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A finite-volume scheme for a cross-diffusion model arising from the mean-field limit of an interacting particle system for multiple population species is studied. The existence of discrete solutions and a discrete entropy production inequality is proved. The proof is based on a weighted quadratic entropy that is not the sum of the entropies of the population species.

Introduction

Presentation of the model

We consider the following cross-diffusion system: ∂ t u i + divδ ∇u iu i ∇p i (u) = 0, p i (u) = n ∑ j=1 a i j u j in Ω , t > 0, [START_REF] Andreianov | Finite volume method for a cross-diffusion model in population dynamics[END_REF] where i = 1, . . . , n with n ≥ 2, Ω ⊂ R 2 is an open bounded polygonal domain, and δ > 0, a i j > 0. We impose the initial and no-flux boundary conditions

u i (0) = u 0 i ≥ 0 in Ω , ∇u i • ν = 0 on ∂ Ω , t > 0, i = 1, . . . , n, (2) 
Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Wien, Austria e-mail: juengel@tuwien.ac.at, antoine.zurek@tuwien.ac.at where ν is the exterior unit normal vector on ∂ Ω . We write u := (u 1 , . . . , u n ) and u 0 := (u 0 1 , . . . , u 0 n ). Equations ( 1) are derived from a weakly interacting stochastic many-particle system in the mean-field limit [START_REF] Chen | Rigorous mean-field limit and cross-diffusion[END_REF]. It can be seen as a simplification of the Shigesada-Kawasaki-Teramoto (SKT) population model [START_REF] Shigesada | Spatial segregation of interacting species[END_REF], where the diffusion is reduced to δ ∇u i . The two-species system was analyzed first in [START_REF] Bertsch | On interacting populations that disperse to avoid crowding: preservation of segregation[END_REF], but up to now, no analytical or numerical results are available for the n-species system. The diffusion matrix associated to [START_REF] Andreianov | Finite volume method for a cross-diffusion model in population dynamics[END_REF] is neither symmetric nor positive definite but we show below that system (1) possesses an entropy structure [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF] yielding gradient estimates that are the basis for the numerical analysis.

We assume that A := (a i j ) ∈ R n×n is positively stable (i.e., all eigenvalues of A have positive real part) and that the detailed-balance condition holds, i.e., there exist numbers π 1 , . . . , π n > 0 such that π i a i j = π j a ji for all i, j = 1, . . . , n.

(

We refer to [START_REF] Chen | Global existence analysis of cross-diffusion population systems for multiple species[END_REF] for an interpretation of this condition and its connection to Markov chains. Note that for the two-species model this condition is always satisfied, just set π 1 = a 21 and π 2 = a 12 . Since A 1 := diag(π -1 i ) is symmetric, positive definite and A 2 := (π i a i j ) is symmetric, by [START_REF] Serre | Matrices. Theory and Applications[END_REF]Prop. 6.1], the number of positive eigenvalues of A = A 1 A 2 equals that for A 2 . Thus, A 2 has only positive eigenvalues, which together with the symmetry means that A 2 is symmetric, positive definite.

Our (numerical) analysis is based on the observation that system (1) possesses an entropy structure with a weighted quadratic entropy that has not been observed before in cross-diffusion systems:

H[u] = Ω h(u)dx, where h(u) := 1 2δ n ∑ i, j=1 π i a i j u i u j = 1 2δ u T A 2 u,
where (A 2 ) i j = π i a i j . Interestingly, this entropy is not of the form ∑ n i=1 h i (u i ), but it mixes the species. A formal computation shows that

dH dt + n ∑ i, j=1 π i a i j Ω ∇u i • ∇u j dx + 1 δ n ∑ i=1 π i Ω u i |∇p i (u)| 2 dx = 0.
With λ > 0 being the smallest eigenvalue of A 2 , we conclude the following entropy production inequality:

dH dt + λ n ∑ i=1 Ω |∇u i | 2 dx + 1 δ n ∑ i=1 π i Ω u i |∇p i (u)| 2 dx ≤ 0.
Our aim is to prove this inequality for the finite-volume solutions.

