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Abstract

The present paper aims to apply the concept of energy pumping for noise
reduction at propagation and reception paths. This phenomenon consists
in irreversible energy transfer from a linear primary system to a nonlinear
energy sink, where the energy is finally dissipated. In this study, we turn a
loudspeaker to an electroacoustic absorber by connecting at its transducers
terminals a passive nonlinear shunt circuit playing the role of an absorber.
The equivalent model consists of a linear structure describing the displace-
ment of the loudspeaker, linearly coupled to a cubic nonlinear energy sink.
For the case of 1:1 resonance, the Invariant manifold approach is applied for
different time scales. It enables the detection of the slow invariant manifold
and equilibrium and fold singularities at the fast and slow time scales respec-
tively. This methodology provides a predictive tool allowing the design of
the nonlinear energy sink for better control of the main system. The analyt-
ical and numerical results show that the nonlinear shunt circuit managed to
expand the frequency band of the controlled system.
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1. Introduction1

Excessive use of transportation, machinery, sound systems and so on, in2

parallel with the high demands of sound comfort and health care, encouraged3

researchers to achieve the noise reduction challenge. Several procedures are4

used in order to reduce noise at the propagation and reception paths. For in-5

stance, classical passive systems as sound absorbing materials such as porous6

and adaptive liners have been found to be very efficient at high frequencies in7

controlling room noise in building technologies [1]. However, these solutions8

are less efficient at mid and low frequencies in addition to their size. One of9

the best solutions that can be employed for these frequencies is to couple the10

treated system with linear resonating one, playing the role of an absorber.11

As an example, we can mention the Dynamic Vibration Absorbers (DVA)12

such as Helmholtz resonators [2] and Frahm dampers [3] which consist of a13

tuned spring-mass systems. Although these techniques can give perfect ab-14

sorption, they can only treat very narrow frequency band [4]. Later on, the15

concept of active noise absorption has been introduced based on controlling16

a secondary source in order to cancel the primary sound wave. This con-17

cept opened the way to a large variety of active sound absorption techniques.18

We can mention feedback control based on sound pressure control of a loud-19

speaker [5, 6], the direct impedance control combining both sound pressure20

and diaphragm velocity sensing [7] allowing a broad frequency control. In21

addition, it has been proposed to employ a pure electrical network as a sec-22

ond source to maximize the absorption efficiency under the concept of shunt23

loudspeaker [8]. For low-frequency noise absorption, a passive shunt electric24

circuit connected to the coil and powered by a DC source was employed by25

Zhang et al. [9] allowing to modify the mechanical impedance of the coil,26

where Tao et al. [10] implemented a Micro-perforated panel backed by a27

shunted loudspeaker. Moreover, in a Rijke-tube an electroacoustic control28

device was experimentally and numerically tested as an alternative damping29

approach for suppressing the thermoacoustic instability [11].30

Recent studies have shown that the performances of DVAs can be im-31

proved by employing nonlinear strategies. In fact, it has been shown in32

[12, 13, 14, 15] that employing nonlinear absorbers enables to absorb more33

efficiently the sound or vibrations at higher frequency band. This conceptual34

approach is based on irreversible energy transfer from a primary linear struc-35

ture and nonlinear oscillator with small mass. This phenomenon is called36

targeted energy transfer or energy pumping, where the Nonlinear Energy37
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Sink (NES) may serve as a nonlinear absorber [16, 17]. This procedure has38

achieved success in the mechanical field, where nonlinear phenomena were39

exploited to reduce vibrations [18]. This concept was applied in the field of40

acoustics, providing a new technique of passive absorption for low frequencies41

[19].42

However, this previous work [19] deals with very low frequencies with an43

absorber that is not essentially nonlinear. For this purpose, we suggest to44

switch a loudspeaker from its primary quality of diffusing sound and con-45

vert it into an electroacoustic absorber as a technical solution to achieve46

the desired nonlinear acoustical behavior. The general concept is to control47

the acoustical impedance a membrane, which can be achieved by tuning the48

dynamic of the loudspeaker membrane by connecting an appropriate elec-49

trical load. This approach allows reaching almost prefect absorption within50

a narrow frequency bandwidth around the resonance by employing a simple51

optimal passive electric resistance [8]. In addition, it has been shown that52

the bandwidth of control can be increased by choosing appropriate feedback53

gains in a combined pressure-velocity-feedback or by coupling the primary54

loudspeaker to a combination of several resonators [20]. Hence, the goal of55

the present work consists in performing a purely acoustic nonlinear absorber56

acting on low frequency domain, by connecting to the loudspeaker terminals57

an electric nonlinear circuit that can be controlled. To our knowledge, it is58

the first attempt to apply the concept of targeted energy transfer to an elec-59

troacoustic absorber. Hence, this study aims at first to test the feasibility of60

the concept, where the non-optimal nonlinear results were compared to the61

ones obtained via an optimal linear resistor.62

The present work is organized as follows: In section 2, we describe the63

electroacoustic absorber consisting of loudspeaker shunted with an electrical64

circuit. In section 3, an electroacoustic absorber consisting of a loudspeaker65

coupled with a nonlinear electrical shunt circuit at its terminals has been66

considered. The equivalent model is described by a 2 dofs system, includ-67

ing the main linear oscillator characterizing the dynamics of the loudspeaker68

membrane, which is linearly coupled to a cubic NES. In section 4, the Slow69

Invariant Manifold (SIM) approach has been employed. The differential sys-70

tem has been treated analytically for the case of 1:1 resonance at various71

time scales [21]. The present methodology allows to identify the equilib-72

rium points and fold singularities at the first slow time scale. In addition,73

it provides a predictive tool to design an optimize nonlinear electric circuit74

according to the energy exchange process between both systems. Section 575
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provides an analytical expression allowing the identification of the different76

mechanisms of energy exchange in the case of free oscillations. In section 6,77

a physical application is considered presenting the advantage of combining a78

nonlinear electric shunt circuit to the loudspeaker terminals. Several analyt-79

ical and numerical results are given in the case of free and forced vibrations,80

allowing a global understanding of the presented approach and the possible81

behaviors that can be obtained. Finally, conclusions and perspectives are82

given in section 7.83

2. Electroacoustic absorber description84

At the beginning, we consider an electroacoustic absorber (see Figure 1)85

following the same concept of Lissek et al. in [8, 22]. The physical model86

provides insight into the loudspeaker parameters that can be affected by87

electrical means.88
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Figure 1: Shunt loudspeaker [22]

