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Abstract

The objective of this paper is to discuss and propose an original nonlinear method for the estimation

of nonlinear vibrations for mechanical systems subject to friction-induced noise and vibration. To fulfill

such an objective the computation of nonlinear dynamic steady-state solutions of autonomous non-smooth

contact systems prone to mono-instability is performed by developing an extension of the shooting method.

This adaptation consists in using a reduced basis in the iterative process of this nonlinear method in order

to seek the unknown initial conditions that verify condition of periodicity of the nonlinear solution of the

problem. Efficiency of the proposed approach is illustrated through numerical examples for the prediction

of self-sustained vibrations of a railway braking system.

1 Introduction

This work is part of research intended to mitigate or eliminate the squeal noise produced by railway vehicles

during braking [1–6]. Indeed the squealing of disc brakes installed on rail vehicles is a very unpleasant noise

for passengers and residents in the station due to the fact that brake noise can reach very high sound levels

up to 105 dB(A).

The proposed study is focused on the prediction of the occurrence of squeal noise and the estimation

of self-sustained vibration for mechanical systems subjected to friction-induced vibration. In recent years

extensive reviews have been carried out to summarize the state of knowledge of experimental and theoretical

investigations for the problem of friction-induced vibration in brake systems [7–10]. It is now recognized

and admitted that brake squeal is a complex phenomenon. Since the beginning of the 21th century various

types of model and different mechanism of squeal generation have been built from a theoretical point of

view [11–16]. The purpose of such numerical studies is focused on a better understanding of the generation

of friction-induced vibration as well as the prediction of its frequencies for different mastered or not operating

conditions. However, the prediction of squeal frequencies and nonlinear friction-induced vibrations in real

industrial applications remains difficult.

The goal of the present study is to provide a numerical strategy for the prediction of brake squeal and

more specifically for the determination of the self-sustained nonlinear vibration. For such purpose the study

focuses on the modeling of self-sustained structural vibrations in presence of non-smooth frictional contact

and the understanding of the squeal generation mechanism for a railway disc brake. It is assumed that
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vibration is due to structural mode coupling [17,18]. This coupling leads to instability of the sliding quasi-

static equilibrium of the system and the development of self-sustained vibrations. Two steps are necessary

to calculate these vibrations. Firstly, the occurrence of the vibrations is determined through the stability

analysis of the quasi-static equilibrium. Secondly, a nonlinear analysis is developed to calculate the vibration

amplitudes and the spectral content of the self-sustained vibrations. It is well known that this second step

is very challenging and can be very complex to implement in the case of large finite element models. This

nonlinear analysis is generally performed by using a numerical time integration scheme from given initial

conditions that are close to the equilibrium. Taking a look at the vibration time histories obtained by

this technique, two different states may be generally distinguished. In the transient state, nonlinear forces

appear and gradually stabilize the unstable solution whereas in the steady state, vibrations are stabilized

with potential strongly nonlinear events at the friction interface such as loss of contact, stick or impacts [19].

However, direct time integration is not very appropriate in the case of large numerical models with

many degrees of freedom. Indeed, the computational cost due to calculation of the transient state is very

high although the determination of the steady state is generally sufficient from a practical point of view.

Consequently, an interesting numerical strategy lies in the direct estimation of the steady state nonlinear

solution. Assuming the existence of steady state limit cycles, alternative methods have been developed like

widespread harmonic balance methods (HBM). For unstable autonomous systems, the Constrained Harmonic

Balance Method (CHBM), proposed by Coudeyras et al. [20,21], is dedicated to the computation of periodic

or quasi-periodic solutions of nonlinear systems prone to mono or multi-instabilities involved in brake squeal.

However, its application to industrial engineering applications remains rare due to the requirement of many

computational developments [22]. In the mono-instability case, the determination of a steady state solution

amounts to finding a periodic solution of the problem, which may be viewed as a normal nonlinear mode of

the problem [23–25]. In order to compute these isolated periodic solutions, the most used approaches are

the shooting method, the previously mentioned HBM and the orthogonal collocation method. The shooting

method is a popular numerical technique [26–31], which iteratively finds the initial conditions and the period

that realize both the periodic motion and a phase condition. It is easy to implement since it only requires

the results of some numerical integrations of the problem.

The present study proposed a new method for estimating the steady state regime of nonlinear dynamic

solutions in case of mono-instability. This numerical method is based on the classical shooting technique

combined with a specific initial guess determined using an energetic criterion as proposed in the work of

Charroyer et al. [19]. In addition, an enhancement of the method is proposed in the case of large finite

element models. In order to make this nonlinear technique more efficient in terms of computational cost,

an original approximation of its iteration process is undertaken by the use of a reduced basis for the initial

conditions.