The numerical scheme

A mesh of Ω is given by a set T of open polygonal control volumes, a set E of edges, and a set P of points (x K ) K∈T . We assume that the mesh is admissible in the sense of Definition 9.1 in [START_REF] Eymard | Finite volume methods[END_REF]. We distinguish in E the interior edges σ = K|L and the exterior edges such that E = E int ∪ E ext . For a given control volume K ∈ T , we denote by E K the set of its edges. This set splits into E K = E int,K ∪ E ext,K . For any σ ∈ E , there exists at least one cell K ∈ T such that σ ∈ E K and we denote this cell by K σ . When σ is an interior edge, σ = K|L, K σ can be either K or L. For all σ ∈ E , we define

d σ = d(x K , x L ) if σ = K|L ∈ E int and d σ = d(x K , σ ) if σ ∈ E ext,K .
Then the transmissibility coefficient is defined by τ σ = m(σ )/d σ for all σ ∈ E . We assume that the mesh satisfies the following regularity constraint:

∃ξ > 0, ∀K ∈ T , ∀σ ∈ E K : d(x K , σ ) ≥ ξ d σ . (4) 
The size of the mesh is denoted by ∆ x = max K∈T diam(K). Let N T ∈ N be the number of time steps, ∆t = T /N T be the time step size, and t k = k∆t for k = 0, . . . , N T . Let H T be the linear space of functions Ω → R which are constant on each

K ∈ T . For v ∈ H T , we introduce D K,σ v = v K,σ -v K , D σ v = |D K,σ v| for all K ∈ T , σ ∈ E K , where v K,σ is either v L (σ = K|L) or v K (σ ∈ E ext,K ). Finally, we define the (squared) discrete H 1 norm v 2 1,2,T = ∑ σ ∈E τ σ (D σ v) 2 + ∑ K∈T m(K)v 2 K .
For all K ∈ T and i = 1, . . . , n, u 0 i,K denotes the mean value of u 0 i over K. The finitevolume scheme for (1) reads as

m(K) ∆t (u k i,K -u k-1 i,K ) + ∑ σ ∈E K F k i,K,σ = 0, i = 1, . . . , n, (5) 
F k i,K,σ = -τ σ δ D K,σ u k i + u k i,σ D K,σ p i (u k ) for all K ∈ T , σ ∈ E K , (6) 
with

u k = (u k 1 , . . . , u k n ) and u k i,σ := min{u k i,K , u k i,K,σ }. As in [1], this definition of u k i,σ
allows us to prove the nonnegativity of u k i,K . This property can be also obtained by an upwind approximation of u i ∇p i (u) in (1).

Main result

The main result of this work is the existence of nonnegative solutions to scheme (5)-( 6), which preserve the entropy production inequality.

Theorem 1 (Existence of discrete solutions). Assume that u 0 ∈ L 2 (Ω ) n with u 0 i ≥ 0, δ > 0, a i j > 0, A is positively stable, and (3) holds. Then there exists a solution (u k K ) K∈T , k=0,...,N T with u k K = (u k 1,K , . . . , u k n,K ) to scheme (5)-( 6) satisfying u k i,K ≥ 0 for all K ∈ T , i = 1, . . . , n, and k = 0, . . . , N T . Moreover, the following discrete entropy production inequality holds:

∑ K∈T m(K)h(u k K ) + ∆tλ n ∑ i=1 ∑ σ ∈E τ σ (D σ u k i ) 2 + ∆t δ n ∑ i=1 ∑ σ ∈E τ σ π i u k i,σ (D σ p i (u k )) 2 ≤ ∑ K∈T m(K)h(u k-1 K ), (7) 
where λ denotes the smallest eigenvalue of A 2 .

We expect that the detailed-balance condition (3) can be replaced by a weak cross-diffusion condition as in [START_REF] Chen | Global existence analysis of cross-diffusion population systems for multiple species[END_REF]. The positive stability of A implies the parabolicity of (1) in the sense of Petrovskii. Indeed, A 2 , defined by (A 2 ) i j = π i a i j , and A 3 = diag(u i /π i ) are symmetric, positive definite matrices for u ∈ (0, ∞) n . Thus, its product (u i a i j ) has only positive eigenvalues [START_REF] Bosch | Note on the factorization of a square matrix into two Hermitian or symmetric matrices[END_REF]Theorem 7] which proves the claim. The assumption that the diffusion coefficient δ is the same for all species is a simplification needed to conclude that h(u) is coercive, h(u) ≥ (λ /2δ )|u| 2 for u ∈ R n . It can be removed by exploiting the Shannon entropy to show first that u i is nonnegative, but this requires more technical effort which will be detailed in a future work.

