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ABSTRACT

Context. We discuss the case of lines formed by scattering, which comprises both coherent and incoherent scattering. Both processes
contribute to form the line profiles in the so-called second solar spectrum, which is the spectrum of the linear polarization of such
lines observed close to the solar limb. However, most of the lines cannot be simply modeled with a two-level or two-term atom model,
and we present a generalized formalism for this purpose.
Aims. The aim is to obtain a formalism that is able to describe scattering in line centers (resonant scattering or incoherent scattering)
and in far wings (Rayleigh/Raman scattering or coherent scattering) for a multilevel and multiline atom.
Methods. The method is designed to overcome the Markov approximation, which is often performed in the atom-photon interaction
description. The method was already presented in the two first papers of this series, but the final equations of those papers were for a
two-level atom.
Results. We present here the final equations generalized for the multilevel and multiline atom. We describe the main steps of the
theoretical development, and, in particular, how we performed the series development to overcome the Markov approximation.
Conclusions. The statistical equilibrium equations for the atomic density matrix and the radiative transfer equation coefficients are
obtained with line profiles. The Doppler redistribution is also taken into account because we show that the statistical equilibrium
equations must be solved for each atomic velocity class.

Key words. atomic processes – line: formation – line: profiles – magnetic fields – polarization – radiative transfer

1. Introduction

At the surface of the Sun and in the solar corona (infrared lines),
for instance in prominences, spectral lines may be formed by
radiative scattering. This is in particular the case for the so-
called second solar spectrum (Stenflo & Keller 1997), which
is the spectrum of the linear polarization observed on the disk
but close to the solar limb. This spectrum reveals a rich struc-
ture that is very different from the intensity spectrum and is thus
likely to reveal new information about the medium anisotropies
and magnetic field via, in particular, the Hanle effect. Atlases of
this spectrum are now available (Gandorfer 2000, 2002, 2005).
Belluzzi & Landi Degl’Innocenti (2009) classified the line po-
larization profiles of the atlases into five classes. Their M class
(divided into three subclasses M0, M1, and MS) concerns 30%
of the lines and is characterized by far wings in polarization: this
is probably due to coherent scattering as already demonstrated
for a two-level atom by Faurobert (1987, 1988).

However, most of the solar lines require a multilevel model
atom to be reproduced, in particular when lower level align-
ment is present (Manso Sainz & Trujillo Bueno 2003). A full
statistical equilibrium has to be resolved in the modeling. Even
if approximate multilevel solutions were achieved in the past
(Faurobert et al. 2009; Sampoorna et al. 2013), and the two-level
atom approach was successfully generalized to the two-term

atom without lower term polarization (Smitha et al. 2011, 2012,
2013; Belluzzi & Trujillo Bueno 2014), there still lacks a gen-
eral formalism that is able to handle the statistical equilibrium
for the atomic density matrix, on the one hand, and the radia-
tive transfer equation, on the other hand, together with a full ac-
counting of what is generally called partial redistribution (PRD)
and what we denote as both Rayleigh/Raman and resonant
scatterings.

This paper introduces such a formalism as a generalization of
our preceding papers Bommier (1997a,b). In Sect. 2 we discuss
the main steps and characteristics of the derivation, and in Sect. 3
we present our generalized formalism. In Sect. 4, we show that
for PRD studies, the statistical equilibrium equations have to be
resolved for each atomic velocity class. The following paper of
this series (Bommier 2016) is devoted to a numerical application
of this formalism to the second solar spectrum of the Na iD1 and
D2 lines.

2. Preliminary discussion

In this discussion, we aim to review the main steps and charac-
teristics of the theory developed in Bommier (1997a,b), to clarify
the physical meaning of the different terms of the equations and
the calculation methodology.
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In the usual statistical equilibrium equations, absorption and
emission are independent processes. This is a consequence of the
Markov approximation applied to the master equation that de-
scribes the evolution of the atom as a “small system” immersed
in and interacting with the photon “bath”. The Markov approxi-
mation, also denoted as the “short-memory” approximation, con-
sists in ignoring the “past history” of the atomic density matrix
ρA(t′) with t′ < t for evaluating ρA(t). Once the Markov approx-
imation is performed, t′ = t is assumed in the master equation,
which is the Schrödinger equation projected onto the atom sub-
space. We used it under its integral form, as given in Eq. (17)
of Bommier (1997a). Accordingly, photon absorption and emis-
sion by the atom are independent processes and it is only beyond
the Markov approximation that a relationship or a coherence
can appear between these processes, as in the case of Rayleigh
scattering.

2.1. Beyond the Markov approximation

In Bommier (1997a) we present a method we developed to over-
come the Markov approximation. We first introduce the develop-
ment of the Schrödinger equation in terms of the nested commu-
tators in Eq. (25) of Bommier (1997a). As we are interested only
in the populations (diagonal terms) and Zeeman coherences (off-
diagonal but low-frequency terms) of the atomic density matrix
to derive the statistical equilibrium equations, non zero contri-
bution only occur if the number of interaction potentials or of
nested commutators is even. Thus, the lowest order of the in-
tegral equation is order-2, the next order is order-4, and so on.
Applying the Markov approximation using t′ = t under the inte-
gral acts as a closure of the equation at a given order. The succes-
sive orders form then an infinite series of independent equations,
which we call in French a suite. The aim is to evaluate the series
limit at infinity, which then overcomes the Markov approxima-
tion. In Bommier (1997a), we show how we transform the series
of independent equations into a series of added terms (a summa-
tion), as each element of the series is the sum of all the preced-
ing terms. In French this is denoted as a série. We transform the
limit into an infinite sum and the development then appears as
a perturbation development. The transformation is obtained by
adding all of the orders and by considering, for each order con-
tribution, only those processes that are not already included in
the preceding orders: we already took these into account. These
contributions are called “new”, at each order, and the transfor-
mation of the series requires discarding the “non-new” contri-
butions already brought by the lower orders. This elimination is
already described in Bommier (1997a), but we include additional
comments about this transformation here.

As noted at the beginning of Sect. 3.3 of Bommier (1997a),
the transformation also resolves the problem of the initial condi-
tions, which have to be defined precisely in the integral equation
except at order-2. Reintroducing the order-2 in the higher orders
as done in the transformation, exempts us from providing any
initial conditions later on.

Before the transformation, each order is able to describe the
atom-photon interaction independently, within the Markov ap-
proximation, which has to be done to “close” the equation at
the given order. Each order delineates processes described by
the same number of elementary interaction potentials. For in-
stance, order-2 is comprised of photon absorptions or emissions.
In the case of a two-level (or two-term) atom, order-4 com-
prises processes of the type “absorption followed by emission”,
or “emission followed by absorption”. The processes of these
two examples are represented in Fig. 1. The upper part of the

Fig. 1. Elementary processes and transition probabilities for the master
equation developed at order-2 (upper part) and order-4 (lower part). At
order-4, diagrams (1) and (2) are combinations of the order-2 elemen-
tary processes, whereas diagram (3) and (4) are not.

figure contains the order-2 processes: absorption or emission.
The lower part of the figure contains the first type of the order-4
processes: absorption followed by emission. The dots represent
the initial and final atomic states, for an atom comprised of two
levels a (lower) and b (upper). As a result of the process, the
atom makes a transition from its initial state to its final state, both
represented by dots. The transition is represented by two tran-
sition amplitudes drawn in bold lines with arrows. Absorption
takes place during the time interval between the two up arrows,
whereas emission takes place during the time interval between
the two down arrows. In this respect the order-4 diagrams (1) and
(2) differ from the order-4 diagrams (3) and (4). In (1) and (2),
absorption occurs during the time interval τ3, whereas emission
occurs during the time interval τ1, which is another independent
time interval. Between τ3 and τ1 and during τ2, the atom stays
in the upper level b. Thus, processes (1) and (2) are made of
the two order-2 processes represented in the first line of Fig. 1,
connected. They are thus “non-new”. On the contrary, absorp-
tion takes place during τ3 + τ2 in processes (3) and (4), whereas
emission takes place during τ2 +τ1. During the common time in-
terval τ2, absorption and emission simultaneously occur, leading
to the possibility of a correlation between them. Contrary to dia-
grams (1) and (2), diagrams (3) and (4) cannot be split into two
order-2 connected processes. They represent “new” processes.
Collecting only the “new” processes of Fig. 1 consists in con-
sidering the two order-2 processes of the first row of the figure
and diagrams (3) and (4) of the last row, and eliminating dia-
grams (1) and (2) of the intermediate row, which are “non-new”.
Thus, contributions of order-2 and order-4 are gathered, trans-
forming the suite of independent orders into a série (a sum of
contributions of the different orders).

The tranformation of the suite into the série is thus achieved
by taking the contribution of each process in its native order,
where it is “new”. Then, instead of considering all the processes
of a given order and the suite of orders, this is replaced by the
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sum of the “new” contributions stemmed from all the lower or-
ders. The problem then is to determine what are, for each order,
the “new” and “non-new” contributions with respect to the lower
orders. We found that the “non-new” contributions or processes
may be identified by the following method. At a given order,
we suspect some processes to be “non-new” and we write down
the statistical equilibrium and radiative transfer equations con-
sidering only these processes of this order. The characteristics
that are at the basis of the suspicion are described in Sect. 5.1 of
Bommier (1997a). If we find that the statistical equilibrium and
radiative transfer equation are unchanged with respect to their
expression at the lower order, we conclude that there is noth-
ing new there and that we successfully identified the “non-new”
processes, which we can then eliminate in performing the trans-
formation. We did that for order-4 with respect to order-2 (taking
into account polarization), and then for order-6 (ignoring the po-
larization for simplicity, after we learned how to average it in
order-4) with respect to order-4 and order-2. Indeed, some pro-
cesses at order-6 are combinations of three order-2 processes,
others are combinations of one order-4 and one order-2 process.