The paper is organized as follows: firstly, a description of the finite element model of railway disc brake

with non-smooth contact formulation is briefly presented. Secondly, the proposed alternative version of the

shooting method is discussed. Finally numerical results are investigated and the estimations of the steady

states via the proposed strategy are compared with those obtained by a direct time integration.

2 Formulation of the problem

Fig. 1 illustrates the brake system model under study. The simple finite element model is derived from a

more complex one, which was developed to find instabilities in a TGV (French high-speed train) braking

system [5]. This brake system is composed of the two main components, which contribute to the brake

squeal phenomenon: one thick annular disc and a set of 6 small cylindrical pins applied on either sides of the

2



disc. The flexibility of the pads’ supporting structures (i.e. the backplates and its supports) is modeled with

spring elements. The upper edge of the hub/disc assembly is clamped. The full finite element model has

31974 degrees of freedom (27090 degrees-of-freedom for the hub/disc assembly and 4884 degrees-of-freedom

for all the lining). The nonlinear interface that corresponds to the frictional contact zone between the disc

and the 12 small cylindrical pins includes 228 pairs of nodes, which represents 1368 degrees of freedom.

All the material and geometrical properties of the brake system are given in Tab. 1. A Rayleigh viscous

damping model is used with different parameters for each substructure (i.e. the hub-disc assembly, the pads

and the supporting structures) in order to take into account the dissipation in this simple brake system.

The general form is given by C = αM + βK where α and β are the Rayleigh damping coefficients given

in Tab. 1. The choice of material parameters (elasticity, Rayleigh damping) and operational conditions

(boundary conditions, rotation speed, braking force) is realistic and has been carried out based on various

measurements and FE model updating made on a TGV brake system [5]. In particular, the characterization

of the dynamics of the separate subsystems (disc, pads and supporting backplates) has been performed by

experimental modal analysis.

Finally the equations of motion of the brake system can be written in a discrete form as follows:

MÜ + CU̇ + KU = F + R = F + Pn
TRn + Pt

TRt + Pb
TRb (1)

where M, C and K are mass, damping and stiffness matrices. F corresponds to the external force. Rn,

Rt and Rb define respectively the contact normal reaction and the two tangential friction forces (along

the directions ~t and ~b at a particular contact point) applied on each cylindrical pin by the disc, whereas

Pn, Pt and Pb are the projection matrices on the relative displacements between the disc and the pads

along the normal and tangential directions defined at each contact node, respectively. ~t defines the principal

tangential direction given by the sliding velocity and ~b denotes the second tangential/radial direction such

that ~b = ~n ∧ ~t, as illustrated in Fig. 2. A Coulomb law with a constant friction coefficient µ is used and a

non-regularized Signorini law is chosen in order to deal with unilateral contact on the interface (see [5,6,32]

for more details).

An usual reformulation of the contact and friction laws in terms of projections on the positive real set

projR+ and on the Coulomb cone projD(µRn) at each mesh node is used in order to facilitate the numerical

implementation of the contact equations. Expressions of the contact normal reaction Rn and the two

tangential friction forces Rt and Rb are given by [33,34]:

Rn = projR+(Rn − ρnGn) (2){
Rt Rb

}
= projD(µRn)

{
Rt − ρt(Ġt −V) Rb − ρtĠb

}
(3)

where V defines the vector of the amplitude of the imposed velocity at each interface node. (Gn,Gt,Gb)

correspond to the relative displacements in the local coordinate system associated at each contact node (i.e.

(Gn,Gt,Gb) = (Pn,Pt,Pb)U). ρn (ρt, respectively) is a diagonal matrix that is composed of positive real

numbers called normal augmentation parameters (tangential augmentation parameters, respectively). The

over-dot denotes the time derivative. It can be noted that contact/separation and sticking/sliding events at

each node of the frictional interface of cylindrical pins can be generated during transient simulations.

3 Nonlinear simulation

3.1 Preamble

The global strategy for the prediction of friction-induced vibrations is generally decomposed into two main

parts: the stability analysis for the propensity of brake squeal and the nonlinear analysis for the computation
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(a) (b)

Fig. 1. Finite element model of the simple brake system (a) the hub-disc assembly (b) the 12 small cylindrical

pins applied on either sides of the disc and the supporting structures modeled as elastically-restrained rigid

bodies

Fig. 2. Local cartesian coordinate system for a spatial point at the interface between one pad and the disc
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Parameter Variable Value

Rayleigh damping for hub and disc - mass contribution αdisc 7.5 s−1

Rayleigh damping for hub and disc - stiffness contribution βdisc 1.0× 10−7 s

Rayleigh damping for pads and backplate - mass contribution αgar 150 s−1

Rayleigh damping for pads and backplate - stiffness contribution βgar 1.8× 10−6 s