Proof of Theorem 1

We proceed by induction. For k = 0, we have u 0 i ≥ 0 by assumption. Assume that there exists a solution u k-1 for some k ∈ {1, . . . , N T } such that u k-1 i ≥ 0 in Ω , i = 1, . . . , n. The construction of a solution u k is split in several steps.

Step 1: Definition of a linearized problem. Let R > 0, we set

Z R := w = (w 1 , . . . , w n ) ∈ (H T ) n : w i 1,2,T < R for i = 1, . . . , n ,
and let ε > 0 be given. We define the mapping

F ε : Z R → R θ n by F ε (w) = w ε , with θ = #T , where w ε = (w ε 1 , . . . , w ε n ) is the solution to the linear problem ε -∑ σ ∈E K τ σ D K,σ (w ε i ) + m(K)w ε i,K = - m(K) ∆t (u i,K -u k-1 i,K ) + ∑ σ ∈E K F + i,K,σ , (8) 
for K ∈ T , i = 1, . . . , n, and F + i,K,σ is defined in [START_REF] Chen | Global existence analysis of cross-diffusion population systems for multiple species[END_REF] with u i,σ replaced by ūi,σ = min{u + i,K , u + i,K,σ }, where z + = max{0, z}. Here, u i,K is a function of w 1,K , . . . , w n,K , defined by the entropy variables

w i,K = π i δ p i (u K ) = n ∑ j=1 π i a i j δ u j for all K ∈ T , i = 1, . . . , n. (9) 
This is a linear system with the invertible coefficient matrix A 2 /δ , and so, the function u K = u(w K ) is well-defined. The existence of a unique solution w ε i to the linear scheme ( 8)-( 9) is now a consequence of [9, Lemma 3.2].

Step 2: Continuity of F ε . We fix i ∈ {1, . . . , n}. Multiplying (8) by w ε i,K and summing over K ∈ T , we obtain, after discrete integration by parts,

ε w ε i 2 1,2,T = -∑ K∈T m(K) ∆t (u i,K -u k-1 i,k )w ε i,K + ∑ σ ∈E int σ =K|L F + i,K,σ D K,σ w ε i =: J 1 + J 2 .
By the Cauchy-Schwarz inequality and the definition of F + i,K,σ , we find that

|J 1 | ≤ 1 ∆t ∑ K∈T m(K)(u i,K -u k-1 i,K ) 2 1/2 ∑ K∈T m(K)(w ε i,K ) 2 1/2 |J 2 | ≤ ∑ σ ∈E τ σ δ D σ u i + ūi,σ D σ p i (u) 2 1/2 ∑ σ ∈E τ σ (D σ w ε i ) 2 1/2 .
Hence, since u i is a linear combination of (w 1 , . . . , w n ) ∈ Z R , there exists a constant

C(R) > 0 which is independent of w ε such that |J 1 | + |J 2 | ≤ C(R) w ε i 1,2,T .
Inserting these estimations, it follows that ε w ε i 1,2,T ≤ C(R). We turn to the proof of the continuity of F ε . Let (w m ) m∈N ⊂ Z R be such that w m → w as m → ∞. The previous estimate shows that w ε,m := F ε (w m ) is bounded uniformly in m ∈ N. Thus, there exists a subsequence of (w ε,m ), which is not relabeled, such that w ε,m → w ε as m → ∞. Passing to the limit m → ∞ in scheme ( 8)-( 9) and taking into account the continuity of the nonlinear functions, we see that w ε i is a solution to (8)-( 9) for i = 1, . . . , n and w ε = F ε (w). Because of the uniqueness of the limit function, the whole sequence converges, which proves the continuity.

Step 3: Existence of a fixed point. We claim that the map F ε admits a fixed point. We use a topological degree argument [START_REF] Deimling | Nonlinear Functional Analysis[END_REF], i.e., we prove that deg(I -F ε , Z R , 0) = 1, where deg is the Brouwer topological degree. Since deg is invariant by homotopy, it is sufficient to prove that any solution

(w ε , ρ) ∈ Z R × [0, 1] to the fixed-point equa- tion w ε = ρF ε (w ε ) satisfies (w ε , ρ) ∈ ∂ Z R × [0, 1]
for sufficiently large values of R > 0. Let (w ε , ρ) be a fixed point and ρ = 0, the case ρ = 0 being clear. Then

w ε i solves ε -∑ σ ∈E K τ σ D K,σ (w ε i ) + m(K)w ε i,K = -ρ m(K) ∆t (u ε i,K -u k-1 i,K ) + ∑ σ ∈E K F +,ε i,K,σ , (10 
) for all K ∈ T , i = 1, . . . , n, and F +,ε i,K,σ is defined as in [START_REF] Chen | Global existence analysis of cross-diffusion population systems for multiple species[END_REF] with u replaced by u ε which is related to w ε by [START_REF] Eymard | Finite volume methods[END_REF]. The following discrete entropy production inequality is the key argument.

