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A finite-volume scheme for a cross-diffusion
model arising from interacting many-particle
population systems

Ansgar Jüngel and Antoine Zurek

Abstract A finite-volume scheme for a cross-diffusion model arising from the
mean-field limit of an interacting particle system for multiple population species
is studied. The existence of discrete solutions and a discrete entropy production in-
equality is proved. The proof is based on a weighted quadratic entropy that is not
the sum of the entropies of the population species.
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1 Introduction

1.1 Presentation of the model

We consider the following cross-diffusion system:

∂tui +div
(
−δ∇ui−ui∇pi(u)

)
= 0, pi(u) =

n

∑
j=1

ai ju j in Ω , t > 0, (1)

where i = 1, . . . ,n with n ≥ 2, Ω ⊂ R2 is an open bounded polygonal domain, and
δ > 0, ai j > 0. We impose the initial and no-flux boundary conditions

ui(0) = u0
i ≥ 0 in Ω , ∇ui ·ν = 0 on ∂Ω , t > 0, i = 1, . . . ,n, (2)
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where ν is the exterior unit normal vector on ∂Ω . We write u := (u1, . . . ,un) and
u0 := (u0

1, . . . ,u
0
n). Equations (1) are derived from a weakly interacting stochastic

many-particle system in the mean-field limit [7]. It can be seen as a simplification
of the Shigesada-Kawasaki-Teramoto (SKT) population model [12], where the dif-
fusion is reduced to δ∇ui. The two-species system was analyzed first in [3], but up
to now, no analytical or numerical results are available for the n-species system. The
diffusion matrix associated to (1) is neither symmetric nor positive definite but we
show below that system (1) possesses an entropy structure [10] yielding gradient
estimates that are the basis for the numerical analysis.

We assume that A := (ai j) ∈ Rn×n is positively stable (i.e., all eigenvalues of A
have positive real part) and that the detailed-balance condition holds, i.e., there exist
numbers π1, . . . ,πn > 0 such that

πiai j = π ja ji for all i, j = 1, . . . ,n. (3)

We refer to [6] for an interpretation of this condition and its connection to Markov
chains. Note that for the two-species model this condition is always satisfied, just
set π1 = a21 and π2 = a12. Since A1 := diag(π−1

i ) is symmetric, positive definite and
A2 := (πiai j) is symmetric, by [11, Prop. 6.1], the number of positive eigenvalues of
A = A1A2 equals that for A2. Thus, A2 has only positive eigenvalues, which together
with the symmetry means that A2 is symmetric, positive definite.

Our (numerical) analysis is based on the observation that system (1) possesses
an entropy structure with a weighted quadratic entropy that has not been observed
before in cross-diffusion systems:

H[u] =
∫

Ω

h(u)dx, where h(u) :=
1

2δ

n

∑
i, j=1

πiai juiu j =
1

2δ
uT A2u,

where (A2)i j = πiai j. Interestingly, this entropy is not of the form ∑
n
i=1 hi(ui), but it

mixes the species. A formal computation shows that

dH
dt

+
n

∑
i, j=1

πiai j

∫
Ω

∇ui ·∇u jdx+
1
δ

n

∑
i=1

πi

∫
Ω

ui|∇pi(u)|2dx = 0.

With λ > 0 being the smallest eigenvalue of A2, we conclude the following entropy
production inequality:

dH
dt

+λ

n

∑
i=1

∫
Ω

|∇ui|2dx+
1
δ

n

∑
i=1

πi

∫
Ω

ui|∇pi(u)|2dx≤ 0.