The mechanical dynamics of a loudspeaker diaphragm for small ampli-89

tudes and below the first modal frequency can be modeled by the following90

differential equation derived from Newton’s second law91
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SP (t) = Mmsv̇s(t)+Rmsvs(t)+
1

Cms

( 1

Cms
+
ρc2S2

Vb

) ∫
vs(t)dt−Bl i(t). (1)

Mms, Rms and Cms are respectively the mass, the mechanical resistance9292

and the compliance of the moving bodies of the loudspeaker. Cms is dened9393

so that 1/Cmc = 1/Cms + ρc2S2/Vb is the equivalent compliance of the en-9494

closed loudspeaker (due to the closed-box at the rear side of the loudspeaker).95

Vb represents the enclosure volume, S the diaphragm area, ρ the density of96

the medium and c the celerity of sound in the medium. The mechanical97

moving part of the loudspeaker made of the suspended diaphragm and coil98

is assimilated to a simple mass-spring-damper system with Mms describing99

the mass, Cms accounting for the surround suspension and the spider and100

Rms the mechanical resistance. Equation (1) describes the motion of the101

closed-box loudspeaker with S denoting the effective piston area and Vb the102

volume of the cabinet. Then, the reaction of the fluid acting on the rear face103

is modelled by ρc2S2/Vb as a mechanical compliance of the cabinet, where104

ρ representing the density and c the celerity of sound in the medium. vs(t)105

is the outgoing diaphragm velocity, Bl is the force factor of the moving-coil106

transducer with B representing the magnetic field magnitude and l the length107

of the wire in the voice coil. i(t) is the driving current, Bl i(t) the Laplace108

force induced by the current circulating through the coil. P (t) is the overall109

external sound pressure acting at the outer surface of the loudspeaker in Pa.110

In the following, we will denote Cmc = (1/Cms + ρc2S2/Vb)
−1 as the total111

equivalent compliance of the enclosed loudspeaker. The electrical load can112

be modeled by the following differential equation113

e(t) = Rei(t) + Le
di(t)

dt
+Bl vs(t) (2)

with e(t) the voltage applied at the electrical terminals. Re and Le are re-114

spectively the DC resistance and the inductance of the voice coil and Bl vs(t)115

is the back electromotive force (EMF) induced by its motion through the116

magnetic field. The Electrodynamic loudspeaker can be represented in the117

form of an equivalent circuit including the electric load e as illustrated in118

Figure 2.119
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Figure 2: Circuit representation of an electrodynamic loudspeaker [8].

3. Electrical nonlinear shunt resistor120

The use of nonlinearity in the form of an electrical circuit permits the121

existence of quasiperiodic regimes over a range of external forcing terms,122

which provide efficient vibration suppression [23]. Based on this assumption,123

and in order to design a nonlinear shunt resistor, we propose to connect an124

electric circuit enabling to obtain a pure cubic nonlinearity. As mentioned125

in [23] it is possible to obtain electronically a cubic nonlinearity using multi-126

pliers. Based on this concept, we propose to connect the following example127

of a nonlinear shunt circuit (see Figure 3, where the crossed boxes represent128

quadratic multipliers ) to the transducer terminals.129

One must mention that since we are connecting an unstable circuit, this130

kind of system becomes complicated to stabilize electronically. This is just an131

example of implementation; however, the practical realization may depend132

on weighting terms that will be considered as control parameters.133
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Figure 3: Nonlinear resonant circuit shunting.
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The electrical nonlinear shunt circuit includes an inductor Lc, a resistor134

Rc playing the role of the NES linear damping coefficient and a capacitance135

C providing a pure cubic stiffness due the use of the multipliers. Then, the136

electrical voltage e(t) can be expressed as follows137

e(t) = −Lc
di

dt
−Rci+ Vc − Vc − kV 3

c (3)

where k = k1k2
(r1 + r2)(r3 + r4)

r1r2

is the nonlinear coefficient related to138

the multipliers connections with 1kΩ ≤ r1, r3 and r2, r4 ≤ 100kΩ. The ratios139

k1 and k2 are homogeneous to the inverse of voltage (V−1). Referring to the140

principle of operational amplifiers, the current IC , through the capacitor C141

is given by142

IC = C
dVc
dt

(4)

Then, the driving current i can be expressed as follows143

i(t) = −(−IC) = C
dVc
dt

(5)

After replacing Equations (3,5) into Equations (1,2), the dynamics of the144

loudspeaker can be described by the following system of differential equations145

coupling the electrical and the mechanical parts146 
Mmsẍ(t) +Rmsẋ(t) +

1

Cmc
x(t)− CBldVc

dt
= SP (t)

C(Le + Lc)
d2Vc
dt2

+ C(Re +Rc)
dVc
dt

+ kV 3
c +Bl ẋ(t) = 0

(6)

