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ABSTRACT:  An innovative novel interface has been designed and developed, in order to be used as a potential active layer in 

Chem-FET sensor devices for the specific sensing of Cs+. In this study, the synthesis of a specific Cs+ probe based calix[4]arene 

benzocrown ether, its photophysical properties as well as its grafting onto a single lipid monolayer (SLM) recently used as efficient 

ultrathin organic dielectric in Chem-FETs are reported simultaneously. On the basis of both optical and NMR titration experiments, 

the probe has shown high selectivity and specificity for Cs+ compared to interfering cations, even if an admixture is used. Additionally, 

ATR-FTIR spectroscopy was successfully used to characterize and prove the efficient grafting of the probe onto a SLM and the 

formation of the innovative novel sensing layer. 
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INTRODUCTION 

Ultrafast ions trace quantification methods have attracted tremendous interest in the last decades with the aim to be 

applicable for the detection of hazardous cations and anions. In this context, we have focused our investigation on 

the Cs+ detection motivated both by the recent accidents in nuclear power plants, the frequent discharges from the 

nuclear reactors and its uses in nuclear weapons testing. Additionally, cesium is used in food and drug sterilization 

processes; in medicine therapies1 and in many industrial applications such as optical glasses, photoelectric cells2 or 

ion propulsion systems. Radioactive cesium represents one of the most toxic elements that can be found in the flora 

and fauna,3,4 because it is easily displaced and incorporates in nature due to its high solubility in water, causing 

detrimental effects to the environment and human health.5,6 

Hence, it is crucial to develop reliable and accurate methods for its detection and/or dosage in order to safeguard 

workers who are exposed daily to Cs+ ensuring harmless uses and also safer working conditions. A rapid survey 

revealed that the most common method for detection is based on the conventional ICP-MS technique.7-10 Although 

accurate and sensitive, this technique is not suitable to achieve on-site and real-time measurements requiring 

expensive and sophisticated instrumentation as well as expert manpower. To overcome some of these drawbacks, 

chemists have devised optical methods based either on colorimetric or fluorometric assays by designing specific 

artificial hosts. Among them, 1,3-alternate calix[4]arenes-based scaffolds topped with a crown ether have gained a 

lot of attention due to their well-defined structures exhibiting a cavity that fits perfectly with the cesium ionic 



 

radius.11-13 Additionally it is easy to tag them with fluorophores such as naphthalene or anthracene,14 indanone15 or 

coumarin16,17 providing additional benefits in the modulation of optical properties. 

However, practical uses need to integrate them into devices that allow in situ real-time monitoring. To this end, we 

believe that the use of field-effect transistors constitutes a promising and reliable technology, which is worth and 

valuable for such purpose allowing miniaturization and wearable sensor systems. Moreover, we have recently 

demonstrated that engineered single lipids monolayers (SLM) can be used as ultrathin dielectric leading to sensing 

properties with limits of detection down to the femtomole in Chem-FET sensors.18,-21 

 

Figure 1. Schematic representation of an engineered SLM 

Thus, in the line of our previous work, we will present herein the synthesis of a novel 1,3-alternate calix[4]arene 

host exhibiting high selectivity toward the foreseen Cs+ analyte as shown by UV-Vis and NMR titration analysis 

and its successful anchoring atop of a SLM generating an innovative sensing interface. The grafting process was 

monitored by an in situ FTIR analysis using a homemade chamber that allows us to follow and characterize the 

direct functionalization of the SLM. 

 

EXPERIMENTAL SECTION  

Reagents and Analysis. 2-(2-chloroethoxy)ethanol), Catechol and p-toluenesulfonyl chloride (TsCl) were 

purchased from TCI. Calix[4]arene and allyl bromide were purchased from Alfa Aesar. Karstedt’s catalyst, Li+, 

Na+, K+, Rb+, Cs+, and Mg2+ as chlorine salts, dimethylformamide (DMF), anhydrous acetonitrile (CH3CN), 

methanol (MeOH), dichloromethane (DCM), tetrahydrofuran (THF), anhydrous toluene, anhydrous 1,4-dioxane, 

K2CO3, NaOH and Cs2CO3 were purchased from Sigma Aldrich. Column chromatography was performed using 

silica 60 M (0.04-0.063 mm) purchased from Macherey-Nagel. 