Our aim is to prove this inequality for the finite-volume solutions.
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1.2 The numerical scheme

A mesh of Ω is given by a set T of open polygonal control volumes, a set E of
edges, and a set P of points (xK)K∈T . We assume that the mesh is admissible in
the sense of Definition 9.1 in [9]. We distinguish in E the interior edges σ = K|L
and the exterior edges such that E = Eint∪Eext. For a given control volume K ∈T ,
we denote by EK the set of its edges. This set splits into EK = Eint,K ∪Eext,K . For any
σ ∈ E , there exists at least one cell K ∈ T such that σ ∈ EK and we denote this
cell by Kσ . When σ is an interior edge, σ = K|L, Kσ can be either K or L. For all
σ ∈ E , we define dσ = d(xK ,xL) if σ = K|L ∈ Eint and dσ = d(xK ,σ) if σ ∈ Eext,K .
Then the transmissibility coefficient is defined by τσ = m(σ)/dσ for all σ ∈ E . We
assume that the mesh satisfies the following regularity constraint:

∃ξ > 0, ∀K ∈T , ∀σ ∈ EK : d(xK ,σ)≥ ξ dσ . (4)

The size of the mesh is denoted by ∆x = maxK∈T diam(K). Let NT ∈N be the num-
ber of time steps, ∆ t = T/NT be the time step size, and tk = k∆ t for k = 0, . . . ,NT .

Let HT be the linear space of functions Ω → R which are constant on each
K ∈T . For v ∈HT , we introduce

DK,σ v = vK,σ − vK , Dσ v = |DK,σ v| for all K ∈T , σ ∈ EK ,

where vK,σ is either vL (σ =K|L) or vK (σ ∈ Eext,K). Finally, we define the (squared)
discrete H1 norm

‖v‖2
1,2,T = ∑

σ∈E
τσ (Dσ v)2 + ∑

K∈T
m(K)v2

K .

For all K ∈T and i = 1, . . . ,n, u0
i,K denotes the mean value of u0

i over K. The finite-
volume scheme for (1) reads as

m(K)

∆ t
(uk

i,K−uk−1
i,K )+ ∑

σ∈EK

F k
i,K,σ = 0, i = 1, . . . ,n, (5)

F k
i,K,σ =−τσ

(
δDK,σ uk

i +uk
i,σ DK,σ pi(uk)

)
for all K ∈T , σ ∈ EK , (6)

with uk = (uk
1, . . . ,u

k
n) and uk

i,σ := min{uk
i,K ,u

k
i,K,σ}. As in [1], this definition of uk

i,σ

allows us to prove the nonnegativity of uk
i,K . This property can be also obtained by

an upwind approximation of ui∇pi(u) in (1).

1.3 Main result

The main result of this work is the existence of nonnegative solutions to scheme
(5)-(6), which preserve the entropy production inequality.
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Theorem 1 (Existence of discrete solutions). Assume that u0 ∈ L2(Ω)n with u0
i ≥

0, δ > 0, ai j > 0, A is positively stable, and (3) holds. Then there exists a solution
(uk

K)K∈T ,k=0,...,NT with uk
K =(uk

1,K , . . . ,u
k
n,K) to scheme (5)-(6) satisfying uk

i,K ≥ 0 for
all K ∈T , i = 1, . . . ,n, and k = 0, . . . ,NT . Moreover, the following discrete entropy
production inequality holds:

∑
K∈T

m(K)h(uk
K)+∆ tλ

n

∑
i=1

∑
σ∈E

τσ (Dσ uk
i )

2

+
∆ t
δ

n

∑
i=1

∑
σ∈E

τσ πiuk
i,σ (Dσ pi(uk))2 ≤ ∑

K∈T
m(K)h(uk−1

K ), (7)

where λ denotes the smallest eigenvalue of A2.

We expect that the detailed-balance condition (3) can be replaced by a weak
cross-diffusion condition as in [6]. The positive stability of A implies the parabol-
icity of (1) in the sense of Petrovskii. Indeed, A2, defined by (A2)i j = πiai j, and
A3 = diag(ui/πi) are symmetric, positive definite matrices for u ∈ (0,∞)n. Thus,
its product (uiai j) has only positive eigenvalues [4, Theorem 7] which proves the
claim. The assumption that the diffusion coefficient δ is the same for all species
is a simplification needed to conclude that h(u) is coercive, h(u) ≥ (λ/2δ )|u|2 for
u ∈ Rn. It can be removed by exploiting the Shannon entropy to show first that ui
is nonnegative, but this requires more technical effort which will be detailed in a
future work.