Translational stiffness for the connecting rod in the direction x ktbx 1.0× 108 N/m

Translational stiffness for the connecting rod in the direction y ktby 1.0× 108 N/m

Translational stiffness for the connecting rod in the direction z ktbz 1.0× 103 N/m

Rotational stiffness for the connecting rod in the direction x krbx 1.0× 108 N/rad

Rotational stiffness for the connecting rod in the directions y et z krbyz 1.0× 108 N/rad

Translational stiffness for the caliper support in the direction x ktex 1.0× 108 N/m

Translational stiffness for the caliper support in the direction y ktey 1.0× 108 N/m

Translational stiffness for the caliper support in the direction z ktez 1.0× 103 N/m

Rotational stiffness for the caliper support in the direction x krex 1.0× 108 N/rad

Rotational stiffness for the caliper support in the direction y krey 1.0× 108 N/rad

Rotational stiffness for the caliper support in the direction z krez 1.0× 108 N/rad

Normal force applied on the caliper support Fext 2000 N

Young modulus for hub and disc Edisc 210 GPa

Mass density for hub and disc ρdisc 7850 kg/m3

Poisson coefficient for hub and disc νdisc 0.28

Young modulus for pads Epad 3.5 GPa

Mass density for pads ρpad 6250 kg/m3

Poisson coefficient for pads νpad 0.3

Table 1. Material and geometrical properties of the brake system
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of the nonlinear vibration.

The stability analysis is classically conducted by considering small perturbations about the sliding equi-

librium point (see [5,6] for more details). This consists in linearizing the equations governing the nonlinear

dynamical behavior around this sliding equilibrium point by considering that the small imposed disturbance

does not change the contact state at each frictional interface. Complex eigenvalues and complex modes asso-

ciated with this linearized problem are calculated to determine if the equilibrium point is stable or unstable.

If at least one eigenvalue has a positive real part, the equilibrium sliding point is unstable, which implies

that the small imposed perturbation of equilibrium leads to increase in vibrations. This growth rate of linear

vibration is governed by one or more unstable modes and its validity is restricted by the appearances of new

nonlinear events due to contact and no-contact events at each friction interface.

So, in order to predict the self-sustained vibrations, a numerical resolution of the complete nonlinear

system has to be performed in addition to the stability analysis by implementing an appropriate integration

scheme and a nonlinear algorithm. For the prediction of nonlinear self-sustained vibration of mechanical

systems with loss of contacts and a non-regularized Signorini law, the modified θ-method is classically used

with a value θ = 0.5 to avoid numerical damping.

More details and the complete formulation of the modified θ-method can be found for instance in [6,32].

Even if the time integration is effective in determining nonlinear self-excited vibratory levels, it is generally

time consuming. Therefore it can be considered to use nonlinear method for the prediction of the steady

state nonlinear responses of self-excited systems. In the following section, we propose to develop the shooting

method for determining limit cycle in the case of mono-instability. This nonlinear method has the advantage

to directly compute the limit cycle without calculating transient squeal events. It has been previously

proposed by Charroyer et al. [19] in the case of an academic mechanical system with 3 degrees-of-freedom.

In the following, the use of the shooting method with a specific initial guess will be described. More

specifically, the main originality of the proposed shooting method lies in the use of a reduced basis for the

iteration process of this nonlinear method while the resolution of the nonlinear problem is still performed

on the complete basis of the mechanical problem. This new formulation and adaptation of the shooting

method will be discussed in Section 3.3.

3.2 Shooting method

In this section, the shooting technique coupled with the modified θ-method is briefly presented in order to

predict the nonlinear periodic solution for an autonomous system with mono-instability. For more details,

the interested reader can refer to the work of Charroyer et al. [19].

Eq. (1) can be written in the following form:

Ż = g (Z) with Z =
{

U U̇
}T

and g (Z) = E−AZ (4)

where

A =

[
0 −I

M−1K M−1C

]
and E =

{
0 M−1 (R + F)

}T
(5)

The solution of the nonlinear system is denoted Z (Z0, t) where Z0 corresponds to the initial conditions

such that Z (Z0, t = 0) = Z0. The objective of the shooting method is to find out an initial condition Z0

and the minimal period T in such a way that Z (Z0, t) is periodic. This can result in an iterative process

for minimizing the following residual function:

H (Z0, T ) = Z (Z0, T )− Z0 (6)
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where Z (Z0, T ) is calculated by the modified θ-method on a discrete time basis of the interval [0;T ].