Physicochemical Analysis. 1H, 13C and 29Si NMR spectra were recorded on a JEOL ECS spectrometer at 400 MHZ 

(1H), 100 MHz (13C) or 79 MHz (29Si) at room temperature. NMR chemical shift are given in ppm () relative to 

Me4Si with solvent resonances used as internal standards (CDCl3: 7.26 ppm for 1H and 77.2 ppm for 13C). MS (ESI) 

analyses were performed on a SYNAPT G2 HDMS (Waters) spectrometer at the “Spectropole” of Aix-Marseille 

University.22 This instrument was equipped with an electrospray ionization source (ESI) and a TOF mass analyzer. 

The sample was ionized in electrospray positive mode with a tension of 2.8 kV, the orifice tension was 50 V and 

the N2 rate of flow was 100L/h. XR diffraction was made on a Rigaku Oxford Diffraction SuperNova diffractometer 

and measured at 203, 250, and 150 K, respectively, under Cu radiation (λ = 1.54184 Å). Data collection, reduction, 

and multiscan ABSPACK corrections were performed with CrysAlisPro (Rigaku Oxford Diffraction). Using 

Olex2,23 the structures were solved with the ShelXT structure solution program using Intrinsic Phasing and refined 

with ShelXL using least-squares minimization.24 FTIR analysis was performed on an EQUINOX 55 

spectrophotometer (Brucker, Germany) equipped with a liquid nitrogen-cooled Mercury-Cadmium Telluride 

photovoltaic detector. The ATR samples (FZ-purified Si(111) wafer, thickness 500-500 µm) were shaped as prisms 

Figure 1: Schematic representation of an engineered SLM 



 

with two opposite sides beveled at ~ 45°. Their length (~15 mm, for ca ~ 30 internal reflections) was chosen to 

obtain wide-range FTIR spectra (1000-4000 cm-1). Measurements were carried out in a N2-purged chamber in order 

to minimize H2O vapor and CO2 absorption. Spectra were averaged over 150 scans (4 cm-1 resolution). 

Physicochemical Measurements in Solution. UV-Vis absorption spectra were obtained on a Jasco V-670 

spectrophotometer. The electronic absorption maxima (max) are directly extracted from absorption spectra of 

chelator 3 based solution. Under the optimum conditions the stoichiometry between the chelator 3 and the different 

analytes were investigated by the molar ratio method25,26 both in UV-Vis and 1H NMR techniques. 

Synthesis of 1,3-alternate 25,27-bis-(1-allyloxy)-1,3-[1,2-bis[2-(2-oxyethoxy)ethoxy]phenylene]calix[4]arene, 

3. To a solution, under Argon atmosphere, of 1,3-diallyloxy calix[4]arene 1 (0.090 g, 0,180 mmol, 1.0 equiv) in 30 

mL of anhydrous CH3CN was added, in one portion, 0.234 g (0.730 mmol, 4.0 equiv) of cesium carbonate. The 

reaction mixture was stirred under reflux for 2h prior adding dropwise a solution of 0.120 g (0,198 mmol, 1.1 equiv) 

of 2 in 9 mL of anhydrous CH3CN. The reaction mixture was refluxed for 2 days and then the reaction mixture was 

cooled down to room temperature. Solvent was removed under reduced pressure. The residue was taken up in 100 

mL of CH2Cl2 and the organic phase was washed successively with 2 x 60 mL of a 2M aqueous HCl solution, then 

twice with 50 mL of brine and twice with 50 mL of water. The organic phase was dried over Na2SO4, filtered and 

the solvent was removed under vacuo. The residue was purified by column chromatography over SiO2 (eluent: 

petroleum ether: EtOAc 8:2) yielding the titled compound in 61% as a colourless solid. Mp= 142°C (uncorrected). 
1H NMR (400 MHz, CDCl3):= 7.00 (d, 4H, 3J= 7.5 Hz), 6.91 (dd, 8H, 3J= 12.1, 4.8 Hz), 6.60 (td, 4H, 3J= 7.5, 4.5 

Hz), 5.65 (ddt, 2H, 3J= 17.2, 10.6, 4.6 Hz), 4.97 (dd, 2H, 3J= 10.7, 1.7 Hz), 4.84 (dd, 2H, 3J= 17.3, 1.8 Hz), 4.09 (t, 

4H, 3J= 5.1 Hz), 4.03 (dd, 4H, 3J= 4.1, 2.0 Hz), 3.60 (m, 20H). 13C NMR (100 MHz, CDCl3):= 138.23; 138.02; 

131.16; 116.46; 115.64; 113.10; 112.21; 104.39; 104.29; 103.97; 97.95; 97.33; 52.93; 52.61; 52.34; 51.62 ppm. MS 

(ESI+) m/z: 772.3849 found for [M+NH4]+; calculated for [M+NH4]+; 772.3844. Elemental analysis for 

C48H50O8+CH3CN (%): calculated C, 75.45; H, 6.71; O, 16.08. Found C, 75.39; H, 6.67; O, 16,18. 