2 Proof of Theorem 1

We proceed by induction. For k = 0, we have u0
i ≥ 0 by assumption. Assume that

there exists a solution uk−1 for some k ∈ {1, . . . ,NT} such that uk−1
i ≥ 0 in Ω , i =

1, . . . ,n. The construction of a solution uk is split in several steps.
Step 1: Definition of a linearized problem. Let R > 0, we set

ZR :=
{

w = (w1, . . . ,wn) ∈ (HT )n : ‖wi‖1,2,T < R for i = 1, . . . ,n
}
,

and let ε > 0 be given. We define the mapping Fε : ZR→ Rθn by Fε(w) = wε , with
θ = #T , where wε = (wε

1, . . . ,w
ε
n) is the solution to the linear problem

ε

(
− ∑

σ∈EK

τσ DK,σ (wε
i )+m(K)wε

i,K

)
=−

(
m(K)

∆ t
(ui,K−uk−1

i,K )+ ∑
σ∈EK

F+
i,K,σ

)
,

(8)
for K ∈ T , i = 1, . . . ,n, and F+

i,K,σ is defined in (6) with ui,σ replaced by ūi,σ =

min{u+i,K ,u
+
i,K,σ}, where z+ = max{0,z}. Here, ui,K is a function of w1,K , . . . ,wn,K ,

defined by the entropy variables
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wi,K =
πi

δ
pi(uK) =

n

∑
j=1

πiai j

δ
u j for all K ∈T , i = 1, . . . ,n. (9)

This is a linear system with the invertible coefficient matrix A2/δ , and so, the func-
tion uK = u(wK) is well-defined. The existence of a unique solution wε

i to the linear
scheme (8)-(9) is now a consequence of [9, Lemma 3.2].

Step 2: Continuity of Fε . We fix i ∈ {1, . . . ,n}. Multiplying (8) by wε
i,K and sum-

ming over K ∈T , we obtain, after discrete integration by parts,

ε‖wε
i ‖2

1,2,T =− ∑
K∈T

m(K)

∆ t
(ui,K−uk−1

i,k )wε
i,K + ∑

σ∈Eint
σ=K|L

F+
i,K,σ DK,σ wε

i =: J1 + J2.

By the Cauchy-Schwarz inequality and the definition of F+
i,K,σ , we find that

|J1| ≤
1

∆ t

(
∑

K∈T
m(K)(ui,K−uk−1

i,K )2
)1/2(

∑
K∈T

m(K)(wε
i,K)

2
)1/2

|J2| ≤
(

∑
σ∈E

τσ

(
δDσ ui + ūi,σ Dσ pi(u)

)2
)1/2(

∑
σ∈E

τσ (Dσ wε
i )

2
)1/2

.

Hence, since ui is a linear combination of (w1, . . . ,wn) ∈ ZR, there exists a con-
stant C(R) > 0 which is independent of wε such that |J1|+ |J2| ≤ C(R)‖wε

i ‖1,2,T .
Inserting these estimations, it follows that ε‖wε

i ‖1,2,T ≤C(R).
We turn to the proof of the continuity of Fε . Let (wm)m∈N⊂ ZR be such that wm→

w as m→∞. The previous estimate shows that wε,m :=Fε(wm) is bounded uniformly
in m ∈ N. Thus, there exists a subsequence of (wε,m), which is not relabeled, such
that wε,m→ wε as m→ ∞. Passing to the limit m→ ∞ in scheme (8)-(9) and taking
into account the continuity of the nonlinear functions, we see that wε

i is a solution
to (8)-(9) for i = 1, . . . ,n and wε = Fε(w). Because of the uniqueness of the limit
function, the whole sequence converges, which proves the continuity.