Considering the fact that the front of the diaphragm is subjected to a147

periodically varying sound pressure P (t) = Am cos (ωt) with ω the angular148

frequency. Lp = 20 log10(p/pref) dB represents the sound pressure level with149

p =

√
1

T

∫ T

0

P (t)2dt the root mean square sound pressure and Ppref = 20150

µPa is the reference sound pressure in the air.151

From a global point of view, the circuit is not passive in the way that152

very few tenth of watt are used to power the amplifiers in the electronics.153

However, if we consider the electromechanical part on its own, the system is154

considered passive (negative energy dissipation) or semi-passive (the average155

7



of the exchanged power is negative) enabling to determine the stability of156

the system. In the mechanical part, the pumped energy is dissipated by157

joule heating effect: we implement to dissipate. The aim of this paper is to158

show the effects of a new (passive) nonlinear control that is not necessarily159

optimized.160

4. Analytical developments161

An analytical treatment suitable for this kind of systems is detailed below.162

It allows to detect time multi-scale energy pumping between the primary163

system that describes the displacement of the loudspeaker and the shunt164

nonlinear circuit. This procedure can be divided into several steps: re-scaling,165

complexification of the system and keeping first harmonics and embedding166

time into fast and slow time scales. This schema permits the detection of167

the invariant manifold of the system at fast time scale, in addition to the168

equilibrium and fold singularities identification of the obtained reduced order169

system at slow time scales.170

4.1. Rescaled system171

For convenience and equation simplicity, we introduce the following non-172

dimensional variable T = ω0t with ω0 =
√

1/MmsCmc representing the nat-173

ural frequency of the main system (Loudspeaker). Then, we write the linear174

and nonlinear coefficients with the following corresponding scaling with re-175

spect to realistic physical parameters where176 
d

dt
=

d

dT

dT

dt
= ω0

d

dT
d2

dt2
= ω2

0

d2

dT 2

(7)

Then the system takes the following form177


d2x

dT 2
+RmsCmcω0

dx

dT
+ x(T )− CBlCmcω0

dVc
dT

= SAmCmc cos (
ω

ω0

T )

Cω2
0(Le + Lc)

d2Vc
dT 2

+ Cω0(Re +Rc)
dVc
dT

+ kV 3
c +Blω0

dx

dT
= 0

(8)

In what follows, we will use the complexification method of Manevitch178

and the multiple scale approach to detect the system invariant manifold at179
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the fast time scale, and the system behavior at slower time scales. To do180

so, one must write the second equation of System (8) in a manner to have181

very small mass of the NES compared to the loudspeaker. According to182

the system physical parameters, the sum of inductance (Le + Lc) is smaller183

than 1 H. Then, ε = (Le + Lc)/L0 with L0 = 1 H can be considered as184

our small dimensionless parameter; describing the ratio of mass between the185

loudspeaker and the NES. Then, dividing the second equation by Cω2
0L0,186

System (8) can be written as187


d2x

dT 2
+RmsCmcω0

dx

dT
+ x(T )− CBlCmcω0

dVc
dT

= SAmCmc cos (
ω

ω0

T )

ε
d2Vc
dT 2

+
(Re +Rc)

ω0L0

dVc
dT

+
k

Cω2
0L0

V 3
c +

Bl

Cω0L0

dx

dT
= 0

(9)

The loudspeaker damping coefficient RmsCmcω0 is smaller than one, so188

it can be expressed as ελ. In addition, the NES damping coefficient (Re +189

Rc)/(ω0L0) can be expressed as εγ by choosing an appropriate control resistor190

Rc. Moreover, the coupling terms CBlCmcω0 and Bl/(Cω0L0) can be written191

as εα and εη respectively due primarily to the value of Bl and the chosen192

capacitance C. The value of the nonlinear cubic coefficient k/(Cω2
0L0) can be193

adjusted by both k and C and then be expressed as εξ. On the other hand,194

the external forcing term SAmCmc is of order 1, so it can be represented by195

εf196

Then, the scaled differential system (9) becomes197 
d2x

dT 2
+ ελ

dx

dT
+ x(T )− εαdVc

dT
= εf cos (

ω

ω0

T )

ε

(
d2Vc
dT 2

+ γ
dVc
dT

+ ξV 3
c + η

dx

dT

)
= 0

(10)

In order to examine the damped nonlinear normal modes of system (10)198

in the vicinity of 1:1 resonance, both variables x and Vc are supposed to199

have frequency close to Ω = ω/ω0. The complex variables of Manevitch are200

introduced [24], which enable us to apply the truncated Fourier series later201

on (i =
√
−1):202
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dx

dT
+ iΩx = ϕ1e

iΩT

dVc
dT

+ iΩVc = ϕ2e
iΩT

(11)

4.2. Complexification-averaging procedure203

If the damped nonlinear normal modes for the case of 1:1 resonance is204

considered, then ϕ1 and ϕ2 which defines the coefficients of the Fourier series205

expansion of x and Vc may be considered as functions of slow time scales εjT206

(j ≥ 1). In order to preserve only first harmonic eiΩT for each equation of207

System (10), we apply the Galerkin method and a truncated Fourier series.208

Then we obtain the following system209 
ϕ̇1 − i

(1− Ω2)

2Ω
ϕ1 + ε

λ

2
ϕ1 − ε

α

2
ϕ2 = ε

1

2
f

ε
[
ϕ̇2 + i

Ω

2
ϕ2 +

γ

2
ϕ2 − i

ξ

2Ω
ϕ2G(|ϕ2|2) +

η

2
ϕ1

]
= 0

(12)

with G(|ϕ2|2) =
3

4Ω2
|ϕ2|2 representing the resonant term.210

4.3. Multiple-scale analysis211

System (12) may be analyzed by using a multiple time scales approach,212

where we introduce the slow times τ1, τ2, . . . and the fast time τ0 as213

τ0 = T τj = εjT j = 1, 2, . . . (13)

so that214

d

dT
=

∂

∂τ0

+ ε
∂

∂τ1

+ ε2 ∂

∂τ2

+ . . . (14)

We will analyze the system behavior around 1:1 resonance by using a215

multiple scales approach assuming that216

Ω = 1 + εσ (15)

with σ a detuning parameter. At the order ε0, resonant terms at τ0 scale217

in system (12) yields218
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∂ϕ1

∂τ0

= 0⇒ ϕ1 = ϕ1(τ1, τ2, . . . ) (16)

The previous equation shows that the function ϕ1 is constant during the219

time τ0 = T , which means that in the principal approximation ϕ1 depends220

on the slow times τ1, τ2, . . . However, at the order ε1 the first equation of221

system (12) gives222 
∂ϕ1

∂τ1

+ iσϕ1 +
λ

2
ϕ1 −

α

2
ϕ2 =

1

2
f

∂ϕ2

∂τ0

+ i
1

2
ϕ2 +

γ

2
ϕ2 +

η

2
ϕ1 − i

ξ

2
ϕ2G(|ϕ2|2) = 0

(17)

