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Introduction

Excessive use of transportation, machinery, sound systems and so on, in parallel with the high demands of sound comfort and health care, encouraged researchers to achieve the noise reduction challenge. Several procedures are used in order to reduce noise at the propagation and reception paths. For instance, classical passive systems as sound absorbing materials such as porous and adaptive liners have been found to be very efficient at high frequencies in controlling room noise in building technologies [START_REF] Arenas | Recent trends in porous sound-absorbing materials[END_REF]. However, these solutions are less efficient at mid and low frequencies in addition to their size. One of the best solutions that can be employed for these frequencies is to couple the treated system with linear resonating one, playing the role of an absorber.

As an example, we can mention the Dynamic Vibration Absorbers (DVA) such as Helmholtz resonators [START_REF] Helmholtz | Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik[END_REF] and Frahm dampers [START_REF] Frahm | Device for damping vibrations of bodies[END_REF] which consist of a tuned spring-mass systems. Although these techniques can give perfect absorption, they can only treat very narrow frequency band [START_REF] Zilletti | Optimisation of dynamic vibration absorbers to minimise kinetic energy and maximise internal power dissipation[END_REF]. Later on, the concept of active noise absorption has been introduced based on controlling a secondary source in order to cancel the primary sound wave. This concept opened the way to a large variety of active sound absorption techniques.

We can mention feedback control based on sound pressure control of a loudspeaker [START_REF] Olson | Electronic sound absorber[END_REF][START_REF] Fleming | Control of resonant acoustic sound fields by electrical shunting of a loudspeaker[END_REF], the direct impedance control combining both sound pressure and diaphragm velocity sensing [START_REF] Bustamante | An adaptive controller for the active absorption of sound[END_REF] allowing a broad frequency control. In addition, it has been proposed to employ a pure electrical network as a second source to maximize the absorption efficiency under the concept of shunt loudspeaker [START_REF] Lissek | Electroacoustic absorbers: Bridging the gap between shunt loudspeakers and active sound absorption[END_REF]. For low-frequency noise absorption, a passive shunt electric circuit connected to the coil and powered by a DC source was employed by Zhang et al. [START_REF] Zhang | Thin broadband noise absorption through acoustic reactance control by electro-mechanical coupling without sensor[END_REF] allowing to modify the mechanical impedance of the coil, where Tao et al. [START_REF] Tao | Sound absorption of a finite micro-perforated panel backed by a shunted loudspeaker[END_REF] implemented a Micro-perforated panel backed by a shunted loudspeaker. Moreover, in a Rijke-tube an electroacoustic control device was experimentally and numerically tested as an alternative damping approach for suppressing the thermoacoustic instability [START_REF] Zhang | Electroacoustic control of rijke tube instability[END_REF].

Recent studies have shown that the performances of DVAs can be improved by employing nonlinear strategies. In fact, it has been shown in [START_REF] Lee | Suppression aeroelastic instability using broadband passive targeted energy transfers, part 1: Theory[END_REF][START_REF] Gendelman | Enhanced passive targeted energy transfer in strongly nonlinear mechanical oscillators[END_REF][START_REF] Sapsis | Effective stiffening and damping enhancement of structures with strongly nonlinear local attachments[END_REF][START_REF] Benarous | Nonlinear energy sink with combined nonlinearities: Enhanced mitigation of vibrations and amplitude locking phenomenon[END_REF] that employing nonlinear absorbers enables to absorb more efficiently the sound or vibrations at higher frequency band. This conceptual approach is based on irreversible energy transfer from a primary linear structure and nonlinear oscillator with small mass. This phenomenon is called targeted energy transfer or energy pumping, where the Nonlinear Energy Sink (NES) may serve as a nonlinear absorber [START_REF] Gourdon | Contribution to efficiency of irreversible passive energy pumping with a strong nonlinear attachment[END_REF][START_REF] Vakakis | Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems[END_REF]. This procedure has achieved success in the mechanical field, where nonlinear phenomena were exploited to reduce vibrations [START_REF] Gourdon | Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results[END_REF]. This concept was applied in the field of acoustics, providing a new technique of passive absorption for low frequencies [START_REF] Bellet | Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber[END_REF].

However, this previous work [START_REF] Bellet | Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber[END_REF] deals with very low frequencies with an absorber that is not essentially nonlinear. For this purpose, we suggest to switch a loudspeaker from its primary quality of diffusing sound and convert it into an electroacoustic absorber as a technical solution to achieve the desired nonlinear acoustical behavior. The general concept is to control the acoustical impedance a membrane, which can be achieved by tuning the dynamic of the loudspeaker membrane by connecting an appropriate electrical load. This approach allows reaching almost prefect absorption within a narrow frequency bandwidth around the resonance by employing a simple optimal passive electric resistance [START_REF] Lissek | Electroacoustic absorbers: Bridging the gap between shunt loudspeakers and active sound absorption[END_REF]. In addition, it has been shown that the bandwidth of control can be increased by choosing appropriate feedback gains in a combined pressure-velocity-feedback or by coupling the primary loudspeaker to a combination of several resonators [START_REF] Rivet | Multi-degree-of-freedom lowfrequency electroacoustic absorbers through coupled resonators[END_REF]. Hence, the goal of the present work consists in performing a purely acoustic nonlinear absorber acting on low frequency domain, by connecting to the loudspeaker terminals an electric nonlinear circuit that can be controlled. To our knowledge, it is the first attempt to apply the concept of targeted energy transfer to an electroacoustic absorber. Hence, this study aims at first to test the feasibility of the concept, where the non-optimal nonlinear results were compared to the ones obtained via an optimal linear resistor.