Step 3: Existence of a fixed point. We claim that the map Fε admits a fixed point.
We use a topological degree argument [8], i.e., we prove that deg(I−Fε ,ZR,0) = 1,
where deg is the Brouwer topological degree. Since deg is invariant by homotopy, it
is sufficient to prove that any solution (wε ,ρ) ∈ ZR× [0,1] to the fixed-point equa-
tion wε = ρFε(wε) satisfies (wε ,ρ) 6∈ ∂ZR× [0,1] for sufficiently large values of
R > 0. Let (wε ,ρ) be a fixed point and ρ 6= 0, the case ρ = 0 being clear. Then wε

i
solves

ε

(
− ∑

σ∈EK

τσ DK,σ (wε
i )+m(K)wε

i,K

)
=−ρ

(
m(K)

∆ t
(uε

i,K−uk−1
i,K )+ ∑

σ∈EK

F+,ε
i,K,σ

)
,

(10)
for all K ∈ T , i = 1, . . . ,n, and F+,ε

i,K,σ is defined as in (6) with u replaced by uε

which is related to wε by (9). The following discrete entropy production inequality
is the key argument.
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Lemma 1 (Discrete entropy production inequality). Let the assumptions of The-
orem 1 hold. Then, for any ρ ∈ (0,1] and ε > 0,

ρ ∑
K∈T

m(K)h(uε
K)+ ε∆ t

n

∑
i=1
‖wε

i ‖2
1,2,T +ρ∆ tλ

n

∑
i=1

∑
σ∈E

τσ (Dσ uε
i )

2

+ρ
∆ t
δ

n

∑
i=1

∑
σ∈E

τσ πiūε
i,σ (Dσ pi(uε))2 ≤ ρ ∑

K∈T
m(K)h(uk−1

K ), (11)

with λ > 0 being the smallest eigenvalue of A2 and obvious notations for ūε
i,σ .

Proof. We multiply (10) by ∆ twε
i,K and sum over i and K ∈ T . This gives, after

discrete integration by parts, ε∆ t ∑
n
i=1 ‖wε

i ‖2
1,2,T + J3 + J4 + J5 = 0, where

J3 = ρ

n

∑
i=1

∑
K∈T

m(K)(uε
i,K−uk−1

i,K )wε
i,K ,

J4 =−ρ∆ t
n

∑
i=1

∑
σ∈Eint
σ=K|L

τσ δDK,σ uε
i wε

i,K ,

J5 = ρ∆ t
n

∑
i=1

∑
σ∈Eint
σ=K|L

τσ ūε
i,σ DK,σ pi(uε)DK,σ wε

i,K .

To estimate J3, we use the convexity of h; for J4, we take into account the symmetry
of τσ with respect to σ = K|L, definition (9) of wε

i and the positive definiteness of
A2; and for J5, we employ definition (9) of wε

i :

J3 ≥ ρ ∑
K∈T

m(K)
(
h(uε

K)−h(uk−1
K )

)
,

J4 = ρ∆ t
n

∑
i, j=1

∑
σ∈Eint
σ=K|L

τσ πiai jDK,σ uε
i DK,σ uε

j ≥ ρ∆ tλ
n

∑
i=1

∑
σ∈E

τσ (Dσ uε
i )

2,

J5 = ρ
∆ t
δ

n

∑
i=1

∑
σ∈E

τσ πiūε
i,σ (Dσ pi(uε))2.

Putting all the estimations together completes the proof. ut
We proceed with the topological degree argument. Lemma 1 implies that

ε∆ t
n

∑
i=1
‖wε

i ‖2
1,2,T ≤ ρ ∑

K∈T
m(K)h(uk−1

K )≤ ∑
K∈T

m(K)h(uk−1
K ).

Then, if we define R := (ε∆ t)−1/2(∑K∈T m(K)h(uk−1
K ))1/2 + 1, we conclude that

wε 6∈ ∂ZR and deg(I−Fε ,ZR,0) = 1. Thus, Fε admits a fixed point.
Step 4: Limit ε → 0. Recall that h(uK)≥ λ/(2δ )|uK |2 (note that ui,K ∈ R at this

point). Thus, by Lemma 1, there exists a constant C > 0 depending only on the mesh
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but not on ε such that for all K ∈T and i = 1, . . . ,n,

|uε
i,K | ≤C(λ )

(
∑

K∈T
m(K)h(uk−1

K )

)1/2

.