(18)

Fixed points corresponds to the behavior of ϕ2 for τ0 → +∞ which means223

∂ϕ2

∂τ0

= 0 can be obtained from Equation (18):224 [
γ + i(1− ξG(|ϕ2|2))

]
ϕ2 = −ηϕ1. (19)

Equation (19) presents an asymptotic equilibrium governed by a manifold225

called Slow Invariant Manifold (SIM). By writing ϕ1 and ϕ2 into their polar226

form as ϕ1 = N1e
iδ1 and ϕ2 = N2e

iδ2 , Equation (19) can be written and227

reduced into the following form:228

ηN1e
i(δ1−δ2) = −iN2 − γN2 + iξN2G(N2

2 ). (20)

Taking into account the definitions of the complex variables ϕ1 and ϕ2,229

their modules N1 and N2 can be expressed in terms of the initial variables x230

and Vc of the physical system as231 
N1 = |ϕ1| =

√( dx
dT

)2
+ Ω2x2

N2 = |ϕ2| =
√(dVc

dT

)2
+ Ω2V 2

c

(21)

After separating the real and imaginary parts of Equation (20), one can232

reach the following system233 {
γN2 = −ηN1 cos(δ1 − δ2),

(1− ξG(N2
2 ))N2 = −ηN1 sin(δ1 − δ2).

(22)

(23)

11



Taking the square of both sides of equations (22) and (23) and summing234

them, we obtain235

N1 =
N2

η

√
γ2 +

(
1− ξG(N2

2 )
)2
. (24)

Local extrema of Equation (24) can be revealed using the following criteria236

∂N2
1

∂N2
2

= 0, (25)

which finally yields the equation237

γ2 + (1− ξG(N2
2 ))(1− ξG(N2

2 )− 2ξN2
2G
′(N2

2 )) = 0. (26)

Equation (26) can be verified when the damping coefficient γ associated238

to the nonlinear equation is smaller than a critical value γc which is equal239

to 1/
√

3 [23]. In addition, depending on the value of γ the system can have240

one, two or three fixed points. Moreover, for γ < γc there exists two local241

extrema called N21 and N22 that can be written as follows242

N21 =
2

3

√
2

ξ
−
√

1− 3γ2

ξ
, N22 =

2

3

√
2

ξ
+

√
1− 3γ2

ξ
. (27)

It has been proved that the stable area of the fixed points in the reduced243

linearized system at the τ0 time scale can be defined by the following criterion244

[25]245

γ2 + (1− ξG(N2
2 ))(1− ξG(N2

2 )− 2ξN2
2G
′(N2

2 )) ≥ 0 (28)

According to the previous inequality, stable fixed points corresponds to246

N2 < N21 and N2 > N22. By substituting the stable solution ϕ2 with respect247

to the fast time scale τ0 generated in Equation (19) into Equation (17),248

writing ϕ2 into its polar form as ϕ2 = N2(τ1)eiδ2(τ1) and separating the real249

and imaginary parts of the resulting equation one finally obtains the following250

system251

12





∂N2

∂τ1

=
BF−DE

AD−CB
=
f1(N2, δ2)

g(N2)
,

∂δ2

∂τ1

=
CE−AF

AD−CB
=
f2(N2, δ2)

g(N2)
.

(29)

Explicit values of A, B, C, D, E and F are given in Appendix A. The252

approximation of the fast time scale τ0, enables Equations (17,18) to illustrate253

the response of the system regarding the initial conditions, when the system254

approaches the resonance manifold. In addition, the approximation of N2255

and δ2 represented by System (29), describes the slow-time τ1 evolution of256

the system at the manifold.257

Equilibrium points of the system are defined by f1(N2, δ2) = f2(N2, δ2) =258

0 and g(N2) 6= 0 while fold singularities are given by f1(N2, δ2) = f2(N2, δ2) =259

g(N2) = 0. We should note that the stability of g(N2) can be treated as same260

as the invariant manifold (see Equation (24)). In fact, g(N2) = 0 provides261

both extrema N21 and N22 which are called the fold lines of the system.262

5. Observation of free oscillations263

In order to illustrate the mechanism of Targeted Energy Transfer (TET)264

between the primary system and the NES according to the slow time τ1, we265

start by setting Z1 = N2
1 and Z2 = N2

2 . Hence, in the case of free oscillations266

and by using the first equation of System (29), ∂Z2/∂τ1 can be written in267

the following form268

∂Z2

∂τ1

= −
αγη + λ

(
γ2 +

(
1− ξG(Z2)

)2
)

γ2 +
(
1− ξG(Z2)

)(
1− 2Z2ξG′(Z2)− ξG(Z2)

)Z2. (30)

The integral of the previous equation can be computed explicitly as below269

R(τ1, Z2) = Cte (31)

with270
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R(τ1, Z2) = 2λ
√
αη + γλ

(
αγη + λ+ γ2λ

)
τ1 +

[
2αη

√
γλ arctan

[
√

λ

γ(αη + γλ)
(1− 3

4
ξZ2)

]
+
√
αη + γλ

(
2(1 + γ2)λ log (Z2)

+

(
3αγη + 2(1 + γ2)λ

)
log

[
16αγη + λ

(
16γ2 + (4− 3ξZ2)2

)])]
(32)

and Cte is an integration constant that can be related to the initial con-271

ditions. In fact, Z1 and Z2 reflect the energy stored in the relative displace-272

ment of the loudspeaker membrane and the voltage across the capacitor in273

the nonlinear shunt circuit respectively.274

6. Results and discussions275

6.1. Validation of the approach276

In order to validate the obtained analytical approaches, we use a direct nu-277

merical integration method. The function ode45 implemented in MATLAB c©278

which is based on an explicit Runge-Kutta (4,5) formula is employed in order279

to solve the dimensional differential system (10) and the complex averaged280

one (12).281

We consider the scaled parameters: ε = 0.01, λ = 0.1, α = 0.1, γ = 0.35,282

η = 0.1 and ξ = 0.5 and the following initial conditions: x(0) = Vc(0) =283

V̇c(0) = 0 and ẋ(0) = 7. For free oscillations (f = 0), Figure 4 shows a284

comparison of N1 and N2 between numerical solutions obtained by direct285

integration of the initial differential system (10) and the averaged one (12).286