In order to find the initial condition Z0 and the period T such that H (Z0, T ) = 0, incremental corrections

∆Z0
i and ∆T i are applied at the ith iteration verifying:

Hi +
∂H

∂Z0

∣∣∣∣
Z0

i,T i

∆Z0
i +

∂H

∂t

∣∣∣∣
Z0

i,T i

∆T i + HOT = 0 (7)

where HOT corresponds to neglected higher order terms. Hi, Z0
i and T i correspond to the values of H, Z0

and T at the ith iteration. The calculation of the two partial derivatives defined in Eq. (7) are given by:

∂H

∂t

∣∣∣∣
Z0

i,T i

=
∂Z(Z0

i, t)

∂t

∣∣∣∣
t=T i

= g
(
Z(Z0

i, T i)
)

(8)

∂H

∂Z0

∣∣∣∣
Z0

i,T i

=
∂Z

∂Z0

∣∣∣∣
Z0

i,T i

− I2N (9)

In this last expression, I2N is the 2N × 2N identity matrix where N is the total number of degrees of

freedom of the system and ∂Z
∂Z0

is a 2N × 2N matrix representing the variation of the solution with the

initial conditions and is called monodromy matrix. It must be computed at each iteration.

This iterative process is repeated until two convergence criteria are satisfied:

‖Hi‖/‖Z0
i+1‖ < ε1 (10)

|∆T i|/|T i+1| < ε2 (11)

where ε1 and ε2 are chosen residuals.

3.3 Adaptation of the shooting method based on a reduction basis for the initial con-

ditions

One of the main difficulties of applying the shooting method to a finite element model is the number of

degrees of freedom of the model, which can be very important. The main problem lies in the size of the

vector of initial conditions and its use in the iterative process (i.e. the size of the monodromy matrix) to find

initial conditions and a period that ensure a periodic movement of the autonomous system. In the following

a new approach is developed, thus making it possible to reduce the number of degrees of freedom on which

the process of the shooting method iterates.

We propose to seek the initial conditions in a reduced phase space of the form:

Z0 =

{
U0

U̇0

}
=

{
Ustat

0

}
+

[
T0 0

0 T0

]
Q0 (12)

where T0 is a reduced basis of size m of the displacement field. Q0 the vector of amplitudes for the

reduced displacements and velocities. Ustat defines a static field vector. The idea is to iterate on the

reduced vector Q0 of size m instead of the full vector of size N (with N >> m). The choice of the reduction

basis is crucial for the success of the method. In this paper, a very simple base including only the static

deformation and the unstable mode provided by the stability analysis is proposed (see section 5.2) but other

more complete bases can be tested including stability modes or component modes in the whole frequency

range. Some bases adapted to the friction-induced vibration problems are notably proposed in [4].

It is important to note that only the initial conditions are projected on the basis T0 and therefore only

the iterative process of the shooting method uses the reduction. The process for the determination of the
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nonlinear solution Z (Z0, t) is kept unchanged: it is calculated by the modified θ-method on a discrete time

basis of the interval [0;T ]. This implies that there is no approximation of the solution Z (Z0, t) through this

reduction.

From a practical point of view, T0 is orthonormalized with respect to the mass matrix M and orthogo-

nalized with respect to the stiffness matrix K, such that:[
T0 0

0 T0

]
Q0 =

[
T 0

0 T

]
Q (13)

where TTMT corresponds to the identity matrix and TTKT is a diagonal matrix. Q corresponds to the

vector of sought modal amplitudes in displacements and velocities. It is writing in the form

Q =
{
q1 . . . qn p1 . . . pn

}T
(14)

The associated basis T is defined by T =
[
Φ1 . . . Φm

]
.

As previously explained, the use of this reduced basis of initial conditions implies only modifications of

the iterative process of the shooting method. At each iteration, the corrections made to the vector Q and

to the period T are calculated by projecting the system (7) on the basis T such that:

Hq
i +

∂Hq

∂Q

∣∣∣∣
Qi,T i

∆Qi +
∂Hq

∂t

∣∣∣∣
Qi,T i

∆T i = 0 (15)

where Hq corresponds to the projection of the condition of periodicity on the basis T. This vector of

size 2m is given by:

Hqj = ΦT
j M(U(Q, t = T )−Ustat)− qj

Hqj+m = ΦT
j MU̇(Q, t = T )− pj

}
∀j : 1 ≤ j ≤ m (16)

This new procedure implies also the calculation of the two following partial derivatives Hq(Q, T ) and

∂Hq/∂Q.

