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Numerical refocusing in any plane is one powerful fea-
ture granted by measuring both the amplitude and the
phase of a coherent light beam. Here we introduce
a method based on the first Rytov approximation of
scalar electromagnetic fields which (i) allows numeri-
cal propagation without requiring phase-unwrapping
after propagation and (ii) limits the effect of artificial
phase singularities that appear upon numerical defo-
cusing when the measurement-noise is mixing with the
signal. We demonstrate the feasibility of this method
with both scalar electromagnetic field simulations and
real acquisitions of microscopic biological samples im-
aged at high numerical aperture.

© 2018 Optical Society of America

OCIS codes: 070.7345 Wave propagation, 090.1995 Digital holography,
110.7348 Wavefront encoding, 120.5050 Phase measurement, 180.3170
Interference microscopy
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1. INTRODUCTION

Having the ability to measure not only the intensity but the
scalar electromagnetic field (intensity and phase) is of high inter-
est for many applications. In optical microscopy, phase informa-
tion allows high-contrast imaging of biological semi-transparent
samples. Complex amplitude measurement typically allows nu-
merical focusing [1] which is very valuable for biological studies
requiring hours or days of acquisition [2, 3]. Tiny thermal insta-
bility (e.g. ~ 1° variation) may indeed induce several microns
of defocus [4].

Many different solutions have been proposed to retrieve the
phase information. We may identify two categories: (i) those
which directly retrieve the phase of the light by means of a ref-
erence beam (see e.g. [5-12]) — the most common technique
being digital holography — and (ii) those which do not directly
retreive the optical phase but rather a related quantity such
as its transverse gradient map (see e.g. [13-19]) — the most

common technique being wavefront sensing. In direct meth-
ods, phase is provided modulo 27t: phase is then said to be
“wrapped”. Phase wrapping is intrinsically related to the phase
quantity itself which is not a single valued physical quantity.
Phase singularities resulting from so-called helical or edge phase
“disclinations” can thus appear [20]. However, in microscopy
applications, the phase quantity is usually related to the delay
introduced by a thin sample, imprinting a smooth and regular
distortion function to the wavefront. In this case, phase-delays
larger than 27t (commonly reached in real biological samples
[5]) result in phase wrapping, irrelevant to the sought-for op-
tical path length measurement. Phase unwrapping algorithms
have then to be applied to retrieve a continuous phase profile
[21]. Unwrapping can fail in the presence of noise — associated
with accidental disclinations — or in the case of large phase gra-
dients. The methods of the second phase-retrieval family are
less prone to such artifacts because the measured quantity is not
2mt-periodic. Wavefront sensor based methods [14-17] typically
measure the wavefront derivatives rather than the phase map,
so avoiding the wrapping problems.

However, numerical propagation of a complex wavefield typ-
ically requires computing the sine and cosine of the measured
phase. The computed phase is thus wrapped, which is particu-
larly regrettable when the imaged phase object is smooth and the
original measured phase is retrieved in a wrapping-free manner.

In this work we propose a new algorithm based on the Rytov
approximation [22, 23] , working with unwrapped phase profiles.
Propagation is thus computed on the phase itself, so without
phase-map wrapping. It intrinsically avoids the generation of
phase singularities when noise is mixed with the signal to be
propagated. At first order approximation, for small defocus,
the Rytov field propagation provides the same result as EM
field propagation while removing the requirement for phase
unwrapping after propagation. We also demonstrate that large
defocus ranges can also be computed in a step-by-step manner,
by updating the amplitude term at every step.

2. PUPIL FUNCTION AND CLASSICAL APPROACH FOR
NUMERICAL REFOCUSING

When considering quantitative phase and intensity imaging, it
is convenient to consider the image formation in the Fourier
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%
space. For a plane wave illumination with wave-vector kg, the
%
diffracted wavevector k; must satisfy:

ki =k + K
{ E)=|5]

with kg = 271/ A, A the illumination wavelength in the immer-
sion medium of the objective, and K the object spatial frequen-
cies. This equation system implies that the diffracted wave-
vectors are carried by the Ewald sphere[24, 25]. It is valid
for propagating light-waves and under the single-scattering
regime which is generally the case in phase imaging of thin
semi-transparent samples.