Curves shown in Figure 4 includes three various phenomena stages [26]. The287

first one begins from the initial point of the simulation until almost τ0 = 550,288

where the NES maximal amplitude decreases slowly and the main system289

decreases rapidly. In the second stage and around τ0 = 550, the system290

reaches a local extrema during which N2 decreases abruptly and N1 is al-291

most constant. Finally, during the third stage (τ0 > 550) both amplitudes292

decreases almost linearly. Since the numerical results of the very first differ-293

ential system (12) includes all harmonics, when we kept the first harmonic294

and truncated the highest ones for the averaged system (10), we can remark295

the good agreement between both results.296
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Figure 4: Numerical and analytical results for N1 and N2 during free vibrations.

At τ0 time scales, fixed points of the system are represented by the Slow297

Invariant Manifold (SIM) shown in Figure 5. Full and dashed lines corre-298

spond to stable and unstable parts of the τ0 invariant respectively with N21299

and N22 defining the extrema according to the N2 variable. In fact, the SIM300

corresponds to a geometrical representation of all types of system behaviors301

in the slow time scales regardless the forcing term. In the following sections,302

we will provide a detailed study about the different dynamics of the system303

during free and forced vibrations.304

Figure 5: τ0 invariant where stable and unstable parts are represented in full and dashed
lines respectively. N21 and N22 define the extrema according to the N2 variable.
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For free oscillations, the analytical energy trends can be obtained by solv-305

ing Equation (31) with a corresponding constant C, providing an illustration306

of the possible scenarios of TET according to the initial conditions [27].307

Figure 6: Analytical energy trends obtained by solving Equation (31) for a corresponding
constant C.

Figure 6 shows that two stable possibilities of energy pumping for the308

cases of free oscillations can be reached. More precisely, for initial conditions309

corresponding to a fixed point on the lower branch of the SIM, the mechanism310

of energy shows that this case is not efficient for TET. However, for initial311

conditions corresponding to a fixed point on the upper branch of the SIM,312

Figure 7 demonstrate that the process of energy is favorable for optimal NES313

design. It can be concluded that in order to activate the NES for efficient314

TET, initial conditions must be chosen in a manner that N1(0) is greater315

that the maximum N21 ordinate.316
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Numerical result

Analytical SIM

(a)

Numerical result

Analytical result

(b)

Numerical result

Analytical result

(c)

Figure 7: (a) Efficient passive TET to the NES for the case of free oscillations with initial
conditions corresponding to a fixed point on the upper branch of the SIM. (b) and (c) show
a comparison of energy flow between the numerical integration of the initial differential
System (10) in full lines and the analytical results obtained by solving Equation (31) in
dashed lines.

6.2. Application317

In order to study the system behavior when coupling a nonlinear shunt318

resonator, we consider the physical parameters as Lissek et al. [8] from the319

electrodynamic moving coil to the enclosure volume which are listed in Table320

1.321

Table 1: Visaton al 170 electrodynamic moving coil loudspeaker parameters

Parameter Symbol Value Unit
DC resistance Re 5.6 Ω
Voice coil inductance Le 0.9 mH
Force factor Bl 6.9 NA−1

Moving mass Mms 13 g
Mechanical resistance Rms 0.8 Nm−1s
Mechanical compliance Cms 1.2 mmN−1

Effective area S 133 cm2

Sound celerity in the air c 343 ms−1

Enclosure volume Vb 10 dm3

Air density ρ 1.18 Kg m−3

Among the large set of physical parameters that can be considered in322

the nonlinear shunt circuit, additional criteria are required. For instance,323

according to our choice of scaling and since the NES damping constant γ324
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must be smaller than 1/
√

3 as detailed previously, the choice of the control325

resistor Rc must verify the following inequality326

0 < Rc +Re < ε
ω0√

3
. (33)

Initial conditions were considered in a manner that the loudspeaker mem-327

brane is subjected to an initial velocity ẋ(0) 6= 0. The rest of the initial con-328

ditions are assumed to be null: x(0) = Vc(0) = V̇c(0) = 0, which corresponds329

to N2(0) = 0 and N2(0) = N0 = ẋ(0). N0 is chosen in a manner to be above330

the ordinate of the SIM maximum (N0 > N11) to examine a situation where331

the NES is active to control oscillations. Then, we set the control parameters332

of the nonlinear electric shunt in Table 2.333

Table 2: Configuration presenting the operational amplifiers parameters

Parameter Resistance Inductance Capacitance Nonlinear coefficient
Rc (Ω) Lc (mH) C (mF) k (V−2)

Test 1 1 50 5 8160
Test 2 −4.7 5 5 8160

6.3. Results for parameters of Test 1334

In what follows, we will study the system behaviors for the physical pa-335

rameters listed in Table 2 untitled Test 1 for and forced oscillations.336

6.3.1. Free oscillations337

Figure 8 shows N1 vs N2, with a comparison between the analytical invari-338

ant manifold given in Equation (24) (dashed-dotted curve) and the numerical339

integration of the differential system (10) (full line). Remarkably, the behav-340

ior of the system amplitudes N1 and N2 tracks the SIM. More precisely, full341

curve undergoes an immediate jump and oscillates around the lower stable342

branch until its amplitude decreases quasi-linearly.343
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Figure 8: Invariant manifold of the system at the fast time scale τ0 (black curve) and
its corresponding numerical results (green curve) for the system under free oscillations
P (t) = 0 and σ = 0. Numerical results correspond to the integration of System (10) versus
t for t ∈ [0, 0.15] with the initial conditions x(0) = Vc = V̇c = 0 and ẋ(0) = 1.9× 10−3 m
s−1.
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Figure 9: Histories of displacement in terms of time t(s) obtained by numerical integration
of the system under free vibrations, σ = 0 with the initial conditions corresponding to
x(0) = Vc = V̇c = 0 and ẋ(0) = 1.9× 10−3 m s−1. Dashed and full lines denote the cases
of open circuit and shunt nonlinear circuit respectively.