The first partial derivative Hq(Q, T ) of size 2m is now given by:

∂Hq

∂t

∣∣∣∣
Qi,T i

=
∂Zq(Qi, t)

∂t

∣∣∣∣
t=T i

= gq

(
Z(Qi, T i)

)
(17)

where gq is the projection of the equation of motion into state variable on the basis T and Zq is the

projection of the state vector on the basis T. The complete expression of gq is given by:

gqj = ΦT
j MU̇(Q, T )

gqj+m = ΦT
j

(
F + R(Q, T )−CU̇(Q, T )−K(U(Q, T )−Ustat

) }∀j : 1 ≤ j ≤ m (18)

The second partial derivative ∂Hq/∂Q of size 2m× 2m is given by

∂Hq

∂Q

∣∣∣∣
Qi,T i

=
∂Zq

∂Q

∣∣∣∣
Qi,T i

− I2m (19)

where I2m is the 2m× 2m identity matrix and
∂Zq

∂Q
corresponds to the reduced monodromy matrix (i.e.

projected on the basis of T): it represents the variation of the reduced amplitudes with reduced initial

conditions Q. It is a T -periodic matrix of size 2m× 2m. For more clarity, it is noted Jq in the rest of this
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paper. Each column of this matrix Jq can be calculated using a numerical time integration of the solution

from perturbed reduced initial conditions of the form:

Q + δQkek ∀k : 1 ≤ k ≤ 2m (20)

where ek corresponds to the kth column of the identity matrix, Qk defines the kth component of Q and δ

is the perturbation. Then, each column of the matrix Jq can be calculated by using the following relations:

Jq|kj =
ΦT
j M(U(Q + δQkek, T )−U(Q, T ))

δQk

Jq|kj+m =
ΦT
j M(U̇(Q + δQkek, T )− U̇(Q, T ))

δQk

∀j : 1 ≤ j ≤ m (21)

This iterative process is repeated by considering the corrected initial condition and period given by:

Qi+1 = Qi + ∆Qi (22)

T i+1 = T i + ∆T i (23)

until the two convergence criteria are satisfied:∑m
j=1

(
ΦT
j KΦjHqj

2 + Hqj+m
2
)

∑m
j=1

(
ΦT
j KΦjqj2 + pj2

) < ε1 (24)

|∆T i|/|T i+1| < ε2 (25)

where ε1 and ε2 are chosen residuals. The first criterion is an energetic adaptation of the criterion previously

proposed in Eq. (10). It ensures a similar convergence for both displacements and velocities.

It can be noted that expressions (17) and (19) correspond to approximations of the two partial derivatives

given in Eqs. (8) and (9). It is important to remember that no other approximation is made in the iterative

process of the shooting method by applying the proposed methodology: the determination of the nonlinear

solution Z (Z0, t) is unaltered.

4 Initialization of the shooting method

A relevant initial condition is essential for the computational efficiency of the shooting method. Charroyer

et al. [19] proposed a new approach for the initialization process. In the following, this process is briefly

described. More details can be found in [19].

It is first admitted that the solution U(t) can be approximated by considering only the contribution of

the unstable mode such that:

U(t) = q<
(
Φei=(λ)t

)
(26)

where < (.) and = (.) denote the real and imaginary parts of the variables. λ corresponds to the eigenvalue

of the unstable mode that has been previously calculated via the stability analysis. Φ corresponds to the

associated eigenvector and q is the modal amplitude. Therefore the velocity U̇(t) is given by:

U̇(t) = q<
(

i=(λ)Φei=(λ)t
)

(27)

Then the initial conditions are defined by
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Z0
0 =

{
q0< (Φ) + ΦE

q0< (λΦ)

}
(28)

T 0 = 2π/=(λ) (29)

where ΦE corresponds to the steady sliding equilibrium of the nonlinear system that has been previously

calculated for the stability analysis. The value q0 is an unknown real value that has to be determined in order

to obtain the most relevant and optimal initial conditions for the proposed formulation. The calculation

of this value q0 is performed by considering that the vibrational amplitudes growth until the occurrence of

nonlinearities.

The approximated solutions (26) and (27) are valid until the occurrence of nonlinearities and the stabi-

lization of the solution due to the saturation of the frictional contact reactions and a decrease of the average

injected power ratio due to the contact reactions. So the calculation of the optimal value q0 is performed by

considering the power balance of the steady state. It was previously demonstrated in [19] that this power

balance can be expressed by the following expression:

τ̄C = τ̄R (30)

where τ̄C corresponds to the average power ratio dissipated by damping and τ̄R defines the average power

ratio injected by the frictional contact reactions. Charroyer et al. [19] demonstrated that τ̄C is independent

of the modal amplitude q whereas τ̄R depends on the modal amplitude q and can be easily calculated by

saturating the reactions corresponding to the linearized sliding contact problem.

In conclusion, a relevant initial condition for the shooting method can be obtained by using the approxi-

mated linear solution (28) and by estimating the optimal value q0 that verifies Eq. (30). The initial condition

for the unknown period of the solution is given by Eq. (29).