Lemma 1 (Discrete entropy production inequality). Let the assumptions of Theorem 1 hold. Then, for any ρ ∈ (0, 1] and ε > 0,

ρ ∑ K∈T m(K)h(u ε K ) + ε∆t n ∑ i=1 w ε i 2 1,2,T + ρ∆tλ n ∑ i=1 ∑ σ ∈E τ σ (D σ u ε i ) 2 + ρ ∆t δ n ∑ i=1 ∑ σ ∈E τ σ π i ūε i,σ (D σ p i (u ε )) 2 ≤ ρ ∑ K∈T m(K)h(u k-1 K ), (11) 
with λ > 0 being the smallest eigenvalue of A 2 and obvious notations for ūε i,σ . Proof. We multiply [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF] by ∆tw ε i,K and sum over i and K ∈ T . This gives, after discrete integration by parts, ε∆t ∑ n i=1 w ε i 2 1,2,T + J 3 + J 4 + J 5 = 0, where

J 3 = ρ n ∑ i=1 ∑ K∈T m(K)(u ε i,K -u k-1 i,K )w ε i,K , J 4 = -ρ∆t n ∑ i=1 ∑ σ ∈E int σ =K|L τ σ δ D K,σ u ε i w ε i,K , J 5 = ρ∆t n ∑ i=1 ∑ σ ∈E int σ =K|L τ σ ūε i,σ D K,σ p i (u ε )D K,σ w ε i,K .
To estimate J 3 , we use the convexity of h; for J 4 , we take into account the symmetry of τ σ with respect to σ = K|L, definition (9) of w ε i and the positive definiteness of A 2 ; and for J 5 , we employ definition (9) of w ε i :

J 3 ≥ ρ ∑ K∈T m(K) h(u ε K ) -h(u k-1 K ) , J 4 = ρ∆t n ∑ i, j=1 ∑ σ ∈E int σ =K|L τ σ π i a i j D K,σ u ε i D K,σ u ε j ≥ ρ∆tλ n ∑ i=1 ∑ σ ∈E τ σ (D σ u ε i ) 2 , J 5 = ρ ∆t δ n ∑ i=1 ∑ σ ∈E τ σ π i ūε i,σ (D σ p i (u ε )) 2 .
Putting all the estimations together completes the proof.

We proceed with the topological degree argument. Lemma 1 implies that

ε∆t n ∑ i=1 w ε i 2 1,2,T ≤ ρ ∑ K∈T m(K)h(u k-1 K ) ≤ ∑ K∈T m(K)h(u k-1 K ).
Then, if we define R := (ε∆t) -1/2 (∑ K∈T m(K)h(u k-1 K )) 1/2 + 1, we conclude that w ε ∈ ∂ Z R and deg(I -F ε , Z R , 0) = 1. Thus, F ε admits a fixed point.

Step 4: Limit ε → 0. Recall that h(u K ) ≥ λ /(2δ )|u K | 2 (note that u i,K ∈ R at this point). Thus, by Lemma 1, there exists a constant C > 0 depending only on the mesh but not on ε such that for all K ∈ T and i = 1, . . . , n,

|u ε i,K | ≤ C(λ ) ∑ K∈T m(K)h(u k-1 K ) 1/2 .
Thus, up to a subsequence, for i = 1, . . . , n and for all K ∈ T , we infer the existence of u i,K ∈ R such that u ε i,K → u i,K as ε → 0. We deduce from [START_REF] Serre | Matrices. Theory and Applications[END_REF] that there exists a subsequence (not relabeled) such that εw ε i,K → 0 for any K ∈ T and i = 1, . . . , n. Hence, the limit ε → 0 in [START_REF] Deimling | Nonlinear Functional Analysis[END_REF] yields the existence of a solution to [START_REF] Deimling | Nonlinear Functional Analysis[END_REF] with ε = 0.