Here, we consider that the sample is imaged in a trans-
illumination scheme with a microscope objective of finite numer-
ical aperture NA. With these assumptions, the exiting diffracted
angles are carried by a portion of the Ewald sphere, implying a
bijection between the transverse spatial frequencies of the object
and the transverse wavevectors of the diffracted waves. Sam-
pling of the scalar EM field in a single plane thus carries the full
information for 3D wavefield reconstruction, so-allowing image
refocusing. From equation 1, the 3D point spread function (PSF)
H3p(x,y,z) of the microscope can be obtained via its Fourier
Transform H3p (Kx, Ky, Kz):

Asp (Ky Ky, Ko) = 6 (HBH - Hk_SH) NA R Zp

=0 else,

with ¢ the Dirac function and p = /ké Lt kf, " In the scope of

numerical refocusing in one plane, it is interesting to consider
one slice of this PSF in the Fourier space. For simplification,
%
let us consider an illumination along the optical axis (i.e. kg =
ko - u_>z) as it is straightforward to generalize all the following
formulas for a tilted illumination angle [26]. In this case p =

\/ ké, ot k?l,y = \/ K% + K7 and we obtain from equation 1 and 2:

~ l"ng() {1— 1—%}
Hz—z, (KXrKy) =e v olif NA-kg>p

=0 else,

3

with zg the distance to the best focus plane. Equation 3 is
known as the pupil function for Fresnel diffraction theory.

Considering a scalar EM field E,—o (x,y) = A (x,y) - e o(ry),
one way to obtain a numerical refocusing in a plane z = zj is to
convolve the EM field by the pupil function:

Ez—z (%, y) =E,—o(x, y) ® Hy—z, (X, y) @)
Which can be rewritten in the Fourier space as:

N N i-kozo[lf 1- |
Eresy (Ko, Ky) = Eamg (K, Ky) - @ it NA ko > p
0

else.
(5)
As previously mentioned, to perform the numerical propaga-
tion it is mandatory to work with the scalar EM field E. It means
that the phase has to be introduced into the complex exponential
before propagation. Thus, the propagated phase will also be
wrapped between 0 and 27.

3. FIRST RYTOV APPROXIMATION AND STEP-BY-STEP
NUMERICAL PROPAGATION

To allow a wrapping free numerical propagation, we propose not
to use directly the scalar EM field but rather its first order Rytov
approximation. The first Rytov approximation has been widely
used in diffraction tomography to retrieve 3D refractive index
distribution from phase and intensity measurements [22, 25].
We define the Rytov EM field Egyoy as:

Erytoo (x,y) = (E (x,y)) = In(A(x,y)) +i-¢(x,y). (6)

The first Rytov approximation has been discussed to be valid
when the spatial gradient of the field V Egy oy is smaller than the
wavevector kg [27], which is commonly the case for biological
samples. Numerical propagation of Egyt, can then be achieved
using the pupil function H defined in equation 3:

ERytov,z:zo (x,y) = ERytov,z:O (%,y) ® Hz— (x,y). (7)

Let us now discuss more quantitatively the accuracy of the
Rytov field approximation for numerical refocusing compared
to conventional numerical refocusing using the scalar EM field E.
Because the calculation is done in the Fourier space, we propose
to evaluate the performance of the Rytov field propagation ver-
sus the EM field propagation by considering single-frequency
phase modulation signals ¢ (x,y) = ¢q - sin (2t/P - x), with P
the period of the phase modulation. According to the Jacobi-
Anger expansion:

€i~(pg~sin(€) _ +Z: Ju (‘PO) ei~n-9/ ®)
n=—oo

for large values of the phase modulation amplitude ¢g, the
frequency support of the EM field is not a single frequency
signal but harmonics are generated. This is not the case with
the Rytov approximation and this is the main limitation of the
approximation.

To quantify this assumption, we have compared the EM
field propagation according to Eq. 5 and in the frame of the
Rytov approximation (Eq. 7) by propagating single-frequency
phase modulation signals (with uniform intensity illumination)
with different amount of defocus, modulation amplitudes and
phase modulation periods. Setting arbitrarily a maximum
tolerable discrepancy of 5% (in standard deviation) between
approximated and exact propagated phase, we obtained the
figure l.a. It shows a chart of the corresponding maximum
modulation amplitude as a function of defocus and phase
modulation periods. These simulation results have been
obtained using A = 500 nm and NA = 1.3. Phase modulation
periods are shown in log scale both in ym and in fraction of
the coherent point spread radius rpgr. The defocus is also
in log-scale both in ym and in Rayleigh distance drgyieign-
Noteworthy, the high frequencies are more affected by the
Rytov approximation while the lower frequencies tend to be
conserved even with very high defocus and phase modulation.
For example, for spatial scales comparable with large biological
mammal cells (i.e. period of ~ 30im) the Rytov approximation
induces less than 5% of differences even with 10A of phase
modulation and 100 ym defocus. This amount is very large
compared to the observable conventional values of ~ 1A of
phase shift for a regular cell [14, 17].
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To minimize errors obtained on the phase when propagating
the Rytov field over long distances, we suggest a step-by-step
refocusing algorithm. Let us describe the motivation of this algo-
rithm. The propagated intensity using the Rytov approximation
or the regular EM field are also exhibiting differences. Concur-
rently, when using the EM field propagation, the intensity Iry;
accumulates more and more signatures from the phase while
being preserved from any wrapping or singularity error. It is
then interesting to take into account Ir)s while using the Rytov
propagation. It improves the reliability while preserving the
advantages associated with phase calculation by Rytov propaga-
tion. We have thus built a step-by-step propagation algorithm
and update the pristine intensity I at every step, all along the
propagation. Atstep m, the intensity Igps ((m — 1)8) obtained by
propagating the EM field (Eq. 5) and the phase ¢rytoo ((m — 1))
obtained by propagating the Rytov field (Eq. 7) are combined
using Eq. 6 and then propagated over a distance J using Eq. 7.
The algorithm flow-chart is presented in fig. 2.