Colourless crystals of 3 were obtained by slow diffusion of a CH2Cl2 solution into MeOH solvent, with the 

monoclinic space group P21 with a = 11.3911 (2) Å, b = 10.4981 (2) Å, c = 17.4878 (3) Å,  = 90°,  = 106.375 

(2)°,  = 90° at 293 K, with Z=2 and V= 2006.45 (7) Å3. The refinement of 7060 reflections and 505 parameters 

yielded R1= 0.0428 for all data (6283 reflections with I > 2(I)) (See the Supporting Information). Atomic 

coordinates, bond lengths, angles and thermal parameters for 3 have been deposited at the Cambridge 

Crystallographic Data Centre (CCDC number: 1935509, DOI: 10.5517/ccdc.csd.cc22z1sx). Copies of the data can 

be obtained free of charge on application to CCDC, 12 Union road, Cambridge CB21EZ, UK. Email: 

deposit@ccdc.cam.ac.uk. 

Synthesis of 1,3-alternate 25-[(3-triethoxy)-silyl-1-propyloxy]-27-(1-allyloxy)-1,3-[1,2-bis-[2-(2-oxyethoxy)-

ethoxy]phenylene]calix[4]arene, 4. To a solution, under Argon atmosphere, of 3 (0.050 g, 0.066 mmol, 1.0 equiv) 

in 2 mL of anhydrous was added 0.027 mL (0.145 mmol, 2.2 equiv) of triethoxysilane and the reaction mixture was 

stirred at room temperature for 20 min. The reaction vessel was placed in a glove box then 0.020 mL of the 

Karstedt’s catalyst was added dropwise. The reaction was warmed up to 50°C and was stirred for 12h. The reaction 

mixture was cooled down to room temperature and filtered through Celite pad. Excess of triethoxysilane and solvent 

were removed under reduced pressure. The product was used without further purification. 1H NMR (400 MHz, 



 

CDCl3): = 6.81 (m, 16H, H aromatics), 5.69 (m, 1H, H vinyl), 3.89 (m, 36H, CH2), 1.25 (m, 9H, methyl), 0.94 

(m, 2H, CH2) NMR 29Si (CDCl3, 79 MHz) : δ -100 (s, 1Si). 

RESULTS AND DISCUSSION  

The synthesis of the target chelator 3 is outlined in Scheme 1. Compound 3 was readily obtained from the cross 

coupling of the ditosylate 2 and the calix[4]arene 127,28 in CH3CN at 80°C in presence of Cs2CO3 in 61% yield.29  

The ditosylate 2 was prepared according to reported literature procedures30,31 from commercially available catechol, 

which first was alkylated with 2-(2 chloroethoxy)-ethanol in the presence of K2CO3 in DMF to form a diol 

intermediate in 47% yield (see SI, S1). The latter was subsequently treated with p-toluenesulfonyl chloride in 

pyridine affording the ditosylate 2 in 62% yield (see SI figures S2).32,33 

 

 

The optical properties, absorption and fluorescence emission of the chelator 3 have been investigated in a solvent 

mixture MeOH: DCM (v/v, 1:1). Ultimately, the receptor exhibited poor fluorescence properties and thereafter no 

further studies have been pursued by fluorescence spectroscopy. UV-visible absorption spectrum of the receptor 3 

presents several absorption bands in the region 240-300 nm ascribed to the absorption of the benzene rings of both 

Scheme 1: Synthesis of the Chelator 3 

Figure 2: Optical properties of the receptor 3 () after addition of 1 equiv of Li+(), Na+(), K+(), Rb+(), Cs+() and Mg2+() cations. 



 

the calix[4]arene scaffold and the benzocrown ether. The cation binding properties of the chelator 3 were screened 

by UV-visible spectroscopy with several putative competitive monovalent cations (Li+, Na+, K+, Rb+, Cs+) and also 

with a divalent cation (Mg2+) (Figure 2).  