Let i ∈ {1, . . . , n} and K ∈ T such that u i,K = min L∈T u i,L . We multiply ( 8) with ε = 0 by ∆tu - i,K with z -= min{0, z} and use the induction hypothesis:

m(K)(u - i,K ) 2 -∆t ∑ σ ∈E K τ σ (δ + a ii ūi,σ )D K,σ (u i )u - i,K -∆t ∑ j =i ∑ σ ∈E K τ σ a i j ūi,σ D K,σ (u j )u - i,K = 0.
The second term is nonpositive since ūi,σ ≥ 0 and D K,σ (u i ) ≥ 0, by the choice of K.

The last term vanishes since ūi,σ u - i,K = u + i,K u - i,K = 0, by the definition of ūi,σ . This shows that u i,L ≥ u i,K ≥ 0 for all L ∈ T and i = 1, . . . , n. Passing to the limit ε → 0 in [START_REF] Serre | Matrices. Theory and Applications[END_REF] yields inequality [START_REF] Chen | Rigorous mean-field limit and cross-diffusion[END_REF], which completes the proof of Theorem 1.

Convergence analysis and perspectives

In this section, we sketch the proof of the convergence of the scheme and possible extensions of the method presented in this paper.

• Let us give the main features of the proof of convergence. First, thanks to the a priori estimates given by [START_REF] Chen | Rigorous mean-field limit and cross-diffusion[END_REF] and assumption (4), we prove the existence of a constant C > 0 independent of ∆ x and ∆t such that for all i = 1, . . . , n and φ ∈ C ∞ 0 (Q T ), where Q T := Ω × (0, T ),

N T ∑ k=1 ∑ K∈T m(K)(u k i,K -u k-1 i,K )φ (x K ,t k ) ≤ C ∇φ L ∞ (Q T ) . (12) 
Next, we consider a sequence of admissible meshes (T η , ∆t η ) η>0 of Q T , indexed by the size η = {∆ x, ∆t}, satisfying (4) uniformly in η. For any η > 0, we denote by u η = (u 1,η , . . . , u n,η ) the piecewise constant (in time and space) finitevolume solution constructed in Theorem 1. We deduce, thanks to [2, Theorem 3.9] and [START_REF] Shigesada | Spatial segregation of interacting species[END_REF], that there exist nonnegative functions u 1 , . . . , u n such that, up to a subsequence, u i,η → u i a.e. in Q T as η → 0, i = 1, . . . , n.

Moreover, we conclude from (7) that u i,η is uniformly bounded in L ∞ (0, T ; L 2 (Ω )) and L 2 (0, T ; L p (Ω )) for p < ∞ thanks to [START_REF] Chen | Rigorous mean-field limit and cross-diffusion[END_REF] and Sobolev embedding. We deduce from the Riesz-Thorin theorem that (u i,η ) is bounded in L r (Q T ) for some 2 < r < 4 and thus, it is equi-integrable. Thus, applying the Vitali convergence theorem, we infer that, up to a subsequence, u i,η → u i strongly in L r (Q T ) for all r < 4 as η → 0, i = 1, . . . , n. The discrete entropy production inequality yields a uniform bound of the discrete gradient ∇ η of u i,η in L 2 (Q T ); see [START_REF] Chainais-Hillairet | Finite volume scheme for multi-dimensional driftdiffusion equations and convergence analysis[END_REF] for a definition of ∇ η . It follows from [START_REF] Chainais-Hillairet | Finite volume scheme for multi-dimensional driftdiffusion equations and convergence analysis[END_REF]Lemma 4.4] that, up to a subsequence, ∇ η u i,η ∇u i weakly in L 2 (Q T ) as η → 0, i = 1, . . . , n.

Finally, following the method developed in [START_REF] Chainais-Hillairet | Finite volume scheme for multi-dimensional driftdiffusion equations and convergence analysis[END_REF], we prove that the limit function u = (u 1 , . . . , u n ) is a weak solution to (1)-( 2). • We already mentioned that system (1) can be interpreted as a simplification of the SKT model. In a future work, we will analyze a structure-preserving finitevolume approximation of the full SKT model. Such a discretization was analyzed in [START_REF] Andreianov | Finite volume method for a cross-diffusion model in population dynamics[END_REF], but only for positive definite diffusion matrices associated to (1). We will extend the analysis of [START_REF] Andreianov | Finite volume method for a cross-diffusion model in population dynamics[END_REF] without this assumption.
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