific North American tide
gauges are more likely be dominated by indices
characterizing El Niño and European tide gauges are
more likely be influenced by major climate modes of
the Atlantic North Ocean. Marcos et al 2015 also
reported identification of significant correlation to
‘remote’ CI (e.g. correlation of San Francisco extreme
to NAO). Similar ‘remote’ influence of CI on stormi-
ness have been identified earlier by Seierstadt et al
(2007). To some extent, they are evidenced by the bsts
model as well, but mostly until 1950. Overall, our
results suggest that the bsts model behaves more
robustly as it identifies only a couple of important
drivers, which remain consistent with the considered
location.

In the present study, we have focused onmeasur-
ing the importance of MSL and CI in the HSL time
signal. Yet, sea level time series at tide gauges are
known to be the complex result of different phe-
nomena in interplay (in addition to MSL) including:
(1) multidecadal variability related to CI. The pre-
sent study focused on six major CI, but other could
be easily integrated and in particular new CI specifi-
cally developed for the purpose of HSL variability
study (as Wahl and Chambers 2016 did); (2) effects
of river flows (in estuaries, see e.g. Piecuch et al 2018)
and evolving complex nonlinear shallow water pro-
cesses, affecting the tidal levels and constituents
(Woodworth 2010), as evidenced for instance in the
northern part of the German Bight (Arns et al 2015)
or along the US coasts (e.g. Ray 2009); (3) nonlinear
vertical ground motions (e.g. Raucoules et al 2018)
(4) technological artifacts such as modification in the
protocol for data acquisition errors (e.g. Woodworth
2010).

Incorporating other predictive time series related
to additional physical processes driving extreme sea
levels constitutes a line for future research. This
is made possible owing to the high flexibility of the
proposed setting whatever the type and number of
predictive time series.
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