At order-4, a new term appeared in the emissivity, that we
wrote under the form

ε (ν,Ω) = ε(2) (ν,Ω) + ε(4) (ν,Ω) , (1)

where ν is the outcoming photon frequency and Ω its propaga-
tion direction. We found that no additional term appeared in the
emissivity at order-6. We tried some well-chosen order-8 con-
tributions but all those and all the other “new” contributions of
order-4 and order-6 to the radiative transfer or statistical equi-
librium equations can be added to lower order contributions as
a modification of their line profile. Another typical “new” term
of this type is given by diagram (4) of Fig. 1. As a result, the
general term of the profile series can then be written and the pro-
file series may be added up, leading to a nonperturbative result.
An initial profile of “nonzero” width had been first introduced
and the addition yet broadens the profile. The initial width has
to be discarded after the sum evaluation (see Sect. 3.4 below),
which shows that the final result of overcoming the Markov ap-
proximation is twofold: first, the emissivity is comprised of the
two contributions summarized in the above equation, and sec-
ond, the line profile is properly included in the radiative transfer
and statistical equilibrium equations.

The second term of the emissivity, ε(4) (ν,Ω), which origi-
nates from order-4, results from the diagram (3) of Fig. 1, where
it is visible that there is a photon absorption, which takes place
during τ3 + τ2, and a photon emission, which takes place during
τ2 + τ1. Thus, there is a common time interval τ2, during which
absorption and emission occur together, which permits a corre-
lation between them such as the frequency coherence. It has to
be noted that the absorption begins first. We show in Sect. 6.4
of Bommier (1997a) that in the case of an infinitely sharp lower
level, and when the statistical equilibrium solution is reported
in the emissivity to derive the redistribution functions, that the
contribution of this order-4 term is of the form RII − RIII , and
not only RII . In the atomic frame the redistribution functions are
usually denoted as rII and rIII , whereas the notations RII and RIII
are usually reserved for the laboratory frame redistribution func-
tions. The rII redistribution function is the frequency-coherent
redistribution function rII = δ(ν − ν′)φ(ν0 − ν

′), where ν and ν′
are respectively the outgoing and incoming photon frequencies,
δ is the Dirac function, φ is the absorption line profile and ν0
the line center frequency, whereas rIII is the complete redistribu-
tion function rIII = φ(ν0 − ν)φ(ν0 − ν

′). Therefore, it is yet the
order-4 contribution that introduces scattering, and, in particular,

frequency-coherent scattering or Rayleigh scattering. The lowest
part of Fig. 1 shows that the upper level b is never “populated”
during the process described by diagram (3) because the two
transition amplitudes do not stay together in this level, contrary
to the processes described by diagrams (1) and (2), where the
upper level b is “populated” during τ2. Because level b is never
populated during the Rayleigh scattering process, this naturally
leads to the image of a “virtual” upper level in the Rayleigh scat-
tering process. As the virtual level is infinitely sharp, this en-
sures the frequency coherence between incoming and outgoing
frequencies in the Rayleigh scattering.

In the absence of collisions, the −rIII contribution originating
from diagram (3) exactly compensates for that originating from
diagrams (1) and (2) (or their order-2 equivalents), and as a re-
sult the scattering is entirely coherent in the far wings as well as
in line center. However, absorption and emission are yet present
in the statistical equilibrium equations and the upper level b is
accordingly populated. rIII corresponds to the resonant scatter-
ing, which is described well by diagrams (1) and (2) of Fig. 1,
and is comprised of absorption, which is followed by staying in
the upper level and, in turn, followed by emission. At the line
center, the virtual level joins the real level. Doppler broaden-
ing and transition to the laboratory frame should be considered
also as described in Bommier (1997b), where, in the line center
RII ≈ RIII , therefore, it is finally impossible to globally discrimi-
nate between coherent and incoherent scatterings in the line cen-
ter. Our formalism is able to describe the full scattering, which
we call Rayleigh/Raman scattering in the far wings (where the
RIII contribution is negligible and where the scattering is then
frequency coherent), and resonant scattering in the line centers.

Recently, Casini et al. (2014) presented a similar approach
to describe the scattering. In a conference close to their pa-
per publication (Meeting of the Working Group 2 of the COST
Action MP 1104 “Polarization as a Tool to Study the Solar
System and Beyond”, “Theory and Modeling of Polarization in
Astrophysics”, Praha (Česká Republika), 5–8 May 2014), Casini
reported that his theory was derived by developing the master
equation at order-4 to repell the Markov approximation; how-
ever, he did not perform the above-described series transfor-
mation, in particular, to avoid having to discriminate between
“new” and “non-new” contributions. He considered the whole
order-4, but only this order. As we stated above, the Markov ap-
proximation is nevertheless required to close the equation, be-
cause it is not at infinite order. However, Bommier (1997a) had
concluded that no new term in the emissivity appears at higher
orders, only contributions to the line broadening. Therefore, in
addition to his order-4 master equation, Casini introduced a line-
broadening or “dressing the atom” formalism, which accounts
for single photon absorption and emission. Thus, single pho-
ton absorption and emission are taken into account in the line
broadening, but not as processes entering the statistical equi-
librium equation. As for the atom “dressing”, we know this as
the “dressed atom” approach the formalism describing an atom
dressed by an intense laser field (Cohen-Tannoudji 1977; Cohen-
Tannoudji & Reynaud 1977), whereas present astrophysical apli-
cations are concerned with the limit of a weak radiation field (see
next subsection).

The order-4 processes (in the case of a 2-level atom) are
comprised neither of absorption nor emission, but of scattering,
where emission and absorption are grouped in a single process
(in the collisionless regime). The original, pure, order-4 statisti-
cal equilibrium equation results in being undetermined because
the upper level can never be reached as the final state of a process
starting from the lower level at least in the absence of collision,
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as we remarked above. Casini et al. (2014) concur at the end of
their Sect. 2: “In the absence of collisions (i.e. at zero tempera-
ture), the process that populates the upper term by radiative ab-
sorption is inhibited in the limit of infinitely sharp lower levels”,
so that “the upper levels can only be virtual”. In our approach,
when we proceeded to the selection of the “non-new” contri-
butions at order-4 with the method described above, the statis-
tical equilibrium equation comprised of the “non-new” terms
only was also undetermined, i.e., of the type 0 = 0, because the
order-4 processes are all scattering (i.e., absorption and emis-
sion grouped in a single process), for the two-level (or two-term)
atom. If we discard the vanishing coefficient on each side of the
equation, however, we recover the lower order-2 equation, thus
validating our selection of the “non-new” contributions. Thus,
although “new” contributions are also found at order-4, we think
that Casini et al. (2014) do not provide any statistical equilibrium
equation because this results in being the undetermined type, at
least in the absence of collisions because, as stated above, in the
absence of collisions the upper level can never be reached as the
final state of an order-4 process starting from the lower level.

If the development was made at order-6 instead, populating
the upper level would be again possible because the elementary
process, for instance, would be absorption that is followed by
emission that is followed by absorption again, thus ending in
the upper level. Statistical equilibrium equations would then be
derived. The form of the statistical equilibrium equations would
be the usual one, except for the order-6 line profile shapes. We
generalize this discussion in Sect. 4.4 below.

We also state above that, at order-4, the initial conditions are
explicitly included in the master equation. This is a difficulty,
which we also resolved via our series transformation described
above, because at the lowest order, order-2, this is not the case,
and when this order is kept in the development, this avoids a dif-
ficulty with the initial conditions. Although Casini et al. (2014)
state, in their Sect. 2, that the “initial conditions for the sys-
tem’s density matrix are handled in a similar way” (similar to
our method), this cannot be the case because our handling is a
consequence of the series transformation we performed, which
Casini et al. (2014) on the contrary, avoided carrying out.

It is important not to mix the two formalisms. It would be
strongly inconsistent to envisage complementing the radiative
transfer equation given by Casini et al. (2014) with our statis-
tical equilibrium equation because Casini et al. (2014) did not
provide this equation. Although their emissivity also includes
two contributions as ours, the respective contributions are indi-
vidually different from ours. The final result in terms of redis-
tribution function is however in agreement with our results of
Bommier (1997a,b). All occurs as if the statistical equilibrium,
which is avoided in their order-4 approach, is at least already
partly resolved (for a two-level or two-term atom) inside the ra-
diative transfer equation itself, leading to different coefficients,
but agreement on the final combined solution in terms of redis-
tribution function.

2.2. The multiphoton Raman scattering

In order to generalize our formalism of Bommier (1997a,b) to
a multilevel-multiline atom, we have to examine how the differ-
ent terms represented in Fig. 1 have to be generalized. Single
photon absorption or emission are unchanged and may occur be-
tween any levels provided that the line connecting them is per-
mitted. Diagrams (1) and (2) are both simply a series of such
single photon processes. Diagram (3) obviously generalizes into

Raman scattering with final level c that is different from the ini-
tial level a.