The present work is organized as follows: In section 2, we describe the electroacoustic absorber consisting of loudspeaker shunted with an electrical circuit. In section 3, an electroacoustic absorber consisting of a loudspeaker coupled with a nonlinear electrical shunt circuit at its terminals has been considered. The equivalent model is described by a 2 dofs system, including the main linear oscillator characterizing the dynamics of the loudspeaker membrane, which is linearly coupled to a cubic NES. In section 4, the Slow Invariant Manifold (SIM) approach has been employed. The differential system has been treated analytically for the case of 1:1 resonance at various time scales [START_REF] Gendelman | Targeted energy transfer in systems with external and self-excitation[END_REF]. The present methodology allows to identify the equilibrium points and fold singularities at the first slow time scale. In addition, it provides a predictive tool to design an optimize nonlinear electric circuit according to the energy exchange process between both systems. Section 5 provides an analytical expression allowing the identification of the different mechanisms of energy exchange in the case of free oscillations. In section 6, a physical application is considered presenting the advantage of combining a nonlinear electric shunt circuit to the loudspeaker terminals. Several analytical and numerical results are given in the case of free and forced vibrations, allowing a global understanding of the presented approach and the possible behaviors that can be obtained. Finally, conclusions and perspectives are given in section 7.

Electroacoustic absorber description

At the beginning, we consider an electroacoustic absorber (see Figure 1) following the same concept of Lissek et al. in [START_REF] Lissek | Electroacoustic absorbers: Bridging the gap between shunt loudspeakers and active sound absorption[END_REF][START_REF] Lissek | Optimization of electric shunt resonant circuits for electroacoustic absorbers[END_REF]. The physical model provides insight into the loudspeaker parameters that can be affected by electrical means. The mechanical dynamics of a loudspeaker diaphragm for small amplitudes and below the first modal frequency can be modeled by the following differential equation derived from Newton's second law

SP (t) = M ms vs (t) + R ms v s (t) + 1 C ms 1 C ms + ρc 2 S 2 V b v s (t)dt -Bl i(t). (1) 
M ms , R ms and C ms are respectively the mass, the mechanical resistance92 and the compliance of the moving bodies of the loudspeaker. C ms is dened93 is the outgoing diaphragm velocity, Bl is the force factor of the moving-coil transducer with B representing the magnetic field magnitude and l the length of the wire in the voice coil. i(t) is the driving current, Bl i(t) the Laplace force induced by the current circulating through the coil. P (t) is the overall external sound pressure acting at the outer surface of the loudspeaker in P a.

so that 1/C mc = 1/C ms + ρc 2 S 2 /V b is
In the following, we will denote 

C mc = (1/C ms + ρc 2 S 2 /V b ) -

Electrical nonlinear shunt resistor

The use of nonlinearity in the form of an electrical circuit permits the existence of quasiperiodic regimes over a range of external forcing terms, which provide efficient vibration suppression [START_REF] Gendelman | Quasiperiodic energy pumping in coupled oscillators under periodic forcing[END_REF]. Based on this assumption, and in order to design a nonlinear shunt resistor, we propose to connect an electric circuit enabling to obtain a pure cubic nonlinearity. As mentioned in [START_REF] Gendelman | Quasiperiodic energy pumping in coupled oscillators under periodic forcing[END_REF] it is possible to obtain electronically a cubic nonlinearity using multipliers. Based on this concept, we propose to connect the following example of a nonlinear shunt circuit (see Figure 3, where the crossed boxes represent quadratic multipliers ) to the transducer terminals.

One must mention that since we are connecting an unstable circuit, this kind of system becomes complicated to stabilize electronically. This is just an example of implementation; however, the practical realization may depend on weighting terms that will be considered as control parameters. The electrical nonlinear shunt circuit includes an inductor L c , a resistor R c playing the role of the NES linear damping coefficient and a capacitance C providing a pure cubic stiffness due the use of the multipliers. Then, the electrical voltage e(t) can be expressed as follows

e(t) = -L c di dt -R c i + V c -V c -kV 3 c ( 3 
)
where

k = k 1 k 2 (r 1 + r 2 )(r 3 + r 4 ) r 1 r 2
is the nonlinear coefficient related to the multipliers connections with 1kΩ ≤ r 1 , r 3 and r 2 , r 4 ≤ 100kΩ. The ratios k 1 and k 2 are homogeneous to the inverse of voltage (V -1 ). Referring to the principle of operational amplifiers, the current I C , through the capacitor C is given by

I C = C dV c dt (4) 
Then, the driving current i can be expressed as follows

i(t) = -(-I C ) = C dV c dt (5) 
After replacing Equations [START_REF] Frahm | Device for damping vibrations of bodies[END_REF][START_REF] Olson | Electronic sound absorber[END_REF] into Equations (1,2), the dynamics of the loudspeaker can be described by the following system of differential equations coupling the electrical and the mechanical parts

       M ms ẍ(t) + R ms ẋ(t) + 1 C mc x(t) -CBl dV c dt = SP (t) C(L e + L c ) d 2 V c dt 2 + C(R e + R c ) dV c dt + kV 3 c + Bl ẋ(t) = 0 (6) 
Considering the fact that the front of the diaphragm is subjected to a From a global point of view, the circuit is not passive in the way that very few tenth of watt are used to power the amplifiers in the electronics.

However, if we consider the electromechanical part on its own, the system is considered passive (negative energy dissipation) or semi-passive (the average of the exchanged power is negative) enabling to determine the stability of the system. In the mechanical part, the pumped energy is dissipated by joule heating effect: we implement to dissipate. The aim of this paper is to show the effects of a new (passive) nonlinear control that is not necessarily optimized.

Analytical developments

An analytical treatment suitable for this kind of systems is detailed below.

It allows to detect time multi-scale energy pumping between the primary system that describes the displacement of the loudspeaker and the shunt nonlinear circuit. This procedure can be divided into several steps: re-scaling, complexification of the system and keeping first harmonics and embedding time into fast and slow time scales. This schema permits the detection of the invariant manifold of the system at fast time scale, in addition to the equilibrium and fold singularities identification of the obtained reduced order system at slow time scales.