In fact, when choosing initial conditions that corresponds to a point above344

N21, energy flows immediately and encounters a sudden breakdown toward345

the stable lower branch. In other words, the energy in the loudspeaker mem-346

brane is irreversibly streamed toward the nonlinear shunt circuit until it347

converges to zero.348

The corresponding velocity histories versus time are represented in full349

line in Figure 9. Dashed curve represents the velocity histories in terms350

of time for the case of open circuit, which means when the electroacoustic351

transducer is not coupled with any electric charge. Clearly, the NES permits352

reduction of oscillations amplitudes.353

6.3.2. Primary system under external forcing354

Unlike the previous investigations, the loudspeaker diaphragm is now sub-355

jected to a periodically varying sound pressure P (t). As detailed previously,356

at the slow time scale τ1, all achievable system dynamics can be obtained by357

solving (29). More precisely, equilibrium points which corresponds to peri-358

odic regimes are obtained when f1(δ2, N2) = f2(δ2, N2) = 0 and g(N2) 6= 0,359

where fold singularities corresponds to quasi-periodic regimes are achievable360

when f1(δ2, N2) = f2(δ2, N2) = g(N2) = 0.361
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As the scaled forcing term f is proportional to the pressure amplitude Am362

which is defined as a function of the sound pressure level Lp, this later is con-363

sidered as a main parameter of the nonlinear study. For instance, considering364

σ = 0 which corresponds to the resonance frequency ω0, Figure 10 represent365

the cartography of the achievable dynamics of the system for several values366

of sound pressure levels (Lp). Horizontal dashed black lines define the sta-367

bility boundaries N21 and N22. dash-dotted and full line curves correspond368

respectively to f1(δ2, N2) = 0 and f2(δ2, N2) = 0. According to the value of369

Lp, the positions and the number of fold singularities and equilibrium points370

change so as their stability. More precisely, when full line and dash-dotted371

curves intersect each other far from the fold lines in black (N21, N22) we can372

deduce the existence of an equilibrium points which corresponds to a peri-373

odic regime. Otherwise, when they intersect on a fold line, fold singularities374

corresponding to quasi-periodic regime can be identified.375

The color shade together with the numbers from 1 to 6 correspond to376

the pressure levels Lp = {116, 120, 124, 128, 132, 136} (dB) respectively. The377

stars and the triangle illustrate the positions of equilibrium points for each378

Lp and the dots denote fold singularities corresponding to Lp = 132 dB.379
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Figure 10: Positions of equilibrium points marked with stars for the system under several
values of sound pressure levels Lp = {116, 120, 124, 128, 132, 136} (dB) for the detuning
parameter σ = 0. g(N2) = 0 corresponds to the dotted horizontal black lines N21 and
N22. f1(δ2, N2) = 0 and f2(δ2, N2) = 0 are represented in dash-dotted and full line curves
respectively.

For Lp = 120 dB and σ = 0, Figure 10 shows the existence of one equi-380

librium point represented in triangle, corresponding to the intersection of381

full line and dash-dotted curves labeled 2 far the fold singularities. Fig-382

ure 11 shows the evolution of numerical values N1 = |dx/dT + iΩx|, N2 =383

|dVC/dT + iΩVc| (Green curve) obtained by numerical integration of System384

(10) compared to the invariant manifold. We can see that the system oscil-385

lates around the lower stable branch of the invariant until being attracted386

by the fixed point. The corresponding velocity time series is represented in387

Figure 12, where we compare the histories of ẋ(t) with and without coupling388

in addition to the time histories of V̇c(t). The periodic regimes obtained389

numerically validate our analytical predictions illustrated by the equilibrium390

point in Figure 10. In fact, the energy was transmitted from the loudspeaker391

membrane under periodic sound pressure to the non-excited nonlinear shunt392

circuit, with the same frequency defining the 1:1 resonance.393
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Figure 11: System invariant manifold and its corresponding numerical result for Lp = 120
dB and σ = 0. The numerical result corresponds to the integration of System (10) with
the initial conditions corresponding to x(0) = Vc = V̇c = 0 and ẋ(0) = 1.9× 10−3 m s−1.
In this case, the system is attracted by the periodic regime that corresponds to the fixed
point marked with a triangle in Figure 10.
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(a) (b)

Figure 12: (a) Comparison of velocity histories as a function of time t(s) obtained by
numerical integration of the system under Lp = 120 dB between the master system (The
loudspeaker) coupled with the NES (the shunt nonlinear circuit) represented in solid lines
and without the NES in dotted line. (b) Histories of the voltage derivative in terms of
time t(s).
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Figure 13: System invariant manifold and its corresponding numerical result for Lp = 132
dB and σ = 0. The numerical result corresponds to the integration of System (10) with
the initial conditions corresponding to x(0) = Vc = V̇c = 0 and ẋ(0) = 1.9× 10−3 m s−1.
Here, the system present a SMR illustrated in Figure 10 with two dots.