Direct Rytov defi i ;
(a) irect Rytov defocusing defocus (dg, e, UNIt)

0,1 1 10

Phase modulation period (um)
Phase modulation period (r.g. unit)

1 100

defocus (um) Amplitude max. (x 1/2)
b) Step-by-step Rytov defocusin, ;
(b) p-by-step Ryt y g defoc1us (Agayiign UNIt) © PR -

Phase modulation period (um)
Phase modulation period (rg, unit)

0,1 1 10 100
defocus (um)

Fig. 1. Validity domain of the Rytov approximation for nu-
merical propagation. Comparison between direct and step-
by-step propagation (a) Maximum amplitude for pure-sine
phase modulation leading to less than 5% error between a
direct propagation with the Rytov approximation and con-
ventional scalar EM field propagation. (b) Same as (a) with a
step-by-step Rytov approximation propagation

This algorithm is more time consuming than direct Rytov
and EM field numerical refocusing. It requires to perform
3 x N + 1 Fourier transforms with N the number of iterations of
the algorithm while direct refocusing requires only 2 Fourier

transforms. However the accuracy is much improved. As for
direct Rytov field refocusing, we have studied the discrepancy
between pristine EM field propagation and step-by-step Rytov
field propagation of single-frequency phase modulation signals
(uniform intensity illumination) for different amount of defocus,
modulation amplitudes and phase modulation periods. Consid-
ering the same 5%-error tolerance as for Fig. 1.a, chart 1.b was
computed. In this step-by-step algorithm, the result accuracy
depends on the step magnitude 6. However, we observed that
results did not change significantly when considering steps
6 < A/2. The simulation results have thus been obtained taking
6 = A/2 (and using the same parameters as for Fig. 1.a: A = 500
nm, NA = 1.3). As expected, for large defocus (> 8dRayicign)
step-by-step Rytov propagation is more accurate than direct
numerical refocusing using the Rytov approximation. Moreover,
for high-frequency phase-modulations, the reconstruction is
possible with higher phase-modulation values (from 2 to 10x

more) using the Rytov step-by-step algorithm. This means that
the diffraction rings and the small details in the images will be
preserved.

Iz=0)
p(z=0) /——F——————————————————
Q) 2) V)
| EM field “—{ EM field EM field [ Ip\,(2=2))
DIOR2E; propag. propag. B
=3 dz=25 dz=Nx3 Pem(@=2))
—{Rytov field Rytov field| “———cmv--- —{Rytov field|—— ™ (z=2
propag. Ig\(2=8) propag. Iy, (2=28) propag. Ry““( o)
=35 =5 =8 S s [ Pran(z=2y)
d2=8 | ppyon(2=0)| =8 Pryion@=29) dz=3 Rytoy

Propagation to z,= N'x3

Fig. 2. Step-by-step propagation algorithm using the first
Rytov approximation. At every step, the intensity is updated
by propagating the EM field.

4. EXPERIMENTAL VALIDATION

Let us now discuss the potential of the Rytov approximation
for numerical propagation of real phase measurements. First
we considered a sample composed of a 5 ym polystyrene bead
immersed in an immersion oil (Nikon, USA) of refractive index
1.51. The refractive index mismatch is thus An = 0.07 and the
bead maximum optical path difference is 350 nm. This sample
can be considered as a phantom of a small suspended living cell.
In figure 3.a a typical in-focus phase image is presented; this
transmission-image is obtain using a commercial quadriwave
lateral shearing interferometer (SID4Bio, Phasics) [14] plugged
on a conventional microscope (Nikon TiE) equipped with 100 x
NA=1.3 objective. The sample is illuminated by a halogen lamp
with a bandwidth limited to 700 & 50 nm (Chroma). The spatial
phase noise is negligible (0;,y;s; = 0.3 nm) and the aim of this
study is to discuss on experimental measurements the effect
of the Rytov approximation for numerical propagation on a
quasi noise-free image. Fig. 3.b shows the results of numerical
refocusing using the EM field while fig. 3.c is obtained with
Rytov field propagation.