5 Results

In this section, an application of the methodology presented in the previous section is proposed. A stability

analysis is first briefly investigated. This allows us to choose a set of parameters for which the brake system

exhibits one instability. Then, the shooting method with two specific reductions for the initial guess is carried

out for this specific configuration in order to determine the nonlinear self-sustained vibration. Results are

discussed and compared with the reference solution obtained by using the full time integration method.

5.1 Stability analysis and choice of the configuration for the investigation of nonlinear

vibration

A stability analysis is performed for various friction coefficients µ = [0; 0.5]. Only one unstable mode is

detected in the frequency range of interest. Fig. 3 shows the mode coupling pattern and the evolution of

the associated real parts.

Considering these results, the configuration with µ = 0.2 is chosen in the next section in order to predict

the nonlinear self-sustained vibration. The associated stability chart is given in Fig. 4. As previously shown

in Fig. 3, one unstable mode is depicted at 3382.5 Hz with a value of real part equal to 17 s−1. Moreover

Fig. 5 show the sliding equilibrium of the brake system and the unstable mode shape for µ = 0.2. In this

figure, the dotted black lines correspond to the initial position of the brake system.
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Fig. 3. Evolution of the coupling modes versus the friction coefficient (a) real part (b) frequency
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5.2 Nonlinear self-sustained vibration

Mode shape A versus Mode shape B 1−MAC

Fig. 6(a) vs Fig. 6(b) 0.065

Fig. 6(c) vs Fig. 6(d) 0.021

Fig. 6(e) vs Fig. 6(f) 0.028

Fig. 6(g) vs Fig. 6(h) 0.023

Table 2. Error on the mode shapes based on the 1−MAC criteria at four specific times over one period

In this section, the stationary regimes obtained by using the reduced shooting method are compared with

those provided by the full time integration. The global vibrational behaviour of the brake system during

steady state regimes is firstly discussed. Then, the mechanical energy over a period and the associated

spectrum is presented. Finally, the limit cycle for a specific node selected on the frictional interface is

analysed.

For this application, a simple basis is used in the reduced shooting method. It is only composed of the

quasi-static equilibrium ΦE , the real part ΦR and the imaginary part ΦI of the eigenvector of the unsta-

ble mode resulting from the stability analysis. This reduced basis is denoted by T0 =
[
ΦE ΦR ΦI

]
.

Considering relation (12), Q0 is given by Q0 =
{
qE qR qI pE pR pI

}
where qE , qR and qI (respec-

tively pE , pR and pI) correspond to the displacement amplitudes (respectively velocity amplitudes) of the

modes ΦE , ΦR and ΦI. This basic choice makes it possible to take into account the potential evolution of

the equilibrium position previously established by the vibration stability analysis. Thereby, the static field

vector Ustat defined in the Eq. (12) is null for this application because the proposed reduced basis already

contains the equilibrium of the system. In addition, it contains only an initialization on the unstable mode

that generates the self-sustaining vibrations. So this choice corresponds to one of the most reduced basis.

Moreover, a relevant initial condition is chosen for the shooting method. Following the process explained

in section 4, Q0 is initialized as follows:

Q0 =
{

1 q0 0 0 < (λ) q0 −= (λ) q0

}
(31)

where < (λ) and = (λ) are the real and imaginary parts of eigenvalue for the unstable mode and q0 corresponds

to the optimal value of q that verifies Eq. (30).

First of all, Fig. 6 shows the evolution of the self-sustained steady state vibration of the brake system at

different times uniformly distributed over one period. A strong similarity is observed between the results

obtained by the proposed shooting process and the classical integration scheme. The fundamental frequency

is estimated at 3371.9 Hz by the shooting method, which is very close to that calculated by time integration,

which is estimated at 3376.2 Hz (i.e. error of less than 0.13%). Concerning more specifically the convergence

of the proposed shooting method, value of the two criteria ε1 and ε2 has been chosen equal to = 10−3. This

leads to only 3 iterations in order to obtain the convergence, which demonstrates the relevance of the choice

of the initial guess for the prediction of the steady state nonlinear solution. The choice of 10−3 for the

residuals is motivated by the results of a preliminary study on a simplified model [19]. In addition, the

purpose of the method is to quickly obtain an acceptable approximation of the non-linear regime. The

comparisons with the exact solution presented below show that this objective is achieved with this choice of

residuals.