In the general case, however, higher order Raman scatter-
ing is to be envisaged, involving several upper levels b, d, e, f . . .
with associated or combined absorption and emission in interme-
diate lines. We denote such a general process as the “multiphoton
Raman scattering”. In addition to this general process, multipho-
ton absorption or emission could also occur in a multilevel atom.
However, we point out that it is well known that the transition
probabilities associated with such multiphoton processes behave
like powers of the average photon number per mode n̄ (Grynberg
& Cagnac 1977), and, as we discussed at the beginning of Sect. 2
of Bommier (1997a), visible lines at the surface of the Sun range
in the weak radiation field regime with n̄ � 1. Indeed, at the
surface of the sun one has

n̄ =
1

exp
{

hν
kTrad

}
− 1
≈ 2 × 10−2, (2)

where Trad is the incident radiation temperature, about 6000 K,
and at λ = 600 nm. The condition n̄ � 1 may not be satisfied for
some infrared and far-infrared lines, which may be also emitted
by a multilevel atom, even if the condition is fulfilled for the
lines of interest. Our formalism does presently not include terms
in powers of n̄. This will be the object of future investigations.

As a consequence, we presently consider multiphoton pro-
cesses as negligible for our astrophysical purposes and, in this
case, the generalization of our formalism only requires the gen-
eralization of the Rayleigh scattering term into the Raman scat-
tering (with different initial and final levels), and the accounting
for all the processes that able to reach or leave any level, upper
or lower similarly. This is described in the next section. We also
take induced emission into account.

3. Equations for the multilevel-multiline atom

3.1. Taking the Doppler redistribution into account

The quantum description of atom and radiation used here has to
be complemented by a quantum description for the Doppler ef-
fect. Though the well-known frequency Doppler shift can also
be derived in a quantum formulation using energy and momen-
tum conservation (see for instance Louisell 1973; Loudon 1973),
the Doppler effect has been introduced in the statistical equilib-
rium equation derivation based on quantum electrodynamics by
Sahal-Brechot et al. (1998). We use the same notations as in the
Sahal-Brechot et al. (1998) paper.

We denote with p the atomic momentum operator. p = mu in
the non-relativistic limit, where m is the atomic mass and u is the
atomic velocity.

The eigenstates of the translation Hamiltonian (to be added
to the rest-frame atomic Hamiltonian)

Htr =
p2

2m
, (3)

are the plane waves |p〉. The eigenstates of the atomic
Hamiltonian in the laboratory frame then take the form

|u〉 = |αJM〉 ⊗ |p〉 = |αJM, p〉 (4)

where αJM are the quantum numbers characterizing the inter-
nal state (α representing a group of numbers), whereas p char-
acterizes the external state. For the atom, the atomic velocity is
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an external freedom degree. The elements of the atomic density
matrix σ are of the form

〈αJM, p|σ (t)
∣∣∣α′J′M′, p′

〉
. (5)

If it is assumed that the atomic velocity does not change dur-
ing the scattering process (see the discussion in Sect. 2.2 of
Sahal-Brechot et al. 1998, and the discussion in the follow-
ing Sect. 4.1), the atomic velocity is conserved, and the total
Hamiltonian is diagonal in |p〉. Physically, this corresponds to
the assumption that the time between two velocity-changing col-
lisions is very long with respect to the level radiative lifetimes.
Owing to the relative mass effect, only elastic collisions with
particles with about same masses or higher masses than the radi-
ating atom have to be considered. Under solar conditions, such
collisional rates are very weak with respect to the radiative rates.
Therefore, those terms of the atomic density matrix with p , p′
are completely decoupled from those terms that have p = p′.
We can thus define a reduced density matrix σ (u, t) through the
equation

〈αJM, p|σ (t)
∣∣∣α′J′M′, p

〉
≡ 〈αJM|σ (u, t)

∣∣∣α′J′M′〉 . (6)

The diagonal element 〈αJM|σ (u, t) |αJM〉 is the joint probabil-
ity of finding an atom with velocity u in the level αJM.

Following Sahal-Brechot et al. (1998), the Doppler effect is
taken into account by replacing any angular frequency ω that
appears in the line profiles by ω − k · u, where k is the radia-
tion wavevector. In terms of frequencies, a frequency ν of a line
profile has to be replaced by the Doppler shifted frequency ν̃

ν̃ = ν

(
1 −
Ω · u

c

)
, (7)

where Ω denotes the radiation propagation direction.
In the following, we skip to the normalized density matrix

ρ (u, t) defined by

σ (u, t) = f (u) ρ (u, t) , (8)

where f (u) is the normalized atomic velocity distribution func-
tion (which is independent of the internal state of the atom).

In addition, we assume in the following that there is no cou-
pling between the reduced density matrices σ (u, t) and σ (u′, t)
relative to different velocities u and u′. The effect of velocity
changing by collision is ignored or is assumed to be negligible
(see the discussion below in Sect. 4). The statistical equilibrium
equations introduced below have to be resolved for each velocity
class.

3.2. Statistical equilibrium equations

We present below the generalization of the equations of
Bommier (1997a,b) to the multilevel atom. These equations are
derived from the formalism described above and are at the basis
of the new code XTAT that we are developing for non-LTE po-
larized line formation with redistribution, and will be described
in the next paper of this series (Bommier 2016). As in Bommier
(1980), the statistical equilibrium equations for the multilevel

atomic density matrix ρ are given by

d
dt

α1 J1 J′1ρM1 M′1
(r, u) = −

i
~

[
E (α1J1M1) − E

(
α1J′1M′1

)]
× α1 J1 J′1ρM1 M′1

(r, u)

+
∑

α2 J2 J′2 M2 M′2

Γα1 J1 J′1 M1 M′1←α2 J2 J′2 M2 M′2

× α2 J2 J′2ρM2 M′2
(r, u)

−
1
2

∑
J”1 M”1

 ∑
α2 J2 M2

Γα2 J2 J2 M2 M2←α1 J”1 J1 M”1 M1

× α1 J”1 J′1ρM”1 M′1
(r, u)

+
∑

α2 J2 M2

Γα2 J2 J2 M2 M2←α1 J′1 J”1 M′1 M”1

× α1 J1 J”1ρM1 M”1
(r, u)

 . (9)

The energy difference accounts for Zeeman splitting, fine and
hyperfine splittings (replacing L, S , J by J, I, F), and eventually
incomplete Paschen-Back effect. In this last case, J is no longer
a “good quantum number”, and there is no symmetry in the den-
sity matrix elements, so that there is no advantage to applying
the irreducible tensor formalism because the number of nonzero
elements is not reduced and the formalism is more complex.
Therefore we preferred to apply the dyadic formalism. Here,
the transition coefficients Γ have new expressions that include
the line profile. The expression of these coefficients is differ-
ent for spontaneous emission, induced emission and absorption.
Introducing

X
(
α2J2J′2 → α1J1J′1

)
= (−1)J′1−J1+J′2−J2

×
[
(2J1 + 1) (2J2 + 1)

(
2J′1 + 1

) (
2J′2 + 1

)]1/2

×

{
J1 1 J2
L2 S L1

}{
J′1 1 J′2
L2 S L1

}
(2L2 + 1) , (10)

the transition coefficients Γ can be expressed as follows. The col-
lision effects may be added in these equations following the for-
malism developed in Bommier & Sahal-Bréchot (1991) for the
inelastic collisions and in Kerkeni & Bommier (2002) for the
elastic collisions, and reported below in Sect. 3.5. One has

– for spontaneous emission from (α2) to (α1)

Γ
sp
α1 J1 J′1 M1 M′1←α2 J2 J′2 M2 M′2

= X
(
α2J2J′2 → α1J1J′1

)
(−1)M1−M′1

× A (α2L2S → α1L1S )

×

(
J1 1 J2
−M1 −p M2

)

×

(
J′1 1 J′2
−M′1 −p M′2

)
, (11)
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– for induced emission from (α2) to (α1)

Γind
α1 J1 J′1 M1 M′1←α2 J2 J′2 M2 M′2

= X
(
α2J2J′2 → α1J1J′1

)
× 3B (α2L2S → α1L1S )

×

∫
dν

∮
dΩ
4π

(−1)M1−M′1 J−p−p′ (ν̃)

×

(
J1 1 J2
−M1 −p′ M2

)

×

(
J′1 1 J′2
−M′1 −p M′2

)

×

[
1
2

Φ∗ba

(
να2 J′2 M′2,α1 J′1 M′1 − ν̃

)
+

1
2

Φba
(
να2 J2 M2,α1 J1 M1 − ν̃

)]
, (12)

– for absorption from (α2) to (α1)

Γabs
α1 J1 J′1 M1 M′1←α2 J2 J′2 M2 M′2

= X
(
α2J2J′2 → α1J1J′1

)
× 3B (α2L2S → α1L1S )

×

∫
dν

∮
dΩ
4π

(−1)M1−M′1+p+p′J−p−p′ (ν̃)

×

(
J1 1 J2
−M1 p M2

)
×

(
J′1 1 J′2
−M′1 p′ M′2

)
×

[
1
2

Φba

(
να1 J′1 M′1,α2 J′2 M′2 − ν̃

)
+

1
2

Φ∗ba
(
να1 J1 M1,α2 J2 M2 − ν̃

)]
, (13)

where, with respect to Bommier (1980), the profiles were in-
troduced following Bommier (1997a), and are detailed below in
Sect. 3.4.