Rescaled system

For convenience and equation simplicity, we introduce the following nondimensional variable T = ω 0 t with ω 0 = 1/M ms C mc representing the natural frequency of the main system (Loudspeaker). Then, we write the linear and nonlinear coefficients with the following corresponding scaling with respect to realistic physical parameters where

     d dt = d dT dT dt = ω 0 d dT d 2 dt 2 = ω 2 0 d 2 dT 2 (7)
Then the system takes the following form

       d 2 x dT 2 + R ms C mc ω 0 dx dT + x(T ) -CBlC mc ω 0 dV c dT = SA m C mc cos ( ω ω 0 T ) Cω 2 0 (L e + L c ) d 2 V c dT 2 + Cω 0 (R e + R c ) dV c dT + kV 3 c + Blω 0 dx dT = 0 (8) 
In what follows, we will use the complexification method of Manevitch and the multiple scale approach to detect the system invariant manifold at the fast time scale, and the system behavior at slower time scales. To do so, one must write the second equation of System [START_REF] Lissek | Electroacoustic absorbers: Bridging the gap between shunt loudspeakers and active sound absorption[END_REF] in a manner to have very small mass of the NES compared to the loudspeaker. According to the system physical parameters, the sum of inductance (L e + L c ) is smaller than 1 H. Then, ε = (L e + L c )/L 0 with L 0 = 1 H can be considered as our small dimensionless parameter; describing the ratio of mass between the loudspeaker and the NES. Then, dividing the second equation by Cω 2 0 L 0 , System (8) can be written as

       d 2 x dT 2 + R ms C mc ω 0 dx dT + x(T ) -CBlC mc ω 0 dV c dT = SA m C mc cos ( ω ω 0 T ) ε d 2 V c dT 2 + (R e + R c ) ω 0 L 0 dV c dT + k Cω 2 0 L 0 V 3 c + Bl Cω 0 L 0 dx dT = 0 (9) 
The loudspeaker damping coefficient R ms C mc ω 0 is smaller than one, so it can be expressed as ελ. In addition, the NES damping coefficient (R e + R c )/(ω 0 L 0 ) can be expressed as εγ by choosing an appropriate control resistor R c . Moreover, the coupling terms CBlC mc ω 0 and Bl/(Cω 0 L 0 ) can be written as εα and εη respectively due primarily to the value of Bl and the chosen capacitance C. The value of the nonlinear cubic coefficient k/(Cω 2 0 L 0 ) can be adjusted by both k and C and then be expressed as εξ. On the other hand, the external forcing term SA m C mc is of order 1, so it can be represented by εf Then, the scaled differential system (9) becomes

       d 2 x dT 2 + ελ dx dT + x(T ) -εα dV c dT = εf cos ( ω ω 0 T ) ε d 2 V c dT 2 + γ dV c dT + ξV 3 c + η dx dT = 0 (10) 
In order to examine the damped nonlinear normal modes of system [START_REF] Tao | Sound absorption of a finite micro-perforated panel backed by a shunted loudspeaker[END_REF] in the vicinity of 1:1 resonance, both variables x and V c are supposed to have frequency close to Ω = ω/ω 0 . The complex variables of Manevitch are introduced [START_REF] Manevitch | The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables[END_REF], which enable us to apply the truncated Fourier series later on (i = √ -1):

     dx dT + iΩx = ϕ 1 e iΩT dV c dT + iΩV c = ϕ 2 e iΩT (11) 

Complexification-averaging procedure

If the damped nonlinear normal modes for the case of 1:1 resonance is considered, then ϕ 1 and ϕ 2 which defines the coefficients of the Fourier series expansion of x and V c may be considered as functions of slow time scales ε j T (j ≥ 1). In order to preserve only first harmonic e iΩT for each equation of System [START_REF] Tao | Sound absorption of a finite micro-perforated panel backed by a shunted loudspeaker[END_REF], we apply the Galerkin method and a truncated Fourier series.

Then we obtain the following system

     φ1 -i (1 -Ω 2 ) 2Ω ϕ 1 + ε λ 2 ϕ 1 -ε α 2 ϕ 2 = ε 1 2 f ε φ2 + i Ω 2 ϕ 2 + γ 2 ϕ 2 -i ξ 2Ω ϕ 2 G(|ϕ 2 | 2 ) + η 2 ϕ 1 = 0 (12) with G(|ϕ 2 | 2 ) = 3 4Ω 2 |ϕ 2 | 2
representing the resonant term.

Multiple-scale analysis

System (12) may be analyzed by using a multiple time scales approach, where we introduce the slow times τ 1 , τ 2 , . . . and the fast time τ 0 as

τ 0 = T τ j = ε j T j = 1, 2, . . . (13) 
so that

d dT = ∂ ∂τ 0 + ε ∂ ∂τ 1 + ε 2 ∂ ∂τ 2 + . . . (14) 
We will analyze the system behavior around 1:1 resonance by using a multiple scales approach assuming that

Ω = 1 + εσ (15) 
with σ a detuning parameter. At the order ε 0 , resonant terms at τ 0 scale in system (12) yields

∂ϕ 1 ∂τ 0 = 0 ⇒ ϕ 1 = ϕ 1 (τ 1 , τ 2 , . . . ) (16) 
The previous equation shows that the function ϕ 1 is constant during the time τ 0 = T , which means that in the principal approximation ϕ 1 depends on the slow times τ 1 , τ 2 , . . . However, at the order ε 1 the first equation of system [START_REF] Lee | Suppression aeroelastic instability using broadband passive targeted energy transfers, part 1: Theory[END_REF] gives

       ∂ϕ 1 ∂τ 1 + iσϕ 1 + λ 2 ϕ 1 - α 2 ϕ 2 = 1 2 f ∂ϕ 2 ∂τ 0 + i 1 2 ϕ 2 + γ 2 ϕ 2 + η 2 ϕ 1 -i ξ 2 ϕ 2 G(|ϕ 2 | 2 ) = 0 (17) (18) 
Fixed points corresponds to the behavior of ϕ 2 for τ 0 → +∞ which means ∂ϕ 2 ∂τ 0 = 0 can be obtained from Equation ( 18):