In order to better compare the shapes of the nonlinear solution estimated by the shooting method with

shapes of the reference solution computed, we use the classical Modal Assurance Criterion (MAC) relative

12
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Fig. 6. Evolution of the self-sustained steady state vibration of the brake system for the reference (a,c,e,g)

and the shooting method (b,d,f,h)
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Fig. 7. (a) Harmonic components of the total mechanical energy on one period of the steady-state vibrations

for the reference (red square) and the shooting method (black circle) and (b) corresponding relative errors

between the reference and the shooting method

to the mass matrix M given by:

MAC(A,B) =
(ATMB)2

(ATMA)(BTMB)
(32)

where A and B are the matrix of the mode shapes (at a specific time) of a reference solution and of the

solution computed via the reduced shooting method. Tab. 2 gives the 1−MAC values for the four different

times previously selected for the visualization of nonlinear vibrations of the complete brake system. A low

value of the 1−MAC indicates that the vibration mode shapes between the reference and the approximated

solution are well correlated. A high value indicates that mode shapes are orthogonal and uncorrelated so that

the shooting method does not work properly to estimate the nonlinear self-sustained vibratory behaviour.

The quantitative error indicators 1 −MAC given in Tab. 2 are less than 7%. This shows that agreement

between the reference solution and the proposed shooting process is very good, which demonstrates the

ability of this method to estimate the nonlinear self-excited vibration.

Fig. 7(a) gives the total mechanical energy and its different harmonic components computed from a Fourier

transform of the solution over one period. Fig. 7(b) represents the corresponding relative error between the

reference and the nonlinear response via the shooting method. Most of the mechanical energy is distributed

between the static and the fundamental components (see Fig. 7(a) for the 0× and 1× harmonic components.

These two main contributions are very well estimated by the shooting method with an relative error of

less than 0.6% (2.4%, respectively) for the static component (the fundamental frequency, respectively). As

shown in 7(a), energy distribution trends on each harmonic components provided by the shooting method

(in red color) remain representative of those of the reference (in black color).

Tab. 3 gives the relative variation of mechanical energy over one period ∂̄E
∂t /Ē as well as the different

average power rates: the power rate dissipated by damping τ̄c, the power rate injected by unstable friction

τ̄f and the power rate injected during impacts τ̄n. For this last power rate, a negative sign indicates that

the energy is in fact dissipated, which is a expected result due to the velocity discontinuities during these
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Quantity Value

Variation of mechanical energy ∂̄E
∂t /Ē 0.02765 s−1

Average power rate dissipated by damping τ̄c 363.7 s−1

Average power rate injected by friction τ̄f 371.62 s−1

Average power rate injected by impact τ̄n −7.8962 s−1

Average power balance ≈ 0

Table 3. Variation of the mechanical energy and average power rates on one period of the steady-state

vibrations
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Fig. 9. Phase diagrams of node 1864 provided by the direct time integration (red with a star) and limit

cycles given by the shooting method in the (a) tangential (b) radial and (c) normal directions
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inelastic impacts [19, 35]. First the relative average power balance is verified (i.e. ∂̄E
∂t /Ē + τ̄c = τ̄f + τ̄n).

This emphasizes the excellent behaviour of the numerical time integration, which results from the energy

conservation properties of the modified θ-method scheme [35]. Then, it can be observed that the variation

of the mechanical energy is almost zero over one period T so that the average power ratio τ̄c dissipated by

damping is equal to the average power ratios τ̄f and τ̄n injected by the frictional and contact reactions. This

confirms the hypothesis that the nonlinear contact phenomena of separation and impact between the disc

and the pads are responsible for the convergence and stabilization towards the nonlinear self-excited solution

of the frictional mechanical system. Indeed, the nonlinearities induce a saturation of the frictional contact

reactions and a decrease of the average power injected in the system compared with the unstable linear case.

In order to better visualize theses nonlinear phenomena such as the separation between the pads and disc

at the frictional interface, Fig. 8 shows the evolution of the the upper contact zone at eight specific times

over one period. It appears very clearly that separation and contact occur intermittently on several pads.

Fig. 9 illustrates the phase diagrams according to the tangential, radial and normal directions for a node

of the contact interface (node 1864 as indicated in Fig.8(h)). It is clearly observed that the results based on

the proposed shooting method with a reduced basis for the initial guess are in good agreement with those

obtained from the direct time integration. Moreover it is shown that a complex nonlinear behavior such as

impact discontinuity can be reproduced (see Fig. 6(c)). The difference in amplitude of the phase diagrams

seems to be large with respect to the obtained overall percentage error. However, phase diagrams represent

very localized contact responses while energy errors are averaged over the entire structure. It appears that

contact responses can present large errors without major effects on the rest of the structure provided that

most of the phenomena are well represented. In this case, the phenomena of contact separation allow the

system to stabilize on a periodic self-sustaining vibration, even if they are of smaller amplitudes (as shown

by the n-limit cycle in Fig. 6(c)). The amplitude and overall shape of the structural vibration is then reached

with a good degree of precision.