For Lp = 132 dB and σ = 0, we can deduce from the dash-dotted and394

solid curves labeled 5 in Figure 10 that the system possesses one unsta-395

ble equilibrium point marked with a stars between the fold lines and two396

fold singularities denoted by dots. Hence, the corresponding numerical re-397

sult and the analytical invariant are shown in Figure 13. This curve refers398

to a Strongly Modulated Response (SMR) of the system, including jump399

phenomena between both fold lines. In fact, for similar behavior both the400

loudspeaker membrane and the nonlinear shunt circuit are beating, which401

is very favorable for passive energy harvesting control applications. Energy402

exchange process of the SMR is qualitatively well described by the jump403

phenomenon in Figure 13. Besides, the values of N2 seem to be perfectly ap-404

propriate when the jumps occur. However, some quantitative errors appear405

for the values of N1 due to several factors. Among them we can mention the406

choice of ε, the numerical inaccuracies besides the choice of the Manevitch407

complex variables which takes into account the first harmonic only.408

Figure 14 shows the corresponding numerical results using a Runge-Kutta409

schema according to the time t ∈ [0, 0.6]. In addition, Figure 15 shows410

the Poincaré’s section after eliminating the data corresponding to the tran-411

sient regime of both primary structure and attached nonlinear circuit. These412
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figures confirm the obtained quasi-periodic regime. In fact, an important413

amount of vibrational energy is rapidly transferred to the NES and damped414

out in a quasi-periodic regime. Thus, the attenuation of vibrational energy415

of the loudspeaker arise with good efficiency in the vicinity of the natural416

frequency ω0.417

(a) (b)

Figure 14: (a) Comparison of velocity histories as a function of time t(s) obtained by
numerical integration of the system under Lp = 132 dB between the master system (The
loudspeaker) coupled with the NES (the shunt nonlinear circuit) represented in solid line
and without NES in dotted line. (b) Histories of the voltage derivative in terms of time
t(s).
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Figure 15: Poincaré’s section of the primary structure (Shunted loudspeaker) and the NES
(nonlinear eclectic shunt circuit) showing a quasi-periodic vibrational regime.

6.4. Results for parameters of Test 2418

For the set of physical parameters untitled Test 2 listed in Table 2, we419

study the system behavior for two different levels of sound pressure. Al-420

though, a negative impedance converter circuit is needed to correctly use a421

negative value of control resistor Rc, Figure 3 represents an analog circuit422

that does not necessarily represent the real physical implementation. Besides,423

The negative test value is employed to compensate the positive resistance of424

the coil Re and reach a point of optimality.425

For σ = 0, Figure 16 (a) and (b) show respectively the system invariant426

manifold (black curve) compared to the corresponding numerical integration427

of System (10) for Lp = 115 dB and Lp = 124 dB respectively, in addition428

to the corresponding histories of velocity. The initial conditions correspond429

to x(0) = Vc = V̇c = 0 and ẋ(0) = 4 × 10−5 m s−1. Two different regimes430

can be identified: a periodic regime for the sound pressure level Lp = 115431

dB and a quasi-periodic one for Lp = 124 dB. Remarkably, for the present432

set of physical parameters (Test 2), we attenuate with a lower amplitude the433

membrane velocity.434

27



(a) Test 2 for Lp = 115 dB (b) Test 2 for Lp = 124 dB

Figure 16: (a) and (b) show the results for test 2 for for Lp = 115 dB and for Lp =
124 dB respectively. Upper figures represent the system manifold invariant and their
corresponding numerical results with σ = 0. The numerical results correspond to the
integration of System (10) with the initial conditions corresponding to x(0) = Vc = V̇c = 0
and ẋ(0) = 4×10−5 m s−1. The middle and lower figures show the comparison of velocity
histories as a function of time t(s) obtained by numerical integration of the studied system
without coupling (black dotted line) and with nonlinear coupling (red solid line). Here,
the system present a periodic regime for (a) and a SMR illustrated for (b).

6.4.1. Acoustic admittance435

In order to examine the influence of coupling a passive nonlinear shunt cir-436

cuit to the transducers terminals, it is necessary to have an understanding of437

the sound wave propagation. The normalized acoustic admittance presented438
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at the loudspeaker diaphragm provides information about the amplitude of439

the reflection for a given frequency, which can be written as follows440

Ym(ω) = −ρc V (ω)

Pt(ω)
, (34)

with V (w) and Pt(w) are the Fourier transforms of v(t) and pt(t) respec-441

tively. The minus sign appears as V (w) is defined to describe the outgoing442

diaphragm velocity.443

According to the previous analytical investigations detailed in Section444

6.3.2 at the τ1 time scale and for the case of 1:1 resonance, two different445

regimes can be distinguished. The periodic or the quasi-periodic regimes446

are reached according to the given values of the forcing term and frequency.447

Then, in order to represent the obtained normalized admittance for a given448

sound pressure level we followed the process below.449

For each ω in the frequency domain we integrate the differential system450

using an explicit Runge-Kutta (4,5) algorithm implemented in Matlab c© from451

t0 = 0 to tf = NT (N denoting the number of periods T = 2π/ω) with452

y0 = [0, 0, 0, 0] as initial conditions.453

Then, in the permanent regime, a study of Poincaré section has been454

applied. More precisely, we calculate the value of ∆(Pm) = |Pm+1(ẋ) −455

Pm(ẋ)| for a certain number M of periods, where Pm(ẋ) corresponds to the456

intersection of the trajectory ẋ(ẋ0, t0; t) with the plane t = t0 + mT with457

ẋ0 is an initial velocity at time t = t0 and m ∈ 1, 2, . . . ,M . In the case458

when ∆(Pm) converges to zero in the stationary regime, a periodic regime459

can be identified. Therefore, the membrane velocity ẋ(t) can be expressed as460

a Fourier series in the following form461

ẋ(t) = a0 +
∞∑
n=1

(an cos (nωt) + bn sin (nωt)), (35)

and the normalized admittance is then represented by its L2-norm which462

corresponds to (ρc/Am)
√∑

n

(a2
n + b2

n). Otherwise, a quasi-periodic regime463

occurs and so the velocity is chosen to be represented by the absolute value464

of the peaks maximum amplitude.465
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Without coupling

With optimal linear coupling

With NL coupling Test 1 (periodic regime)

With NL coupling Test 1 (quasi-periodic regime)

With NL coupling Test 2

NES threshold

Figure 17: Comparison of the normalized admittance as function of frequency between
the cases of open circuit, optimal linear resistor and the shunt nonlinear circuits. Test 1
for Lp = 132 dB and Test 2 for Lp = 115 dB both for k = 3468 V−2.