γ + i(1 -ξG(|ϕ 2 | 2 )) ϕ 2 = -ηϕ 1 . (19) 
Equation ( 19) presents an asymptotic equilibrium governed by a manifold called Slow Invariant Manifold (SIM). By writing ϕ 1 and ϕ 2 into their polar form as ϕ 1 = N 1 e iδ 1 and ϕ 2 = N 2 e iδ 2 , Equation ( 19) can be written and reduced into the following form:

ηN 1 e i(δ 1 -δ 2 ) = -iN 2 -γN 2 + iξN 2 G(N 2 2 ). ( 20 
)
Taking into account the definitions of the complex variables ϕ 1 and ϕ 2 , their modules N 1 and N 2 can be expressed in terms of the initial variables x and V c of the physical system as

       N 1 = |ϕ 1 | = dx dT 2 + Ω 2 x 2 N 2 = |ϕ 2 | = dV c dT 2 + Ω 2 V 2 c ( 21 
)
After separating the real and imaginary parts of Equation [START_REF] Rivet | Multi-degree-of-freedom lowfrequency electroacoustic absorbers through coupled resonators[END_REF], one can reach the following system

γN 2 = -ηN 1 cos(δ 1 -δ 2 ), (1 -ξG(N 2 2 ))N 2 = -ηN 1 sin(δ 1 -δ 2 ). (22) (23) 
Taking the square of both sides of equations ( 22) and ( 23) and summing them, we obtain

N 1 = N 2 η γ 2 + 1 -ξG(N 2 2 ) 2 . ( 24 
)
Local extrema of Equation ( 24) can be revealed using the following criteria

∂N 2 1 ∂N 2 2 = 0, ( 25 
)
which finally yields the equation

γ 2 + (1 -ξG(N 2 2 ))(1 -ξG(N 2 2 ) -2ξN 2 2 G (N 2 2 )) = 0. ( 26 
)
Equation ( 26) can be verified when the damping coefficient γ associated to the nonlinear equation is smaller than a critical value γ c which is equal to 1/ √ 3 [START_REF] Gendelman | Quasiperiodic energy pumping in coupled oscillators under periodic forcing[END_REF]. In addition, depending on the value of γ the system can have one, two or three fixed points. Moreover, for γ < γ c there exists two local extrema called N 21 and N 22 that can be written as follows

N 21 = 2 3 2 ξ - 1 -3γ 2 ξ , N 22 = 2 3 2 ξ + 1 -3γ 2 ξ . ( 27 
)
It has been proved that the stable area of the fixed points in the reduced linearized system at the τ 0 time scale can be defined by the following criterion

[25]

γ 2 + (1 -ξG(N 2 2 ))(1 -ξG(N 2 2 ) -2ξN 2 2 G (N 2 2 )) ≥ 0 (28) 
According to the previous inequality, stable fixed points corresponds to

N 2 < N 21 and N 2 > N 22
. By substituting the stable solution ϕ 2 with respect to the fast time scale τ 0 generated in Equation [START_REF] Bellet | Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber[END_REF] into Equation ( 17), writing ϕ 2 into its polar form as ϕ 2 = N 2 (τ 1 )e iδ 2 (τ 1 ) and separating the real and imaginary parts of the resulting equation one finally obtains the following system

             ∂N 2 ∂τ 1 = BF -DE AD -CB = f 1 (N 2 , δ 2 ) g(N 2 ) , ∂δ 2 ∂τ 1 = CE -AF AD -CB = f 2 (N 2 , δ 2 ) g(N 2 ) . (29) 
Explicit values of A, B, C, D, E and F are given in Appendix A. The approximation of the fast time scale τ 0 , enables Equations [START_REF] Vakakis | Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems[END_REF][START_REF] Gourdon | Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results[END_REF] to illustrate the response of the system regarding the initial conditions, when the system approaches the resonance manifold. In addition, the approximation of N 2 and δ 2 represented by System (29), describes the slow-time τ 1 evolution of the system at the manifold.

Equilibrium points of the system are defined by

f 1 (N 2 , δ 2 ) = f 2 (N 2 , δ 2 ) =
0 and g(N 2 ) = 0 while fold singularities are given by

f 1 (N 2 , δ 2 ) = f 2 (N 2 , δ 2 ) = g(N 2 ) = 0.
We should note that the stability of g(N 2 ) can be treated as same as the invariant manifold (see Equation ( 24)). In fact, g(N 2 ) = 0 provides both extrema N 21 and N 22 which are called the fold lines of the system.

Observation of free oscillations

In order to illustrate the mechanism of Targeted Energy Transfer (TET) between the primary system and the NES according to the slow time τ 1 , we start by setting Z 1 = N 2 1 and Z 2 = N 2 2 . Hence, in the case of free oscillations and by using the first equation of System (29), ∂Z 2 /∂τ 1 can be written in the following form

∂Z 2 ∂τ 1 = - αγη + λ γ 2 + 1 -ξG(Z 2 ) 2 γ 2 + 1 -ξG(Z 2 ) 1 -2Z 2 ξG (Z 2 ) -ξG(Z 2 ) Z 2 . ( 30 
)
The integral of the previous equation can be computed explicitly as below

R(τ 1 , Z 2 ) = Cte (31) with R(τ 1 , Z 2 ) = 2λ αη + γλ αγη + λ + γ 2 λ τ 1 + 2αη γλ arctan λ γ(αη + γλ) (1 - 3 4 ξZ 2 ) + αη + γλ 2(1 + γ 2 )λ log (Z 2 ) + 3αγη + 2(1 + γ 2 )λ log 16αγη + λ 16γ 2 + (4 -3ξZ 2 ) 2 (32) 
and Cte is an integration constant that can be related to the initial conditions. In fact, Z 1 and Z 2 reflect the energy stored in the relative displacement of the loudspeaker membrane and the voltage across the capacitor in the nonlinear shunt circuit respectively.

Results and discussions

Validation of the approach

In order to validate the obtained analytical approaches, we use a direct numerical integration method. The function ode45 implemented in MATLAB c which is based on an explicit Runge-Kutta (4,5) formula is employed in order to solve the dimensional differential system [START_REF] Tao | Sound absorption of a finite micro-perforated panel backed by a shunted loudspeaker[END_REF] and the complex averaged one [START_REF] Lee | Suppression aeroelastic instability using broadband passive targeted energy transfers, part 1: Theory[END_REF].