Finally, the combination of the small number of iterations (i.e. 3) and the small number of modes

retained in the reduction basis (3 vs 31974 degrees of freedom of the unreduced system) leads to a large

computational gain between the proposed method and the direct time integration (20 min vs 10 h on a

standard workstation).

5.3 Conclusion

In this paper, a new adaptation of the shooting method is proposed in order to estimate nonlinear self-

sustained vibration of large finite element models for which the number of degrees of freedom is important and

prevents the application of the conventional shooting method. The originality of the proposed formulation is

based on the use of a reduced basis for the determination of the initial conditions. This dramatically reduces

the number of variables to be estimated during the iterative process of the shooting method and as a result,

the size of the monodromy matrix to be computed, while keeping the resolution of the full original system

for the determination of the nonlinear solution. This proposed numerical approach has been tested in the

case of a finite element model for the prediction of nonlinear dynamic steady-state solutions of autonomous

non-smooth contact systems prone to mono-instability.

All the numerical results indicate that the proposed nonlinear method appears to be efficient for a fairly

accurate estimation of the self-sustained vibrations as well as the nonlinear phenomena at the frictional

interfaces.

An interesting future study to be considered is the extension of the proposed numerical method in the

case of multi-instabilities since experimental results show that squeal noise can have several fundamental

frequencies. This case is called quasi-periodic where the evolution of the system is subject to an instability
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with several unstable modes with incommensurable frequencies. Additional developments to the shooting

method proposed in this paper would be necessary in order to approximate the stationary regime of such

systems. The definition of a criterion for strict quasi-periodicity in the time domain is not obvious and it

should be necessary to use a more flexible criterion (for instance stationarity) or to decide in the frequency

domain. In addition, the initialization of the shooting method on a set of unstable mode contributions re-

quires the search for modal amplitudes but also phase shifts between modes. However, preliminary work can

consist in seeking periodic solutions, even for a multi-unstable system. Indeed, Loyer et al. [32] have shown

that in some cases, only one dominant mode can remain in the stationary solution since the contributions

of the other modes have been stabilized or even annihilated in the transitional regime. All the proposed

methodology is then relevant for this specific objective.

Acknowledgment

This work was performed within the framework of the LABEX CeLyA (ANR-10-LABX-0060) of Université
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[14] H. Lü, W.-B. Shangguan, and D. Yu. A unified approach for squeal instability analysis of disc brakes

with two types of random-fuzzy uncertainties. Mechanical Systems and Signal Processing, 93:281 – 298,

2017.

[15] M. Treimer, B. Allert, K. Dylla, and G. Müller. Uncertainty quantification applied to the mode coupling

phenomenon. Journal of Sound and Vibration, 388:171 – 187, 2017.

[16] M. Stender, M. Tiedemann, N. Hoffmann, and S. Oberst. Impact of an irregular friction formulation

on dynamics of a minimal model for brake squeal. Mechanical Systems and Signal Processing, 107:439

– 451, 2018.

[17] N. Hoffmann, M. Fischer, R. Allgaier, and L. Gaul. A minimal models for studying properties of the

mode-coupling type instability in friction induced oscillations. Mechanics Research Communications,

29:197–205, 2002.

[18] L. Charroyer, O. Chiello, and J-J. Sinou. Parametric study of the mode coupling instability for a simple

system with planar or rectilinear friction. Journal of Sound and Vibration, 384:94–112, 2016.

[19] L. Charroyer, O. Chiello, and J-J. Sinou. Self-excited vibrations of a non-smooth contact dynamical

system with planar friction based on the shooting method. International Journal of Mechanical Sciences,

144:90–101, 2018.

[20] N. Coudeyras, S. Nacivet, and J-J. Sinou. A new treatment for predicting the self-excited vibrations of

nonlinear systems with frictional interfaces: the constrained harmonic balance method, with application

to disc brake squeal,. Journal of Sound and Vibration, 319:1175–1199, 2009.

[21] N. Coudeyras, S. Nacivet, and J-J. Sinou. Periodic and quasi-periodic solutions for multi-instabilities

involved in brake squeal. Journal of Sound and Vibration, 328:520–540, 2009.

[22] S. Nacivet and J-J. Sinou. Modal amplitude stability analysis and its application to brake squeal.

Applied Acoustics, 116:127–138, 2017.

[23] G. Kerschen, M. Peeters, J.C. Golinval, and A.F. Vakakis. Nonlinear normal modes, part i: A useful

framework for the structural dynamicist. Mechanical Systems and Signal Processing, 23(1):170 – 194,

2009.
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