Noteworthy, the difference between direct Rytov approx-
imation refocusing and EM field numerical defocusing is
negligible until ~ 5 ym of defocus. For step-by-step Rytov
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approximation defocusing, the error is negligible over ~ 12
um. This result is consistent with the theoretical study in fig. 1
for an object of principal period 7.6 rpgr, a phase modulation
of A/2 and a propagation of 2.6 dggy.ign (direct refocusing)
and 6.2 dpgyieign (step-by-step refocusing). Defocusing using
direct Rytov approximation leads to phase images which are
axially symmetrical respect to the best focus while EM field
defocusing leads to non-symmetrical phase maps. Step-by-step
Rytov propagation allows retrieving this asymmetric behavior.
However, for regular refocusing near the image plane, the Rytov
approximation is sufficient.

(a) Acquired phase (b) EM field numerical propagation

1
r’x 0 ! r’
(7. unit)
y X
0
5um 5um

(c)Direct Rytov field num. propag.

=
=S

(d) Step-by Step Ryt. num. propag.

=
me——

Fig. 3. Numerical defocusing on phantom (polystyrene
bead). (a) Experimental quantitative phase image of a 5 ym
polystyrene bead in immersion oil with Anp,pys /0i1 = 0.07.
(b) Numerical defocusing using the EM field from —10 ym

to +10 um. The image is a slice of the 3D phase stack along v,
crossing the center of the bead. (c) Same as (b) with a numer-
ical defocusing using the Rytov field. (d) Same as (b) with a
step-by-step numerical propagation using the Rytov field.

Finally, we demonstrate the capability of our method to
refocus phase images from biological samples inducing large
phase-shifts. For this purpose, we have imaged a drosophila
embryo using the same setup as presented before, the only
difference being the wavelength adjusted to 510 & 25 nm
(Semrock). A measured phase map is presented in fig. 4.a.

While the maximum phase shift is large (up to 7A), the phase
map is free from phase-wrapping since the quantitative phase
sensor (quadriwave lateral shearing interferometer) is sentitive
to the phase gradient and not the direct phase value. Numer-
ical defocusing at z = 10 ym using the EM field (Fig. 4.b),
Rytov approximation with direct defocusing (Fig. 4.c) and Rytov
approximation with step-by-step defocusing (Fig. 4.d) are con-
sidered. Even with unwrapping algorithms (such as the ones
described in [21, 28]), the propagated phase map using the EM
field carries reconstruction errors essentially at the edges of the

embryo (see zoom in image 4.b). These errors arise from the
intensity and phase noise which, combined with the high phase
signal, generates local singularities and branch-cuts due to the
phase wrapping. This artificial singularities can lead to phase
errors when unwrapping is performed. Since the Rytov field
conserves an unwrapped phase during the numerical propa-
gation, it remains free from any singularity-based errors after
the propagation. Here again the step-by-step refocusing leads
to a better diffraction ring propagation and tends to be more
accurate than the direct Rytov refocusing.

(a) Acquired phase (b) EM field numerical propagation

X A= ’ ! i
® \
IJ’ (% unit) (-
0

(d) Step-by Step Ryt. num. propag.

z=10um

(c) Direct Rytov field num. propag.
= zZ= 10],11'1'1

ﬂ

[ iz 10}111’1
" \

Fig. 4. Numerical propagation on a biological sample
(drosophila embryo). (a) Experimental quantitative phase
image of a drosophila embryo head. (b) Numerical defocusing
using the EM field showing multiple phase singularity (see e.g.
zoom, black arrow). (c) Same as (b) with a numerical defocus-
ing using the Rytov field, no phase singularity (see zoom). (d)
Same as (b) with a step-by-step numerical propagation using
the Rytov field, no phase singularity and better accuracy on
diffraction rings (see zoom).

5. CONCLUSION

We have demonstrated that numerical refocusing is possible
using the first Rytov approximation of the scalar EM field. The
validity of this approximation has been discussed and depends
on the phase amplitude, spatial frequencies and refocusing dis-
tance. For regular biological samples, direct numerical refocus-
ing at distance of 5 to 10 Rayleigh distances is possible with
very limited errors. We have also introduced a step-by-step
Rytov field defocusing algorithm to increase the reliability of
the method especially for high-frequency phase information
and upon large defocus. Numerical refocusing using the Rytov
field is performed without phase-wrapping. This is of major
interest especially when considering propagation of large phase
values and/or when the phase noise is important which lead to
artificial phase singularities, possibly phase-unwrapping algo-
rithm failure and thus errors in refocused phase maps. The Ry-
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tov approximation is very useful when applied in combination
with quantitative phase techniques that are intrinsically robust
against phase-wrapping problems such as wavefront-sensing
based approaches. Step-by-step Rytov propagation could also be
considered and adapted in the scope of diffraction tomography.
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