In principle, there are also imaginary contributions to the sta-
tistical equilibrium equations, comprised of level shift terms, as
shown in Eqs. (34)–(35) of Bommier & Sahal-Brechot (1978).
The δ (Dirac delta) and P (Cauchy principal value) functions of
these equations, issued from an order-2 development, have to be
replaced by the real and imaginary part of the complex Lorentz
profile of Eq. (22) below. The real part is an absorption profile
and the imaginary part is a dispersion profile. For the practical
applications we considered, all within the weak radiation field
limit, we estimated that the level shift effect due to the atom-
photon interaction is very small with respect to all the frequen-
cies at play, which is also the case for all the Zeeman sublevels
and, thereby, we have ignored this effect.

3.3. Radiative transfer equation

It is well known (see for instance Landi Degl’Innocenti &
Landolfi 2004, p. 350) that the polarized radiative transfer

equation takes the form

d
ds


I
Q
U
V

 =


εI
εQ
εU
εV


−


ηI ηQ ηU ηV
ηQ ηI ρV −ρU
ηU −ρV ηI ρQ
ηV ρU −ρQ ηI




I
Q
U
V


+


ηs

I ηs
Q ηs

U ηs
V

ηs
Q ηs

I ρs
V −ρs

U
ηs

U −ρs
V ηs

I ρs
Q

ηs
V ρs

U −ρs
Q ηs

I




I
Q
U
V

 ,

(14)

where (I,Q,U,V) are the Stokes parameters, which may alterna-
tively be referred to by the four indices (0, 1, 2, 3), respectively.
The εs are the emissivities and the ηs the absorption coefficients
(ρs for the magneto-optical effects), and the upper s index stands
for “stimulated emission”. These coefficients are related to the
atomic density matrix elements. Following the method devel-
oped in Bommier (1997a,b), these coefficients for the multilevel-
multiline atom are as follows:

– for emission, the emissivity is the sum of the spontaneous
emission contribution denoted as ε(2), issued from order-2,
and of a Rayleigh (or Raman) scattering term denoted as ε(4),
issued from order-4. For order-2, one has

ε(2)
i (r, ν,Ω) =

hν
4π
N ×

∑
α1 J1 J′1 M1 M′1α2 J2 M2

×

∫
d3u f (u) α1 J1 J′1ρM1 M′1

(r, u)

× T−p−p′ (i,Ω) 3A (α1L1S → α2L2S )
× X

(
α1J1J′1 → α2J2J2

)
×

(
J2 1 J1
−M2 −p′ M1

) (
J2 1 J′1
−M2 −p M′1

)
×

[
1
2

Φba

(
να1 J′1 M′1,α2 J2 M2 − ν̃

)
+

1
2

Φ∗ba
(
να1 J1 M1,α2 J2 M2 − ν̃

)]
, (15)

where N is the atom density. In the derivation of Bommier
(1997a), which is 2-level, the order-4 term describes the
Rayleigh scattering, a process starting from the lower level a,
passing by the upper b level but not really populating it, and
returning to the lower level a. Here we are interested in mul-
tilevel atom. In addition to Rayleigh scattering, Raman scat-
tering may occur. The Raman scattering process starts from
an initial level a or J1M1 (or eventually from a coherence
between J1M1 and J′1M′1), passes by an upper b level de-
noted as J2M2 or J′2M′2 (they may be different because they
correspond to two different scattering amplitudes, as already
stated), and returns to a third level c denoted as J3M3 (only
one level for closure). The expression of ε(4)

i given below
fully accounts for this Raman scattering, which is a general-
ization of Rayleigh scattering. Rigorously, other new terms
in the emissivity appear at higher orders of the development,
involving more than three levels, such as absorption from a
to b, emission from b to c , a, reabsorption from c to d , b,
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and re-emission from d to e , a, c, where all these processes
are correlated. However, all these new terms would involve
more than one scattered photon. These terms would corre-
spond to multiphoton Rayleigh/Raman processes, which are
not well known, and are very probably negligible in weak ra-
diation fields. We neglect terms of this type and we then get
for the second emissivity contribution

ε(4)
i (r, ν,Ω) =

hν
4π
N ×

∑
α1 J1 J′1 M1 M′1α2 J2 J′2 M2 M′2α3 J3 M3

×

∫
d3u f (u) α1 J1 J′1ρM1 M′1

(r, u)T−p′′−p′′′ (i,Ω)

×

∫
dν1J−p−p′ (ν1) (−1)M1−M′1

× 3B (α1L1S → α2L2S ) X
(
α1J1J′1 → α2J2J′2

)
× 3A (α2L2S → α3L3S ) X

(
α2J2J′2 → α3J3J3

)
×

(
J1 1 J2
−M1 −p M2

) (
J′1 1 J′2
−M′1 −p′ M′2

)
×

(
J3 1 J2
−M3 −p′′′ M2

) (
J3 1 J′2
−M3 −p′′ M′2

)
×

{
1
2

Φba

(
να2 J′2 M′2,α1 J′1 M′1 − ν̃1

)
×

1
2

Φ∗ba

(
να2 J2 M2,α1 J1 M1 + να1 J′1 M′1,α3 J3 M3 − ν̃

)
×

1
2

Φca

(
ν̃ − ν̃1 − να1 J′1 M′1,α3 J3 M3

)
+

1
2

Φ∗ba
(
να2 J2 M2,α1 J1 M1 − ν̃1

)
×

1
2

Φba

(
να2 J′2 M′2,α1 J′1 M′1 + να1 J1 M1,α3 J3 M3 − ν̃

)
×

1
2

Φ∗ca
(
ν̃ − ν̃1 − να1 J1 M1,α3 J3 M3

)}
. (16)

When the a and c levels belong to the ground level of the
atom, the width of Φca is zero (neglecting the broadening by
radiative absorption) and Φca may be replaced by the δ Dirac
function, which makes the frequency conservation appear in
a more clear manner.

– for absorption, one has for the absorption coefficients

ηi (r, ν,Ω) =
hν
4π
N ×

∑
α1 J1 J′1 M1 M′1α2 J2 M2

×

∫
d3u f (u) α1 J1 J′1ρM1 M′1

(r, u)

× T−p−p′ (i,Ω) (−1)M1−M′1 3B (α1L1S→α2L2S )
× X

(
α1J1J′1 → α2J2J2

)
×

(
J1 1 J2
−M1 −p M2

) (
J′1 1 J2
−M′1 −p′ M2

)
×

[
1
2

Φba
(
να2 J2 M2,α1 J1 M1 − ν̃

)
+

1
2

Φ∗ba

(
να2 J2 M2,α1 J′1 M′1 − ν̃

)]
, (17)

and one has for the magneto-optical effects

ρi (r, ν,Ω) =
hν
4π
N ×

∑
α1 J1 J′1 M1 M′1α2 J2 M2

×

∫
d3u f (u) α1 J1 J′1ρM1 M′1

(r, u)

× T−p−p′ (i,Ω) (−1)M1−M′1

× 3B (α1L1S → α2L2S )
× X

(
α1J1J′1 → α2J2J2

)
×

(
J1 1 J2
−M1 −p M2

)
×

(
J′1 1 J2
−M′1 −p′ M2

)
× (−i)

[
1
2

Φba
(
να2 J2 M2,α1 J1 M1 − ν̃

)
−

1
2

Φ∗ba

(
να2 J2 M2,α1 J′1 M′1 − ν̃

)]
. (18)

– for stimulated emission, one has for the emission coefficients

ηs
i (r, ν,Ω) =

hν
4π
N

∑
α1 J1 J′1 M1 M′1α2 J2 M2

×

∫
d3u f (u) α1 J1 J′1ρM1 M′1

(r, u)

× T−p−p′ (i,Ω)
× 3B (α1L1S → α2L2S )
× X

(
α1J1J′1 → α2J2J2

)
×

(
J1 1 J2
−M1 p′ M2

)
×

(
J′1 1 J2
−M′1 p M2

)
×

[
1
2

Φba

(
να1 J′1 M′1,α2 J2 M2 − ν̃

)
+

1
2

Φ∗ba
(
να1 J1 M1,α2 J2 M2 − ν̃

)]
, (19)

and for the magneto-optical effects

ρs
i (r, ν,Ω) =

hν
4π
N

∑
α1 J1 J′1 M1 M′1α2 J2 M2

×

∫
d3u f (u) α1 J1 J′1ρM1 M′1

(r, u)

× T−p−p′ (i,Ω)
× 3B (α1L1S → α2L2S )
× X

(
α1J1J′1 → α2J2J2

)
×

(
J1 1 J2
−M1 p′ M2

)
×

(
J′1 1 J2
−M′1 p M2

)
× (−i)

[
1
2

Φba

(
να1 J′1 M′1,α2 J2 M2 − ν̃

)
−

1
2

Φ∗ba
(
να1 J1 M1,α2 J2 M2 − ν̃

)]
. (20)
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The incident radiation is contained in the spherical tensor
Jqq′ (ν), defined by Landi Degl’Innocenti & Landolfi (2004,
p. 207)

Jqq′ (ν) =

∮
dΩ
4π

3∑
i=0

Tqq′ (i,Ω) S i (ν,Ω) , (21)

where S i (i = 0, 1, 2, 3) is one of the Stokes parameters, and
Tqq′ (i,Ω) is the spherical tensor for polarimetry defined and
tabulated by Landi Degl’Innocenti & Landolfi (2004, Table 5.3
p. 206), which depends on the Stokes index i and on the direction
of the incident radiation referred to by Ω.