Thus, up to a subsequence, for i = 1, . . . ,n and for all K ∈T , we infer the existence
of ui,K ∈ R such that uε

i,K → ui,K as ε → 0. We deduce from (11) that there exists
a subsequence (not relabeled) such that εwε

i,K → 0 for any K ∈ T and i = 1, . . . ,n.
Hence, the limit ε → 0 in (8) yields the existence of a solution to (8) with ε = 0.

Let i ∈ {1, . . . ,n} and K ∈T such that ui,K = minL∈T ui,L. We multiply (8) with
ε = 0 by ∆ tu−i,K with z− = min{0,z} and use the induction hypothesis:

m(K)(u−i,K)
2−∆ t ∑

σ∈EK

τσ (δ +aiiūi,σ )DK,σ (ui)u−i,K

−∆ t ∑
j 6=i

∑
σ∈EK

τσ ai jūi,σ DK,σ (u j)u−i,K = 0.

The second term is nonpositive since ūi,σ ≥ 0 and DK,σ (ui)≥ 0, by the choice of K.
The last term vanishes since ūi,σ u−i,K = u+i,Ku−i,K = 0, by the definition of ūi,σ . This
shows that ui,L ≥ ui,K ≥ 0 for all L ∈ T and i = 1, . . . ,n. Passing to the limit ε → 0
in (11) yields inequality (7), which completes the proof of Theorem 1.

3 Convergence analysis and perspectives

In this section, we sketch the proof of the convergence of the scheme and possible
extensions of the method presented in this paper.

• Let us give the main features of the proof of convergence. First, thanks to the
a priori estimates given by (7) and assumption (4), we prove the existence of
a constant C > 0 independent of ∆x and ∆ t such that for all i = 1, . . . ,n and
φ ∈C∞

0 (QT ), where QT := Ω × (0,T ),

NT

∑
k=1

∑
K∈T

m(K)(uk
i,K−uk−1

i,K )φ(xK , tk)≤C‖∇φ‖L∞(QT ). (12)

Next, we consider a sequence of admissible meshes (Tη ,∆ tη)η>0 of QT , in-
dexed by the size η = {∆x,∆ t}, satisfying (4) uniformly in η . For any η > 0, we
denote by uη = (u1,η , . . . ,un,η) the piecewise constant (in time and space) finite-
volume solution constructed in Theorem 1. We deduce, thanks to [2, Theorem
3.9] and (12), that there exist nonnegative functions u1, . . . ,un such that, up to a
subsequence,

ui,η → ui a.e. in QT as η → 0, i = 1, . . . ,n.
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Moreover, we conclude from (7) that ui,η is uniformly bounded in L∞(0,T ;L2(Ω))
and L2(0,T ;Lp(Ω)) for p < ∞ thanks to (7) and Sobolev embedding. We de-
duce from the Riesz–Thorin theorem that (ui,η) is bounded in Lr(QT ) for some
2 < r < 4 and thus, it is equi-integrable. Thus, applying the Vitali convergence
theorem, we infer that, up to a subsequence, ui,η → ui strongly in Lr(QT ) for all
r < 4 as η → 0, i = 1, . . . ,n. The discrete entropy production inequality yields
a uniform bound of the discrete gradient ∇η of ui,η in L2(QT ); see [5] for a
definition of ∇η . It follows from [5, Lemma 4.4] that, up to a subsequence,

∇
η ui,η ⇀ ∇ui weakly in L2(QT ) as η → 0, i = 1, . . . ,n.

Finally, following the method developed in [5], we prove that the limit function
u = (u1, . . . ,un) is a weak solution to (1)-(2).

• We already mentioned that system (1) can be interpreted as a simplification of
the SKT model. In a future work, we will analyze a structure-preserving finite-
volume approximation of the full SKT model. Such a discretization was analyzed
in [1], but only for positive definite diffusion matrices associated to (1). We will
extend the analysis of [1] without this assumption.
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7. Chen, L., Daus, E., Jüngel, A.: Rigorous mean-field limit and cross-diffusion. Z. Angew.
Math. Phys. 70, article 122, 21 pages (2019)

8. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)
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