We consider the scaled parameters: ε = 0.01, λ = 0.1, α = 0.1, γ = 0.35, η = 0.1 and ξ = 0.5 and the following initial conditions: x(0) = V c (0) = Vc (0) = 0 and ẋ(0) = 7. For free oscillations (f = 0), Figure 4 shows a comparison of N 1 and N 2 between numerical solutions obtained by direct integration of the initial differential system [START_REF] Tao | Sound absorption of a finite micro-perforated panel backed by a shunted loudspeaker[END_REF] and the averaged one [START_REF] Lee | Suppression aeroelastic instability using broadband passive targeted energy transfers, part 1: Theory[END_REF].

Curves shown in Figure 4 includes three various phenomena stages [START_REF] Weiss | Dynamical behavior of a mechanical system including saint-venant component coupled to a non-linear energy sink[END_REF]. The first one begins from the initial point of the simulation until almost τ 0 = 550, where the NES maximal amplitude decreases slowly and the main system decreases rapidly. In the second stage and around τ 0 = 550, the system reaches a local extrema during which N 2 decreases abruptly and N 1 is almost constant. Finally, during the third stage (τ 0 > 550) both amplitudes decreases almost linearly. Since the numerical results of the very first differential system (12) includes all harmonics, when we kept the first harmonic and truncated the highest ones for the averaged system (10), we can remark the good agreement between both results. At τ 0 time scales, fixed points of the system are represented by the Slow Invariant Manifold (SIM) shown in Figure 5. Full and dashed lines correspond to stable and unstable parts of the τ 0 invariant respectively with N 21

and N 22 defining the extrema according to the N 2 variable. In fact, the SIM corresponds to a geometrical representation of all types of system behaviors in the slow time scales regardless the forcing term. In the following sections, we will provide a detailed study about the different dynamics of the system during free and forced vibrations. For free oscillations, the analytical energy trends can be obtained by solving Equation (31) with a corresponding constant C, providing an illustration of the possible scenarios of TET according to the initial conditions [START_REF] Nguyen | Design criteria for optimally tuned nonlinear energy sinks-part 1: transient regime[END_REF]. Figure 6 shows that two stable possibilities of energy pumping for the cases of free oscillations can be reached. More precisely, for initial conditions corresponding to a fixed point on the lower branch of the SIM, the mechanism of energy shows that this case is not efficient for TET. However, for initial conditions corresponding to a fixed point on the upper branch of the SIM, Figure 7 demonstrate that the process of energy is favorable for optimal NES design. It can be concluded that in order to activate the NES for efficient TET, initial conditions must be chosen in a manner that N 1 (0) is greater that the maximum N 21 ordinate. 

Application

In order to study the system behavior when coupling a nonlinear shunt resonator, we consider the physical parameters as Lissek et al. [START_REF] Lissek | Electroacoustic absorbers: Bridging the gap between shunt loudspeakers and active sound absorption[END_REF] from the electrodynamic moving coil to the enclosure volume which are listed in Table 1. Among the large set of physical parameters that can be considered in the nonlinear shunt circuit, additional criteria are required. For instance, according to our choice of scaling and since the NES damping constant γ must be smaller than 1/ √ 3 as detailed previously, the choice of the control resistor R c must verify the following inequality

0 < R c + R e < ε ω 0 √ 3 . ( 33 
)
Initial conditions were considered in a manner that the loudspeaker membrane is subjected to an initial velocity ẋ(0) = 0. The rest of the initial conditions are assumed to be null: x(0) = V c (0) = Vc (0) = 0, which corresponds to N 2 (0) = 0 and N 2 (0) = N 0 = ẋ(0). N 0 is chosen in a manner to be above the ordinate of the SIM maximum (N 0 > N 11 ) to examine a situation where the NES is active to control oscillations. Then, we set the control parameters of the nonlinear electric shunt in Table 2. 

Results for parameters of Test 1

In what follows, we will study the system behaviors for the physical parameters listed in Table 2 untitled Test 1 for and forced oscillations.

Free oscillations

Figure 8 shows N 1 vs N 2 , with a comparison between the analytical invariant manifold given in Equation (24) (dashed-dotted curve) and the numerical integration of the differential system (10) (full line). Remarkably, the behavior of the system amplitudes N 1 and N 2 tracks the SIM. More precisely, full curve undergoes an immediate jump and oscillates around the lower stable branch until its amplitude decreases quasi-linearly.

Figure 8: Invariant manifold of the system at the fast time scale τ 0 (black curve) and its corresponding numerical results (green curve) for the system under free oscillations P (t) = 0 and σ = 0. Numerical results correspond to the integration of System (10) versus t for t ∈ [0, 0.15] with the initial conditions x(0) = V c = Vc = 0 and ẋ(0) = 1.9 × 10 -3 m s -1 .

Figure 9: Histories of displacement in terms of time t(s) obtained by numerical integration of the system under free vibrations, σ = 0 with the initial conditions corresponding to x(0) = V c = Vc = 0 and ẋ(0) = 1.9 × 10 -3 m s -1 . Dashed and full lines denote the cases of open circuit and shunt nonlinear circuit respectively.

In fact, when choosing initial conditions that corresponds to a point above N 21 , energy flows immediately and encounters a sudden breakdown toward the stable lower branch. In other words, the energy in the loudspeaker membrane is irreversibly streamed toward the nonlinear shunt circuit until it converges to zero.

The corresponding velocity histories versus time are represented in full line in Figure 9. Dashed curve represents the velocity histories in terms of time for the case of open circuit, which means when the electroacoustic transducer is not coupled with any electric charge. Clearly, the NES permits reduction of oscillations amplitudes.