3.4. Line profiles

The profile Φba is defined as in Eq. (63) of Bommier (1997a)

1
2

Φba (ν0 − ν) =
1

γba − i (ω0 − ω + ∆ba)
, (22)

where ω = 2πν is the angular frequency, and γba and ∆ba are
the width and shift coefficients defined Eqs. (16)–(19) of Omont
et al. (1972). Subscripts a and b may correspond as well to two
levels (α1L1S ) and (α2L2S ) connected by a permitted radiative
transition, as to two levels that are not connected, such as the
levels a (initial) and c (final) of the Raman scattering contribu-
tion to the emissivity, in Eq. (16) above. Rayleigh scattering is
a particular case of the Raman scattering by considering a = c.
Following Omont et al. (1972), in both cases of permitted or for-
bidden radiative transitions, one has

γba = γ(c)
ba +

1
2

(Γa + Γb) , (23)

where 1/Γa (resp. 1/Γb) is the natural lifetime of level a (resp. b),
and

γ(c)
ba + i∆ba = {1 − 〈a |S | a〉〈b |S | b〉∗}AV (24)

is the collisional contribution (broadening and shift) averaged
over the perturbers and S is the collision S -matrix of the indi-
vidual collision (impact approximation), following Eq. (71) of
Baranger (1958). When a = c, one has obviously

γaa = γ(c)
aa + Γa (25)

where

γ(c)
aa =

{
1 − |〈a |S | a〉|2

}
AV
. (26)

We define the elementary profile central frequency να2 J2 M2,α1 J1 M1

as

να2 J2 M2,α1 J1 M1 =
1
h

[E (α2J2M2) − E (α1J1M1)] . (27)

When a magnetic field is present, the Zeeman energy shift has to
be taken into account here.

In our development, each Zeeman component profile is cen-
tered at the exact frequency or wavelength of the component.
A priori, the width could also depend on the Zeeman compo-
nent. However, as described in Sect. 5.2 of Bommier (1997a),
diagrams such as (4) of Fig. 1 are responsible for additional
contributions to the profile that modify it. The series of modi-
fications can be added up and broaden the profile. This series
is proportional to the multiplet spontaneous emission probabil-
ity because the dependence on the other quantum numbers (in

particular the magnetic quantum numbers) is the same for the
whole series so that it can be factorized, leading to the coeffi-
cients given above in Sect. 3. As a result of the sum, the pro-
file is broadened by this multiplet spontaneous emission prob-
ability, which is independent of the magnetic quantum number.
Besides, the profile is a consequence of the evolution operators,
which take all of the other possible interactions into account dur-
ing one atom-photon interaction, whereas our development also
takes multiple atom-photon interactions into account by consid-
ering the higher orders.Thus these multiple atom-photon inter-
actions are then counted twice, so that for the line broadening
only one emission probability has to be finally retained instead
of two. A more detailed discussion of this double counting can
be found in Sect. 5.3, Eq. (83) of Bommier (1997a).

However, the atom also interacts with other systems, such
as perturbers. These interactions are also responsible for line
broadening. In principle, one should consider a development that
mixes the different interactions, but this is carried out by the
Baranger (1958) formalism as introduced by Omont et al. (1972)
in the evolution operators. These results are described here.

Our development has shown that the radiative broadening
of all the Zeeman components is the same. Similarly, in most
cases the magnetic field effect is negligible during the colli-
sions responsible for the collisional line broadening. This re-
quires a small collision time with respect to the inverse Larmor
frequency. Similarly, the hyperfine structure and even the fine
structure can generally be neglected during the collision, at least
in solar conditions. The fine or hyperfine components of a spec-
tral line each accordingly have the same width and shift. The
component collisional width and shift can be written as found in
Sahal-Bréchot & Bommier (2014),

γ(c)
ba + i∆ba = NP

∫ ∞

0
v f (v)dv

∫ ∞

0
2πρdρ

×

1 − ∑
Mi M′i M f M′f µ

(−1)2J f +M f +M′f

×

(
Ji 1 J f
−Mi µ M f

) (
Ji 1 J f
−M′i µ M′f

)
×

〈
α f J f M f

∣∣∣ S ∣∣∣α f J f M′f
〉∗
〈αiJiMi| S

∣∣∣αiJiM′i
〉  ,

(28)

where NP is the perturber density, v the perturber velocity and ρ
the perturber impact parameter. Considering the transition ma-
trix T = 1 − S , and given the unitarity of the S matrix S S † = 1,
which leads to T + T † = TT †, for the width (double width)
one has

2γ(c)
ba = NP

∫ ∞

0
v f (v)dv

×

[∑
αJ

σ(αiJi → αJ) +
∑
α′J′

σ(α f J f → α′J′)

− 2 Re
∫ ∞

0
2πρdρ

∑
Mi M′i M f M′f µ

(−1)2J f +M f +M′f

×

(
Ji 1 J f
−Mi µ M f

) (
Ji 1 J f
−M′i µ M′f

)
×

〈
α f J f M f

∣∣∣ T ∣∣∣α f J f M′f
〉∗

× 〈αiJiMi|T
∣∣∣αiJiM′i

〉 ]
, (29)
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where σ(αiJi → αJ) and σ(α f J f → α′J′) are inelastic transi-
tion cross sections from levels αiJi (line upper level) and α f J f
(line lower level) to other levels αJ and α′J′ respectively. Elastic
cross sections also have to be added for each level, respec-
tively. In Eq. (29), the “interference term” mixes the effects of
quasi-elastic transitions (i.e., between Zeeman sublevels) inside
both upper and lower levels, as discussed by Sahal-Bréchot &
Bommier (2014).

These expressions are written for certain (αJM) levels, but as
stated above the widths and shifts are the same for all of the fine
and hyperfine components of a given spectral line, so that these
widths and shifts finally do not depend on the exact J quantum
numbers. The sum over the magnetic quantum numbers M can
be replaced by an angular average with integral over the per-
turber trajectory directions. Both approaches lead to the same
result and to widths and shifts that are independent of the mag-
netic field and magnetic quantum number. This is an effect of
the average on S -matrix elements to be performed as indicated
in Eq. (24).

As indicated in Eq. (23), the radiative inverse lifetimes of
both upper and lower levels have to be added to the collisional
contribution obtain the line total half-half-width (half of the
width at half height of the profile).

3.5. Collisional transitions

3.5.1. Inelastic collisions

Inelastic collisions are responsible for transitions between differ-
ent levels (α, J,M), in particular with different J numbers. If both
connected levels are also connected by a permitted radiative tran-
sition, the major collisional contribution is that due to collisions
with electrons, at least in solar physics. We assume that the ve-
locity distribution of the electrons is isotropic. As a consequence,
the collisional transition rate is isotropic also as the sponta-
neous emission rate. The collisional transition coefficient takes
the form of the coefficient of Eq. (11) above, where the spon-
taneous emission coefficient A (α2L2S → α1L1S ) is replaced by
the collisional transition coefficient C (α2L2S → α1L1S ) in ex-
citation and in de-excitation. This analogy between inelastic col-
lisional rates and radiative transition rates is moreover based on
the fact that the electron-atom interaction, which is of dipolar
electric nature, can be modeled by the second-order time depen-
dent perturbation theory. When all close collisions are neglected,
it is obtained that the cross section is proportional to the oscilla-
tor strength (Seaton 1962; Bommier & Sahal-Bréchot 1991). As
a result, the similarity mentioned above follows. Finally, we also
take the close collisions into account following the cutoff method
proposed by Seaton (1962) and, in the end, the cross sections are
not exactly proportional to the oscillator strength.

We note that one has

A (α2L2S J2 → α1L1S J1) =
2L2 + 1
2J2 + 1

{
J1 1 J2
L2 S L1

}2

(30)

×A (α2L2S → α1L1S ) ,

which is analogous for the collisional transition coefficients.

3.5.2. Elastic or quasi-elastic collisions

We denote in this way those collisions responsible for transi-
tions between the Zeeman sublevels of a given level. In solar
physics, as these transitions are not of the permitted radiative
type, the major contribution is that of collisions with neutral hy-
drogen atoms. The level may also be split into fine or hyperfine

sublevels. The transitions induced between these sublevels are
also possible and taken into account. To do this, we recommend
the formalism by Kerkeni (2002, Eqs. (16)–(18)), who general-
izes that of Omont (1977). In these papers, the collisional tran-
sition rates are expressed in irreducible tensorial components.
They have to be transformed into the dyadic components used
in the present paper, for instance, by applying the basis transfor-
mation coefficients given by Landi Degl’Innocenti & Landolfi
(2004, p. 123)

3.6. Transition from the Zeeman effect
to the Paschen-Back effect

To take the transition from the Zeeman effect to the Paschen-
Back effect (or incomplete Paschen-Back effect) into account,
see Sect. 3 of Bommier (1980), and in particular to its Eq. (34),
which has to be applied to the statistical equilibrium Eq. (9) in
this case, and similarly for the transfer equation coefficients.