Figure 17 shows the normalized admittance Ym according to frequency466

f(Hz). Black curve line represents the case when the electroacoustic trans-467

ducer is not connected to any electric load, where its corresponding absorp-468

tion coefficient present a maximum value αmax which is smaller than 1 at the469

resonance. Stars dashed curve illustrates the case when plugging a positive470

optimal resistor Ropt that can be obtained by the following formula [8]471

Ropt =
(Bl)2

Zmc −Rms

−Re with Zmc = ρcS (36)

Remarkably, the shunt resistor permits a significant decrease in the nor-472

malized admittance with a perfect absorption at the resonance. However,473

this approach is limited to a narrow range of frequency with no possible474

broadening control of the bandwidth.475

Regarding the behavior of the system when connecting a nonlinear elec-476

tric shunt circuit; the curve illustrated in crosses represents the L2-norm of477

the normalized acoustic admittance when reaching a periodic regime. Quasi-478

periodic regime illustrating the maximum of peaks absolute values is repre-479

sented with dark circles. Remarkably, it exists in the vicinity of the resonance480

frequency ω0 and can be identified by the vertical black dashed lines.481

In the vicinity of 1:1 resonance, an optimal response frequency of the482

system can be identified through a selected threshold. It corresponds to the483

maximum of energy that the primary system can reach during an energy484
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exchange process with the NES. Thus, the optimal design defined in terms485

of normalized admittance is represented by the horizontal dash-dotted light486

line.487

Remarkably, the added passive nonlinear shunt circuit allowed a signifi-488

cant decrease of the admittance, principally at the vicinity of the resonance489

frequency where the TET prevents the velocity to exceed a certain ampli-490

tude. Moreover, we can identify that the frequency bandwidth undergoes a491

45% of relative increase.492

The sound absorption coefficient is usually used as a performance indi-493

cator for linear studies to optimize its bandwidth. However, underlining the494

fact that with the nonlinear coupling, this coefficient may not be necessar-495

ily appropriate since the interest of the nonlinear targeted energy transfer496

is mainly to highly-energetic non-stationary regimes. Moreover, it does not497

reflect the different responses of such systems (strong modulated responses,498

modal exchanges. . . ). Then, we choose to apply the following expression of499

the sound absorption coefficient α, defined for periodic regimes only as500

α(ω) = 1− |r(ω)|2 (37)

with |r(ω)| defining the magnitude of the following reflection coefficient501

r(ω) =
1− Ym(ω)

1 + Ym(ω)
. (38)

As done by some authors in the nonlinear field ([28, 29]) we choose to502

illustrate certain properties of the nonlinear shunt circuits compared to clas-503

sical linear ones, highlighting the performance of the sound absorption just504

for periodic regime (the sound absorption coefficient is not defined for quasi-505

periodic ones). Figure 18 shows a comparison of the sound absorption co-506

efficient between the different treated cases (without coupling, with linear507

optimal resistor and nonlinear shunt circuits). We should note that for the508

nonlinear shunt circuit using the physical parameters of Test 2, the sound509

absorption was not defined during quasi-periodic regimes and thus not illus-510

trated between the vertical two dashed lines. Figure 18 highlights the fact511

that we managed to increase the controlled absorption bandwidth and ob-512

tain better absorption for low frequencies without an optimization study for513

now, even if we are less efficient than an optimal linear resistor around the514

resonance frequency.515
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We should highlight he fact that the absorption bandwidth can be con-516

trolled by choosing suitable passive nonlinear control parameters Rc, Lc, C517

and k.518

Without coupling
With optimal linear coupling
With NL coupling Test 1 
With NL coupling Test 2

Figure 18: Comparison of the sound absorption coefficient as function of frequency between
the cases of open circuit, optimal linear resistor, the shunt nonlinear circuits Test 1 for
Lp = 132 dB and Test 2 for Lp = 115 dB both for k = 3468 V−2.

6.4.2. Remarks and interpretations519

The present approach uses the complexification of Manevitch for the case520

of 1:1 resonance. Then, in the vicinity of ω0 this approach presents a pre-521

dictive tool allowing an analytical identification of the desirable regime for a522

give sound pressure level and a selected frequency. An optimal NES design523

can be identified when the system response does not exceeded the chosen524

threshold. However, for the present physical parameters, Figure 17 displays525

a slight difference between the admittance maximum amplitude in the quasi-526

periodic regime and the horizontal threshold. This gap can be due to several527

factors, among which we can mention the choice of the physical parameters.528

In addition, we used the classical Manevitch variables which only considers529

the first harmonics. An extended version of the complex variables is under530

investigations, for a finer approximation of the result.531

7. Conclusion532

A passive nonlinear passive shunt was coupled to the loudspeaker’s termi-533

nals, playing the role of an electroacoustic absorber. The resulting structure534
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was described as a two dofs system, which was analytically treated using an535

invariant manifold approach for the 1:1 resonance. The equilibrium points536

and fold singularities were detected, allowing a predictive tool to design the537

nonlinear passive shunt during the energy exchange process. The preliminary538

results show that this approach is able to vary the acoustic properties of the539

loudspeaker, with a relative reduction of the normalized admittance and a540

broadening of the absorption frequency range.541

Further work is dedicated to the design and optimization process of the542

passive nonlinear shunt, which allows larger frequency bandwidth and higher543

acoustic absorption performances. Moreover, we aim to extend the present544

analytical approach for a finer investigations with larger frequency range(1:2,545

2:1,. . . resonances). In practice, we aim to implement an experimental setup546

in order to validate our analytico-numerical results.547
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Appendix A.553

Explicit values of variables in System (29) can be written as follows554 

A = −γ
η

B =
1

η

(
1− ξG(N2

2 )
)
N2

C = −1

η

(
1− ξG(N2

2 )− 2ξN2
2G
′(N2

2 )
)

D = −γ
η
N2

E =
1

η

[
λγ

2
+
αη

2
− σ

(
1− ξG(N2

2 )
)]
N2 +

1

2
f cos (δ2)

F =
1

η

[
γσ +

λ

2

(
1− ξG(N2

2 )
)]
N2 −

1

2
f sin (δ2)

(A.1)
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