Primary system under external forcing

Unlike the previous investigations, the loudspeaker diaphragm is now subjected to a periodically varying sound pressure P (t). As detailed previously, at the slow time scale τ 1 , all achievable system dynamics can be obtained by solving [START_REF] Lee | The jump phenomenon effect on the sound absorption of a nonlinear panel absorber 36 and sound transmission loss of a nonlinear panel backed by a cavity[END_REF]. More precisely, equilibrium points which corresponds to periodic regimes are obtained when

f 1 (δ 2 , N 2 ) = f 2 (δ 2 , N 2 ) = 0 and g(N 2 ) = 0,
where fold singularities corresponds to quasi-periodic regimes are achievable

when f 1 (δ 2 , N 2 ) = f 2 (δ 2 , N 2 ) = g(N 2 ) = 0.
As the scaled forcing term f is proportional to the pressure amplitude A m which is defined as a function of the sound pressure level L p , this later is considered as a main parameter of the nonlinear study. For instance, considering σ = 0 which corresponds to the resonance frequency ω 0 , Figure 10 For L p = 120 dB and σ = 0, Figure 10 shows the existence of one equilibrium point represented in triangle, corresponding to the intersection of full line and dash-dotted curves labeled 2 far the fold singularities. |dV C /dT + iΩV c | (Green curve) obtained by numerical integration of System (10) compared to the invariant manifold. We can see that the system oscillates around the lower stable branch of the invariant until being attracted by the fixed point. The corresponding velocity time series is represented in Figure 12, where we compare the histories of ẋ(t) with and without coupling in addition to the time histories of Vc (t). The periodic regimes obtained numerically validate our analytical predictions illustrated by the equilibrium point in Figure 10. In fact, the energy was transmitted from the loudspeaker membrane under periodic sound pressure to the non-excited nonlinear shunt circuit, with the same frequency defining the 1:1 resonance.

Figure 11: System invariant manifold and its corresponding numerical result for L p = 120 dB and σ = 0. The numerical result corresponds to the integration of System [START_REF] Tao | Sound absorption of a finite micro-perforated panel backed by a shunted loudspeaker[END_REF] with the initial conditions corresponding to x(0) = V c = Vc = 0 and ẋ(0) = 1.9 × 10 -3 m s -1 . In this case, the system is attracted by the periodic regime that corresponds to the fixed point marked with a triangle in Figure 10. Figure 13: System invariant manifold and its corresponding numerical result for L p = 132 dB and σ = 0. The numerical result corresponds to the integration of System [START_REF] Tao | Sound absorption of a finite micro-perforated panel backed by a shunted loudspeaker[END_REF] with the initial conditions corresponding to x(0) = V c = Vc = 0 and ẋ(0) = 1.9 × 10 -3 m s -1 . Here, the system present a SMR illustrated in Figure 10 with two dots.

For L p = 132 dB and σ = 0, we can deduce from the dash-dotted and solid curves labeled 5 in Figure 10 that the system possesses one unstable equilibrium point marked with a stars between the fold lines and two fold singularities denoted by dots. Hence, the corresponding numerical result and the analytical invariant are shown in Figure 13. This curve refers to a Strongly Modulated Response (SMR) of the system, including jump phenomena between both fold lines. In fact, for similar behavior both the loudspeaker membrane and the nonlinear shunt circuit are beating, which is very favorable for passive energy harvesting control applications. Energy exchange process of the SMR is qualitatively well described by the jump phenomenon in Figure 13. Besides, the values of N 2 seem to be perfectly appropriate when the jumps occur. However, some quantitative errors appear for the values of N 1 due to several factors. Among them we can mention the choice of ε, the numerical inaccuracies besides the choice of the Manevitch complex variables which takes into account the first harmonic only.

Figure 14 shows the corresponding numerical results using a Runge-Kutta schema according to the time t ∈ [0, 0.6]. In addition, Figure 15 shows the Poincaré's section after eliminating the data corresponding to the transient regime of both primary structure and attached nonlinear circuit. These figures confirm the obtained quasi-periodic regime. In fact, an important amount of vibrational energy is rapidly transferred to the NES and damped out in a quasi-periodic regime. Thus, the attenuation of vibrational energy of the loudspeaker arise with good efficiency in the vicinity of the natural frequency ω 0 .

(a) (b) show the results for test 2 for for L p = 115 dB and for L p = 124 dB respectively. Upper figures represent the system manifold invariant and their corresponding numerical results with σ = 0. The numerical results correspond to the integration of System [START_REF] Tao | Sound absorption of a finite micro-perforated panel backed by a shunted loudspeaker[END_REF] with the initial conditions corresponding to x(0) = V c = Vc = 0 and ẋ(0) = 4 × 10 -5 m s -1 . The middle and lower figures show the comparison of velocity histories as a function of time t(s) obtained by numerical integration of the studied system without coupling (black dotted line) and with nonlinear coupling (red solid line). Here, the system present a periodic regime for (a) and a SMR illustrated for (b).

Acoustic admittance

In order to examine the influence of coupling a passive nonlinear shunt circuit to the transducers terminals, it is necessary to have an understanding of the sound wave propagation. The normalized acoustic admittance presented at the loudspeaker diaphragm provides information about the amplitude of the reflection for a given frequency, which can be written as follows

Y m (ω) = -ρc V (ω) P t (ω) , (34) 
with V (w) and P t (w) are the Fourier transforms of v(t) and p t (t) respectively. The minus sign appears as V (w) is defined to describe the outgoing diaphragm velocity.

According to the previous analytical investigations detailed in Section 6.3.2 at the τ 1 time scale and for the case of 1:1 resonance, two different regimes can be distinguished. The periodic or the quasi-periodic regimes are reached according to the given values of the forcing term and frequency.

Then, in order to represent the obtained normalized admittance for a given sound pressure level we followed the process below.

For each ω in the frequency domain we integrate the differential system using an explicit Runge-Kutta (4,5) algorithm implemented in Matlab c from t 0 = 0 to t f = N T (N denoting the number of periods T = 2π/ω) with y 0 = [0, 0, 0, 0] as initial conditions.