4. Comprehensive discussion

4.1. Is the statistical equilibrium system of equations
to be resolved for each atomic velocity class?

It has been shown in Sect. 3.1 that the atomic density matrix also
depends on external freedom degrees like the atomic velocity.
The first step in answering the question above is to compare the
duration between two changes of atomic velocity and the level
lifetimes. First, different causes of changing atomic velocity may
be considered: collisions with photons, collisions with electrons
and collisions with other atoms or ions (heavy particles). We re-
fer here to the excellent discussion about these effects in Landi
Degl’Innocenti & Landolfi (2004, Sect. 13.2, p. 691).

4.1.1. The different collision classes

First, the atomic velocity may change by the recoil effect when a
photon is emitted or absorbed. Landi Degl’Innocenti & Landolfi
(2004) evaluate the atomic recoil in a photon absorption or emis-
sion to be on the order of 1.4 cm s−1, for an iron atom of atomic
mass 56 and in the visible range λ = 5000 Å, which should
be compared to velocities on the order of some km s−1 that are
typically found in stellar atmospheres. The atomic recoil due to
atom-photon interaction can then be ignored as a cause of atomic
velocity change.

Second, the effect of collisions between the atom under in-
terest and electrons has to be considered. In stellar atmosphere,
these collisions are found to be responsible for inelastic transi-
tions, by a majority. By “inelastic”, we mean that the initial and
final levels of the transition are also those of a permitted spec-
tral line. In this case, the electron-atom interaction potential be-
haves in 1/r2, where r is the atom-electron distance, whereas in
the case of a neutral atom-neutral atom collision, the interaction
potential would behave in 1/r6. This difference in the interaction
potentials results in the dominant effect of the electron-atom col-
lisions, for those inelastic collisions populating the upper level,
which may then de-excite by emitting a photon. Thus, those in-
elastic collisions are the source of some radiation in the atmo-
sphere. They are responsible for the ε = CJ′J/AJ′J coefficient
of the radiative transfer equation, where C (resp. A) is the colli-
sional (resp. radiative) de-excitation probability from the upper
J′ level toward the lower J level. In stellar chromospheres one
has typically ε ≈ 10−3−10−4 and higher values in the deeper lay-
ers. With respect to the target atom, electrons are light particles.
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Landi Degl’Innocenti & Landolfi (2004) show that the recoil of
the atom due to an electron-atom collision is on the order of
∆v/v ≈ 3.1 × 10−3 for an iron atom of atomic mass 56. This
recoil can then also be neglected.

Third, the collisions between two neutral atoms have to be
examined as for the so-called elastic collisions, which connect
for instance Zeeman sublevels of the same atomic level. When a
magnetic field is present, the Zeeman sublevels split in energy
and the collisional transitions between them become “weakly
inelastic”. Transitions between fine or hyperfine structure lev-
els also fall in the category of the weakly inelastic collisions,
which in the following we simply denote as “elastic collisions”.
All these transitions correspond to forbidden spectral lines. In
the case of such transitions that are collisional, their probabil-
ity is on the order of 10−8−10−9NH s−1, for those collisions
with neutral hydrogen atoms of density NH expressed in cm−3,
whereas the probability is on the order of 10−6−10−7Ne s−1

for those collisions with electrons of density Ne, which is also
expressed in cm−3. In the solar photosphere where typically
NH ≈ 1017 cm−3 and Ne ≈ 1014 cm−3, the result is the dom-
inant effect of the neutral hydrogen-neutral atom collisions in
the category of those elastic collisions. In the radiative transfer,
those collisions are responsible for the balance between coher-
ent and incoherent scatterings, globally denoted as PRD (partial
redistribution), as shown by Omont et al. (1972). We return to
this point in more detail in Sect. 4.2.

One has then to examine if those elastic collisions could be
also responsible for an atomic velocity change. The atom could
eventually change velocity direction only, without the velocity
modulus changing, but this would also be a velocity change. The
quantitative evaluation would result from the examination of the
differential cross sections. As such cross sections are rare, in
the thermal energy range typical of stellar atmospheres, an ap-
proached evaluation was proposed by Landi Degl’Innocenti &
Landolfi (2004) by considering that the cross section is rarely
larger than 101−102πa2

0, where a0 is the Bohr radius, which is
reasonable. This leads to a minimum value of NH > 1020 cm−3,
for a time between two such collisions equal to the level life-
time, for a level inverse lifetime A = 107 s−1, which is typical
for excited levels. It is thus seen that such velocity-changing col-
lisions form a subclass of the class of elastic collisions. For hy-
drogen colliders, the interaction potential is longer ranged than
for other neutral atoms that are heavier and, in contrast, the col-
lisions that are responsible for the atomic velocity change cor-
respond to short-range interactions. This is why the velocity-
changing collisions are a subclass of the elastic collision class.
For collisions with atoms that are heavier than hydrogen, their
densities are so much lower than that of hydrogen, that the effect
is weaker. Given the above order of magnitude, it can be seen
that the velocity-changing collisions may be ignored in the solar
atmosphere for excited levels, even if this is not the case for the
elastic collisions that are responsible for the PRD.

4.1.2. The statistical equilibrium equations
and velocity-changing collisions

Consequently, as mentioned in Sect. 3.1, the density matrix en-
semble of elements σ (u, t) is completely decoupled from the
density matrix ensemble of elements σ (u′, t) when u′ , u,
at least for excited state elements. If such a coupling was
not negligible, a collisional term would appear in the sta-
tistical equilibrium equation of a population or coherence
〈αJM|σ (u, t) |α′J′M′〉, coupling it to elements of σ (u′, t) with

transition probabilities associated with these velocity-changing
collisions. Oxenius (1986, see Sect 2.2.1) denotes such a cou-
pling term as a generalized Boltzmann term.

This coupling term is also described by Landi
Degl’Innocenti & Landolfi (2004) and Cooper et al. (1982),
where expressions for this term are found. Many collisions
would occur in the level before de-excitation if it were large,
i.e., when the time between two velocity-changing collisions
was short with respect to the level lifetime. As a consequence,
the level would be thermalized and the level velocity distri-
bution would be Maxwellian. The level velocity distribution
is 〈αJM|σ (u, t) |αJM〉. We have shown, on the contrary, that
these collisions are very rare in the excited levels in the solar
atmosphere. As a consequence, the level velocity distribution
may not be Maxwellian, at least in the excited levels. In the
ground level, these collisions can be non-negligible because
the lifetime of this level is much longer. They thermalize the
level and the velocity distribution in this level remains close
to the Maxwellian. As an example, we performed a numerical
solution of the velocity-dependent statistical equilibrium, which
we present in the following paper of this series (Bommier
2016). We chose the pair of Na i D lines for our example. At
the temperature minimum height, we obtain a departure of
5% from the Maxwellian, in the excited levels. Higher in the
atmosphere, i.e. in the chromosphere, the departure reaches
20%. We measure this departure as the standard deviation,
normalized to the average value, of the ratio between the upper
and lower level populations, as a function of the atomic velocity.

However, usually the statistical equilibrium equations (SEE)
do not take any velocity dependence into account. This is the
case for the equations presented by Milahas (1978), but he ac-
knowledges that complete redistribution is assumed both in the
second chapter after Eqs. (2)–(15) and when he introduces the
statistical equilibrium equations at the beginning of Sect. 5-4.
This is velocity redistribution and this means that the veloc-
ity distribution is Maxwellian, regardless of the atomic internal
state. In other words, this means that each excited level velocity
distribution is Maxwellian. Thus, this assumes that the velocity-
changing collision rate is high with respect to the de-excitation
rates. As the velocity-changing collisions are a subclass of the
elastic collisions, the elastic collision rate is yet higher, and
as such higher than any other rate. Thus, the redistribution is
complete, in the usual meaning of this term, i.e., including the
frequency redistribution in the atomic reference frame. If the
elastic collision rates are high, they also depolarize the atomic
levels, i.e., they destroy the atomic alignment that is responsi-
ble for the linear polarization of emitted lines. No polarization
would survive to such rates so that studying the polarization in
such a scheme would be would not make sense.

On the other hand, PRD is generally studied for two-level
atoms by applying redistribution functions (Hummer 1962),
which are transformed from the atomic reference frame to the
laboratory reference frame by assuming a given and unchanged
atomic velocity u. Because the velocity remains unchanged dur-
ing the scattering process, which corresponds to diagram (1),
(2), or (3) of Fig. 1 in delineating scattering amplitudes, and
because the upper level intervenes with its finite lifetime even
for diagram (3), it is assumed that the atomic velocity does
not change along this lifetime. In other words, considering the
usual redistribution functions expressed in the laboratory frame
as done in Milahas (1978), is simply solving the two-level atom
statistical equilibrium for the given velocity class. In the case
of a two-level atom, there is only one equation in the sys-
tem of statistical equilibrium equations, so that the solution is
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immediate. It is performed for the velocity class under consider-
ation in a way that the usual redistribution functions correspond
to the SEE resolution for each velocity class, which is associated
with a very low, velocity-changing collision rate. If one stud-
ies PRD, the elastic collision rate is not expected to be high
in order for frequency coherence to survive. Accordingly, the
velocity-changing collision rate is consistently very low because
the velocity-changing collisions are a subclass of the elastic col-
lisions. Belluzzi et al. (2013) verified the agreement between re-
distribution functions of Hummer (1962), and the redistribution
function resulting from the resolution of the velocity-dependent
SEE.