Then, in the permanent regime, a study of Poincaré section has been applied. More precisely, we calculate the value of ∆(P m ) = |P m+1 ( ẋ) -P m ( ẋ)| for a certain number M of periods, where P m ( ẋ) corresponds to the intersection of the trajectory ẋ( ẋ0 , t 0 ; t) with the plane t = t 0 + mT with ẋ0 is an initial velocity at time t = t 0 and m ∈ 1, 2, . . . , M . In the case when ∆(P m ) converges to zero in the stationary regime, a periodic regime can be identified. Therefore, the membrane velocity ẋ(t) can be expressed as a Fourier series in the following form

ẋ(t) = a 0 + ∞ n=1 (a n cos (nωt) + b n sin (nωt)), (35) 
and the normalized admittance is then represented by its L 2 -norm which

corresponds to (ρc/A m ) n (a 2 n + b 2 n ).
Otherwise, a quasi-periodic regime occurs and so the velocity is chosen to be represented by the absolute value of the peaks maximum amplitude. Figure 17 shows the normalized admittance Y m according to frequency f (Hz). Black curve line represents the case when the electroacoustic transducer is not connected to any electric load, where its corresponding absorption coefficient present a maximum value α max which is smaller than 1 at the resonance. Stars dashed curve illustrates the case when plugging a positive optimal resistor R opt that can be obtained by the following formula [8]

R opt = (Bl) 2 Z mc -R ms -R e with Z mc = ρcS (36) 
Remarkably, the shunt resistor permits a significant decrease in the normalized admittance with a perfect absorption at the resonance. However, this approach is limited to a narrow range of frequency with no possible broadening control of the bandwidth.

Regarding the behavior of the system when connecting a nonlinear electric shunt circuit; the curve illustrated in crosses represents the L 2 -norm of the normalized acoustic admittance when reaching a periodic regime. Quasiperiodic regime illustrating the maximum of peaks absolute values is represented with dark circles. Remarkably, it exists in the vicinity of the resonance frequency ω 0 and can be identified by the vertical black dashed lines.

In the vicinity of 1:1 resonance, an optimal response frequency of the system can be identified through a selected threshold. It corresponds to the maximum of energy that the primary system can reach during an energy exchange process with the NES. Thus, the optimal design defined in terms of normalized admittance is represented by the horizontal dash-dotted light line.

Remarkably, the added passive nonlinear shunt circuit allowed a significant decrease of the admittance, principally at the vicinity of the resonance frequency where the TET prevents the velocity to exceed a certain amplitude. Moreover, we can identify that the frequency bandwidth undergoes a 45% of relative increase.

The sound absorption coefficient is usually used as a performance indicator for linear studies to optimize its bandwidth. However, underlining the fact that with the nonlinear coupling, this coefficient may not be necessarily appropriate since the interest of the nonlinear targeted energy transfer is mainly to highly-energetic non-stationary regimes. Moreover, it does not reflect the different responses of such systems (strong modulated responses, modal exchanges. . . ). Then, we choose to apply the following expression of the sound absorption coefficient α, defined for periodic regimes only as

α(ω) = 1 -|r(ω)| 2 (37) 
with |r(ω)| defining the magnitude of the following reflection coefficient

r(ω) = 1 -Y m (ω) 1 + Y m (ω) . ( 38 
)
As done by some authors in the nonlinear field ( [START_REF] Lee | Analytic formulation for the sound absorption of a panel absorber under the effects of microperforation, air pumping, linear vibration and nonlinear vibration[END_REF][START_REF] Lee | The jump phenomenon effect on the sound absorption of a nonlinear panel absorber 36 and sound transmission loss of a nonlinear panel backed by a cavity[END_REF]) we choose to illustrate certain properties of the nonlinear shunt circuits compared to classical linear ones, highlighting the performance of the sound absorption just for periodic regime (the sound absorption coefficient is not defined for quasiperiodic ones). Figure 18 shows a comparison of the sound absorption coefficient between the different treated cases (without coupling, with linear optimal resistor and nonlinear shunt circuits). We should note that for the nonlinear shunt circuit using the physical parameters of Test 2, the sound absorption was not defined during quasi-periodic regimes and thus not illustrated between the vertical two dashed lines. Figure 18 highlights the fact that we managed to increase the controlled absorption bandwidth and obtain better absorption for low frequencies without an optimization study for now, even if we are less efficient than an optimal linear resistor around the resonance frequency.

We should highlight he fact that the absorption bandwidth can be controlled by choosing suitable passive nonlinear control parameters R c , L c , C and k. 

Remarks and interpretations

The present approach uses the complexification of Manevitch for the case of 1:1 resonance. Then, in the vicinity of ω 0 this approach presents a predictive tool allowing an analytical identification of the desirable regime for a give sound pressure level and a selected frequency. An optimal NES design can be identified when the system response does not exceeded the chosen threshold. However, for the present physical parameters, Figure 17 displays a slight difference between the admittance maximum amplitude in the quasiperiodic regime and the horizontal threshold. This gap can be due to several factors, among which we can mention the choice of the physical parameters.

In addition, we used the classical Manevitch variables which only considers the first harmonics. An extended version of the complex variables is under investigations, for a finer approximation of the result.

Conclusion

A passive nonlinear passive shunt was coupled to the loudspeaker's terminals, playing the role of an electroacoustic absorber. The resulting structure was described as a two dofs system, which was analytically treated using an invariant manifold approach for the 1:1 resonance. The equilibrium points and fold singularities were detected, allowing a predictive tool to design the nonlinear passive shunt during the energy exchange process. The preliminary results show that this approach is able to vary the acoustic properties of the loudspeaker, with a relative reduction of the normalized admittance and a broadening of the absorption frequency range.