In studies of multilevel atoms, some authors, for example,
Uitenbroek (1989, 2001), give part of their model using the
high velocity-changing collision rates hypothesis for resolving
the usual SEE, as described in Milahas (1978), and part of
their model using the opposite hypothesis of very low velocity-
changing collision rates for applying the usual redistribution
functions even if these redistribution functions are a generaliza-
tion to three-level atom, such as those functions developed by
Hubený et al. (1983a). This usage of opposite hypotheses may
question self-consistency, but the effect is probably detectable
in very limited cases. As the atom ground level is, by far, the
most populated in the weak radiation field limit, the velocity dis-
tribution in this level remains Maxwellian, as assumed in the
usual SEE. Thus, when PRD is considered for resonance or other
lines starting from the ground level, the model remains con-
sistent. Differences may arise only for subordinate lines, when
the velocity distribution in the line lower level departs from the
Maxwellian velocity distribution, which can occur only in ex-
cited levels. We obtained departures from the Maxwellian veloc-
ity distribution function up to 20% in the above reported case
of the upper levels of the Na i D lines. Indeed, studying PRD is
consistent with the very low velocity-changing collision rates,
consequently the statistical equilibrium equations should rather
be resolved for each atomic velocity class for consistency, but
the numerical application of this has so far not been successful.

Another case can be found where the velocity-dependent
SEE reduce to the usual SEE: this is the case of the flat incident
radiation spectrum. When the incident radiation does not vary
with frequency, each absorption or induced emission transition
probability in the SEE may be frequency integrated because the
only remaining dependence is that of the absorption or induced
emission profile, whose integral is unity. As the velocity depen-
dence is also included in this profile, the velocity dependence
disappears after the profile frequency integration. Accordingly,
the SEE coefficients all become velocity independent and, con-
sequently, the level population velocity distribution functions are
all identical and then Maxwellian. The flat spectrum approxima-
tion is introduced by Landi Degl’Innocenti & Landolfi (2004,
p. 257), for complete redistribution purposes, but is related to
frequency redistribution (see the next subsection) and line pro-
files. If the incident radiation spectrum contains spectral lines,
the approximation of the flat spectrum would consist in assum-
ing a very large incident line width with respect to the absorption
profile Doppler width. This is not the case, in practice, where the
incident line width is on the order of a few Doppler widths. Thus,
velocity-independent SEE and flat spectrum approximation do
not correspond to practical stellar applications.

Interesting and related comments about the velocity redistri-
bution can be found in Hubený et al. (1983b). They consider
that “no elastic velocity-changing collisions occur during the
time when the atom is excited (correlated re-emission)”, and
that “the velocity of the atom is not affected by the interaction

with perturber particles that leads to collision broadening of the
atomic level”. As a consequence, “the ensemble of atoms that
have velocities in an infinitesimal range d3u around the velocity u
forms a group of atoms which can be considered independently
of all the other atoms that have velocities outside this range”.
They also mention the natural population phenomenon. As far as
we understand this concept, a level is naturally populated, if the
populating process is independent of the atomic velocity, such
as the spontaneous emission or the absorption of a flat spectrum.
Thus, natural populating processes do not modify the level pop-
ulation velocity distribution or copy this distribution from the
lower (resp. upper) level to the upper (resp. lower) level. They
comment as follows: “absorptions and stimulated emissions in
spectral lines lead to deviations from natural population if the
radiation intensity varies within the spectral line”.

4.2. Two different physical mechanisms, governed
by nearly the same collisional condition,
are responsible for PRD

Two different and independent physical mechanisms are respon-
sible for the so-called redistribution. Sometimes, one considers
redistribution in frequency in the atomic reference frame, on the
one hand, and redistribution in velocity or Doppler redistribu-
tion in the laboratory reference frame, on the other hand. These
two types of redistribution correspond to two distinct physical
mechanisms. The first is based on the Rayleigh/Raman scat-
tering, or coherent scattering, which is more important in the
line far wings, and is ignored when one considers line absorp-
tion and emission forming the resonant scattering and described
by transition probabilities. As for the transition amplitudes, the
Rayleigh/Raman scattering is represented by diagram (3) of
Fig. 1. The Rayleigh/Raman scattering is frequency coherent,
i.e., the frequency of the scattered photon is in close relation with
the frequency of the incident photon, taking an eventual change
of internal atomic state for the Raman scattering into account.
On the contrary, there is a priori no frequency coherence in the
resonant scattering. The balance between these two scatterings
has been studied by the pioneer work of Omont et al. (1972),
who provide similar diagrams that are also based on a quantum
mechanical approach.

Independently, the Doppler effect may be responsible for a
relation between the frequency of the photon impinging an atom
of velocity u, and that of the photon emitted in another direction
by the same atom of velocity u. Accounting for the correlated
Doppler effect is responsible for the Doppler redistribution. It is
at the basis of the redistribution function calculation in the labo-
ratory frame as reported by Milahas (1978) and of the scattering
studied by Hubený et al. (1983b).

These two effects, Rayleigh/Raman scattering on the one
hand and Doppler coherence on the other hand, are different and
independent, but are both responsible for the redistribution in
scattering. Their importance is governed by the same collisions:
the so-called elastic collisions, which induce transitions between
the Zeeman sublevels or fine or hyperfine structure levels, and
are in the majority owing to collisions of the atom with neu-
tral hydrogen in stellar atmospheres. Because of this similarity
and similarities in the consequences, for instance, the fact that
for complete redistribution the redistribution function is given or
can be approximated by the product of incident and emitted fre-
quency profiles, and also because both effects contribute to the
redistribution function, the effect of interest is not always imme-
diately clear when redistribution is in question. We found that
the work by Cooper et al. (1982) takes both effects into account
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in a clear manner. In addition these authors introduce the even-
tual generalized Boltzmann term that couples atoms of different
velocities.

These two effects are different and independent, but they are
coupled in the redistribution by the fact that their importance is
governed by the importance of the same collisions, which thus
creates a link between them in redistribution.

4.3. The specificities of our formalism of the multilevel
scattering

Our formalism presented in this paper takes both frequency and
velocity redistributions into account. As our formalism is based
on the Schrödinger equation for the atom-radiation interaction,
it does not make use of any redistribution function nor of differ-
ent and specific absorption and emission profiles, as is usually
done when studying PRD. They are in some ways replaced by
the second term of the emissivity ε(4) (ν,Ω) as defined in Eq. (1),
which is the contribution of taking the Rayleigh/Raman scatter-
ing into account. As for the Doppler coherence, it is taken into
account by solving the statistical equilibrium equations for each
atomic velocity class. The integration over atomic velocities is
performed in each coefficient of the radiative transfer equation,
which is then derived in the laboratory frame.

4.4. Comment on the common treatment of multilevel atom
and scattering

Scattering and the multilevel atom are not easy to manage to-
gether. Ignoring for a moment the Zeeman sublevel structure and
polarization, scattering does not modify the atomic state because
a photon is absorbed and then or at the same time is re-emitted,
so that the atomic state does not change when scattering is con-
sidered as a process as a whole. Studying scattering does then not
easily incorporate the statistical equilibrium of the atomic levels,
which assumes transitions between the levels. This is the reason
why Casini et al. (2014) do not obtain any statistical equilibrium
equation.

We consider a two-level atom and ignore Zeeman structure
and polarization for a moment. Scattering does not change the
atomic state. The lower level population is then unchanged by
scattering, and, therefore, is determined by the initial conditions.
In terms of the number of interaction Hamiltonians entering
the process probability, it is an order-4 process as those stud-
ied by Casini et al. (2014). If one studies only order-2 processes
on the contrary, those are separate and independent absorption
and emission of a photon. In this case, there are transitions be-
tween the upper and lower levels. As a consequence, a statistical
equilibrium equation may be written based on those transitions.
It then appears that, similarly, the order-6 development of the
Schrödinger equation would again lead to a possible statistical
equilibrium equation because the order-6 process between two
levels would result in a global transition between them as the ini-
tial and final states would be again different, but order-8 would
not, and so on. Odd orders would then produce a statistical equi-
librium equation, whereas even orders would not because in this
case the atomic state would not change under the process. This
behavior, which could induce some doubts about the possibility
of convergence, has to be considered in the following general
frame that the atom state is not measured by the observations.
The retrieved information results from the photon analysis, but
the atom state remains out of reach of the observation or experi-
ment. In this paper, we have presented a solution to this problem

by transforming the suite of orders into a perturbation série to
be added up by taking each process in its “native” order. This
has led to our model, which is no more than a model that gives
us an account of the observed polarized radiation. It would be
very difficult to build an alternative model for a multivel atom
without any statistical equilibrium equation because complicate
multilevel processes would have to be identified for which it is
very difficult to write down a general expression.

5. Conclusions

In this paper, we have presented a generalized formalism that is
able to account for both Rayleigh/Raman and resonant scatter-
ings by a multilevel and multiline model atom. Thus, far wings
and line cores are obtained for the spectral lines. The impor-
tant new result is that the statistical equilibrium equations for
the atomic density matrix elements have to be resolved for each
atomic velocity class. In other words, there is one statistical equi-
librium system of equations to resolve per atomic velocity. The
radiative transfer equation coefficients are also provided, which
include the integration of the atomic density matrix elements
over the atomic velocity distribution function.

An example of the coupled resolution of both equations for
non-LTE modeling is provided in the following paper of this se-
ries (Bommier 2016) for the case of the Na i D1 and D2 lines
observed close to the solar limb in the second solar spectrum.

Acknowledgements. The author is grateful to the referee, H. Uitenbroek, for his
review, and to N. Feautrier and S. Sahal-Bréchot for fruitful discussions.

References
Baranger, M. 1958, Phys. Rev., 111, 494
Belluzzi, L., & Landi Degl’Innocenti, E. 2009, A&A, 495, 577
Belluzzi, L., & Trujillo Bueno, J. 2014, A&A, 564, A16
Belluzzi, L., Landi Degl’Innocenti, E., & Trujillo Bueno, J. 2013, A&A, 552,

A72
Bommier, V. 1997a, A&A, 328, 706
Bommier, V. 1997b, A&A, 328, 726
Bommier, V. 1980, A&A, 87, 109
Bommier, V. 2016, A&A, 591, A60
Bommier, V., & Sahal-Brechot, S. 1978, A&A, 69, 57
Bommier, V., & Sahal-Bréchot, S. 1991, Ann. Phys., 16, 555
Casini, R., Landi Degl’Innocenti, M., Manso Sainz, R., Landi Degl’Innocenti,

E., & Landolfi, M. 2014, ApJ, 791, 94
Cohen-Tannoudji, C. 1977, in Frontiers in Laser Spectroscopy, Les Houches,

Session XXVII, 1975, eds. R. Balian, S. Haroche, & S. Liberman (North-
Holland, Amsterdam), 3

Cohen-Tannoudji, C., & Reynaud, S. 1977, J. Phys. B At. Mol. Phys., 10, 345
Cooper, J., Ballagh, R. J., Burnett, K., & Hummer, D. G. 1982, ApJ, 260, 299
Faurobert, M. 1987, A&A, 178, 269
Faurobert, M. 1988, A&A, 194, 268
Faurobert, M., Derouich, M., Bommier, V., & Arnaud, J. 2009, A&A, 493, 201
Gandorfer, A. 2000, The Second Solar Spectrum: A high spectral resolution po-

larimetric survey of scattering polarization at the solar limb in graphical rep-
resentation, Vol. I: 4625 Å to 6995 Å

Gandorfer, A. 2002, The Second Solar Spectrum: A high spectral resolution po-
larimetric survey of scattering polarization at the solar limb in graphical rep-
resentation, Vol. II: 3910 Å to 4630 Å

Gandorfer, A. 2005, The Second Solar Spectrum: A high spectral resolution po-
larimetric survey of scattering polarization at the solar limb in graphical rep-
resentation, Vol. III: 3160 Å to 3915 Å

Grynberg, G., & Cagnac, B. 1977, Rep. Prog. Phys., 40, 791
Hubený, I., Oxenius, J., & Simonneau, E. 1983a, J. Quant. Spectr. Rad. Transf.,

29, 495
Hubený, I., Oxenius, J., & Simonneau, E. 1983b, J. Quant. Spectr. Rad. Transf.,

29, 477
Hummer, D. G. 1962, MNRAS, 125, 21
Kerkeni, B. 2002, A&A, 390, 783

A59, page 12 of 13

http://linker.aanda.org/10.1051/0004-6361/201526798/1
http://linker.aanda.org/10.1051/0004-6361/201526798/2
http://linker.aanda.org/10.1051/0004-6361/201526798/3
http://linker.aanda.org/10.1051/0004-6361/201526798/4
http://linker.aanda.org/10.1051/0004-6361/201526798/4
http://linker.aanda.org/10.1051/0004-6361/201526798/5
http://linker.aanda.org/10.1051/0004-6361/201526798/6
http://linker.aanda.org/10.1051/0004-6361/201526798/7
http://linker.aanda.org/10.1051/0004-6361/201526798/8
http://linker.aanda.org/10.1051/0004-6361/201526798/9
http://linker.aanda.org/10.1051/0004-6361/201526798/10
http://linker.aanda.org/10.1051/0004-6361/201526798/11
http://linker.aanda.org/10.1051/0004-6361/201526798/13
http://linker.aanda.org/10.1051/0004-6361/201526798/14
http://linker.aanda.org/10.1051/0004-6361/201526798/15
http://linker.aanda.org/10.1051/0004-6361/201526798/16
http://linker.aanda.org/10.1051/0004-6361/201526798/17
http://linker.aanda.org/10.1051/0004-6361/201526798/21
http://linker.aanda.org/10.1051/0004-6361/201526798/22
http://linker.aanda.org/10.1051/0004-6361/201526798/22
http://linker.aanda.org/10.1051/0004-6361/201526798/23
http://linker.aanda.org/10.1051/0004-6361/201526798/23
http://linker.aanda.org/10.1051/0004-6361/201526798/24
http://linker.aanda.org/10.1051/0004-6361/201526798/25


V. Bommier: Redistribution of polarized radiation. III.

Kerkeni, B., & Bommier, V. 2002, A&A, 394, 707
Landi Degl’Innocenti, E., & Landolfi, M. 2004, Polarization in Spectral Lines

(Kluwer Academic Publishers), Astrophys. Space Sci. Libr., 307
Loudon, R. 1973, The quantum theory of light (Oxford: Clarendon Press)
Louisell, W. 1973, Quantum Statistical Properties of Radiation (New York:

Wiley)
Manso Sainz, R., & Trujillo Bueno, J. 2003, Phys. Rev. Lett., 91, 111102
Milahas, D. 1978, Stellar Atmospheres, 2nd edn. (San Francisco: Freeman &

Co)
Omont, A. 1977, Prog. Quant. Electron., 5, 69
Omont, A., Smith, E. W., & Cooper, J. 1972, ApJ, 175, 185
Oxenius, J. 1986, Springer Series in Electrophysics, Vol. 20, Kinetic the-

ory of Particles and Photons, Theoretical Foundations of Non-LTE Plasma
Spectroscopy (Berlin: Springer-Verlag)

Sahal-Bréchot, S., & Bommier, V. 2014, Adv. Space Res., 54, 1164
Sahal-Brechot, S., Bommier, V., & Feautrier, N. 1998, A&A, 340, 579
Sampoorna, M., Nagendra, K. N., & Stenflo, J. O. 2013, ApJ, 770, 92
Seaton, M. J. 1962, in Atomic and Molecular Processes, ed. D. R. Bates

(New York: Academic Press)
Smitha, H. N., Sampoorna, M., Nagendra, K. N., & Stenflo, J. O. 2011, ApJ,

733, 4
Smitha, H. N., Sowmya, K., Nagendra, K. N., Sampoorna, M., & Stenflo, J. O.

2012, ApJ, 758, 112
Smitha, H. N., Nagendra, K. N., Sampoorna, M., & Stenflo, J. O. 2013,

J. Quant. Spectr. Rad. Transf., 115, 46
Stenflo, J. O., & Keller, C. U. 1997, A&A, 321, 927
Uitenbroek, H. 1989, A&A, 213, 360
Uitenbroek, H. 2001, ApJ, 557, 389

A59, page 13 of 13

http://linker.aanda.org/10.1051/0004-6361/201526798/26
http://linker.aanda.org/10.1051/0004-6361/201526798/30
http://linker.aanda.org/10.1051/0004-6361/201526798/32
http://linker.aanda.org/10.1051/0004-6361/201526798/33
http://linker.aanda.org/10.1051/0004-6361/201526798/35
http://linker.aanda.org/10.1051/0004-6361/201526798/36
http://linker.aanda.org/10.1051/0004-6361/201526798/37
http://linker.aanda.org/10.1051/0004-6361/201526798/39
http://linker.aanda.org/10.1051/0004-6361/201526798/39
http://linker.aanda.org/10.1051/0004-6361/201526798/40
http://linker.aanda.org/10.1051/0004-6361/201526798/41
http://linker.aanda.org/10.1051/0004-6361/201526798/42
http://linker.aanda.org/10.1051/0004-6361/201526798/43
http://linker.aanda.org/10.1051/0004-6361/201526798/44

	Introduction
	Preliminary discussion
	Beyond the Markov approximation
	The multiphoton Raman scattering

	Equations for the multilevel-multiline atom
	Taking the Doppler redistribution into account
	Statistical equilibrium equations
	Radiative transfer equation
	Line profiles
	Collisional transitions
	Inelastic collisions
	Elastic or quasi-elastic collisions

	Transition from the Zeeman effectto the Paschen-Back effect

	Comprehensive discussion
	Is the statistical equilibrium system of equationsto be resolved for each atomic velocity class?
	The different collision classes
	The statistical equilibrium equationsand velocity-changing collisions

	Two different physical mechanisms, governedby nearly the same collisional condition,are responsible for PRD
	The specificities of our formalism of the multilevel scattering
	Comment on the common treatment of multilevel atom and scattering

	Conclusions
	References