Further work is dedicated to the design and optimization process of the passive nonlinear shunt, which allows larger frequency bandwidth and higher acoustic absorption performances. Moreover, we aim to extend the present analytical approach for a finer investigations with larger frequency range(1:2, 2:1,. . . resonances). In practice, we aim to implement an experimental setup in order to validate our analytico-numerical results.
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 1 Figure 1: Shunt loudspeaker [22]

  the equivalent compliance of the en-94 closed loudspeaker (due to the closed-box at the rear side of the loudspeaker). V b represents the enclosure volume, S the diaphragm area, ρ the density of the medium and c the celerity of sound in the medium. The mechanical moving part of the loudspeaker made of the suspended diaphragm and coil is assimilated to a simple mass-spring-damper system with M ms describing the mass, C ms accounting for the surround suspension and the spider and R ms the mechanical resistance. Equation (1) describes the motion of the closed-box loudspeaker with S denoting the effective piston area and V b the volume of the cabinet. Then, the reaction of the fluid acting on the rear face is modelled by ρc 2 S 2 /V b as a mechanical compliance of the cabinet, where ρ representing the density and c the celerity of sound in the medium. v s (t)

Figure 2 :

 2 Figure 2: Circuit representation of an electrodynamic loudspeaker [8].
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 3 Figure 3: Nonlinear resonant circuit shunting.
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 10 periodically varying sound pressure P (t) = A m cos (ωt) with ω the angular frequency. L p = 20 log 10 (p/p ref ) dB represents the sound pressure level with p = (t) 2 dt the root mean square sound pressure and P p ref = 20 µPa is the reference sound pressure in the air.

Figure 4 :

 4 Figure 4: Numerical and analytical results for N 1 and N 2 during free vibrations.

Figure 5 :

 5 Figure 5: τ 0 invariant where stable and unstable parts are represented in full and dashed lines respectively. N 21 and N 22 define the extrema according to the N 2 variable.

Figure 6 :

 6 Figure 6: Analytical energy trends obtained by solving Equation (31) for a corresponding constant C.

Figure 7 :

 7 Figure 7: (a) Efficient passive TET to the NES for the case of free oscillations with initial conditions corresponding to a fixed point on the upper branch of the SIM. (b) and (c) show a comparison of energy flow between the numerical integration of the initial differential System (10) in full lines and the analytical results obtained by solving Equation (31) in dashed lines.

  represent the cartography of the achievable dynamics of the system for several values of sound pressure levels (L p ). Horizontal dashed black lines define the stability boundaries N 21 and N 22 . dash-dotted and full line curves correspond respectively to f 1 (δ 2 , N 2 ) = 0 and f 2 (δ 2 , N 2 ) = 0. According to the value of L p , the positions and the number of fold singularities and equilibrium points change so as their stability. More precisely, when full line and dash-dotted curves intersect each other far from the fold lines in black (N 21 , N 22 ) we can deduce the existence of an equilibrium points which corresponds to a periodic regime. Otherwise, when they intersect on a fold line, fold singularities corresponding to quasi-periodic regime can be identified.The color shade together with the numbers from 1 to 6 correspond to the pressure levels L p = {116, 120, 124, 128, 132, 136} (dB) respectively. The stars and the triangle illustrate the positions of equilibrium points for each L p and the dots denote fold singularities corresponding to L p = 132 dB.

Figure 10 :

 10 Figure 10: Positions of equilibrium points marked with stars for the system under several values of sound pressure levels L p = {116, 120, 124, 128, 132, 136} (dB) for the detuning parameter σ = 0. g(N 2 ) = 0 corresponds to the dotted horizontal black lines N 21 and N 22 . f 1 (δ 2 , N 2 ) = 0 and f 2 (δ 2 , N 2 ) = 0 are represented in dash-dotted and full line curves respectively.

  Figure 11 shows the evolution of numerical values N 1 = |dx/dT + iΩx|, N 2 =

Figure 12 :

 12 Figure 12: (a) Comparison of velocity histories as a function of time t(s) obtained by numerical integration of the system under L p = 120 dB between the master system (The loudspeaker) coupled with the NES (the shunt nonlinear circuit) represented in solid lines and without the NES in dotted line. (b) Histories of the voltage derivative in terms of time t(s).

Figure 14 :

 14 Figure 14: (a) Comparison of velocity histories as a function of time t(s) obtained by numerical integration of the system under L p = 132 dB between the master system (The loudspeaker) coupled with the NES (the shunt nonlinear circuit) represented in solid line and without NES in dotted line. (b) Histories of the voltage derivative in terms of time t(s).

Figure 15 : 6 . 4 .Figure 16 :

 156416 Figure 15: Poincaré's section of the primary structure (Shunted loudspeaker) and the NES (nonlinear eclectic shunt circuit) showing a quasi-periodic vibrational regime.

Figure 17 :

 17 Figure 17: Comparison of the normalized admittance as function of frequency between the cases of open circuit, optimal linear resistor and the shunt nonlinear circuits. Test 1 for L p = 132 dB and Test 2 for L p = 115 dB both for k = 3468 V -2 .

Figure 18 :

 18 Figure 18: Comparison of the sound absorption coefficient as function of frequency between the cases of open circuit, optimal linear resistor, the shunt nonlinear circuits Test 1 for L p = 132 dB and Test 2 for L p = 115 dB both for k = 3468 V -2 .

Table 1 :

 1 Visaton al 170 electrodynamic moving coil loudspeaker parameters

	Parameter	Symbol Value	Unit
	DC resistance	R e	5.6	Ω
	Voice coil inductance	L e	0.9	mH
	Force factor	Bl	6.9	NA -1
	Moving mass	M ms	13	g
	Mechanical resistance	R ms	0.8	Nm -1 s
	Mechanical compliance	C ms	1.2	mmN -1
	Effective area	S	133	cm 2
	Sound celerity in the air	c	343	ms -1
	Enclosure volume	V b	10	dm 3
	Air density	ρ	1.18 Kg m -3

Table 2 :

 2 Configuration presenting the operational amplifiers parameters

	Parameter Resistance Inductance Capacitance Nonlinear coefficient
		R c (Ω)	L c (mH)	C (mF)	k (V -2 )
	Test 1	1	50	5	8160
	Test 2	-4.7	5	5	8160
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Appendix A.

Explicit values of variables in System (29) can be written as follows
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