 

Job plots were performed using a solvent mixture of MeOH:DCM (SI figure S7) and clearly indicate, for the studied 

cations, the formation of a [1+1] complex 3.X+, which is in agreement with the results reported on similar 

scaffolds.11-13 No further optical changes were observed after the addition of an excess of the cations. Moreover, it 

is important to notice that even in competitive polar solvent such as MeOH we observed for the cationic guest of 

interest, Cs+, some interactions with 3 allowing its detection. Furthermore, the minor optical changes upon the 

addition of the cationic guests constitute a proof that the host-guest interaction occurs predominantly in the crown 

ether part. This behaviour was further confirmed by 1H NMR titration experiments (vide infra) and is consistent 

with the crystallographic observations obtained from X-ray structure of 3 (Figure 3 and SI figure S3). Further 

examination of the cavity size from the X-ray structure revealed that the measured distances Cs+-O (3.31Å) and 

Cs+-Arcalix (3.44 Å) are in accordance with similar reported systems indicating that the cavity of 3 is more suitable 

for the Cs+ compared to the others.34 

 

The greater optical changes were observed for Cs+, K+ and Rb+ while for the others cations (Na+, Li+ and Mg2+) 

much smaller variations are observed, the spectra remaining almost unchanged. Upon addition of Cs+, K+ or Rb+ 

an enhancement of the absorption bands centered at 275 nm and 281 nm was observed, highlighting the formation 

Figure 3: Crystal structure of 3 (C, gray, H, white, O, red). 



 

of the 3.X+ complexes. It was anticipated that the presence of the benzene ring in the crown ether part could impart 

a reduction of the flexibility of the cavity preventing the complexation of smaller cations such as Na+, Li+ and Mg2+. 

Although it is easy to differentiate between the ions interacting with the crown ether from those that cannot, due to 

the emergence of new peaks on the absorption spectra, it appears less obvious for Cs+, K+ and Rb+ because they 

displayed similar behaviours. Thus, in order to have a more pronounced difference between these three cations, 

giving a positive signal, it is necessary to apply a fitting mathematical function taking into account the spectral 

modifications (Figure 4, inset and SI figures S4-S6). For instance, upon the gradual addition of the Cs+ cation the 

variations of the absorption properties of 3 are associated with hyperchromic (at 275 nm and 281 nm) and 

hypsochromic effects respectively (slightly blue-shifted from 277 to 275 nm and from 283 to 281 nm). These optical 

changes and the appearance of isobestic points attest undoubtedly of the ability of 3 to bind these cations. On the 

basis of these results an approximate Hofmeister series can be settled, which follows approximately the radius of 

each cation: Cs+> Rb+> K+> Na+> Li+ ≈ Mg2+.35,36 Hence, association constants can be determined using the Benesi-

Hildebrand method37,38, showing that 3 presents the higher selectivity toward Cs+ with a Ka = 6.024 103 M-1 which 

Figure 4: (1) Absorbance properties of the receptor 3 () upon the addition from 0 to 1 equiv of Cs+ (light to dark). (2) () Inset: evolution 

of the absorbance at  of interest after a mathematical fitting. Full line corresponds to the black arrows whereas dashed line corresponds to 

the gray arrows of (1). 
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 Figure 5:1H aromatic and aliphatic regions of 3 upon addition 

of 0 to 1 equiv of Cs+ as chlorine salts in CDCl3: MeOD (1:1) 

with traces of D2O. 
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Figure 6: 1H aromatic and aliphatic regions of 3 after saturation   

with Cs+ and addition of 0 to 1 equiv of Cs+ as chlorine salts in 

CDCl3: MeOD (1:1) with traces of D2O. 



 

is three or two-fold magnitude higher than the ones of K+ (2.825 103 M-1) and Rb+ (2.288 103 M-1), respectively 

(Table 1 and SI figure S8). 

 

Table 1. Association constants (Ka) determined in MeOH: DCM (1:1) at 293 K for the host-guest complexes 

3.X+* 

 Ka .103 M-1 Stoichiometry 

Cs+ 6.024 1:1 

K+ 2.825 1:1 

Rb+ 2.288 1:1 

*Not determined for Na+, Li+, Mg2+, as no complexation occurs. 

 

In order to get further information on the chelating ability of 3, 1H NMR titration experiments were conducted in a 

mixture of deuterated CDCl3: MeOD (1:1) solutions in presence of traces of D2O. By varying gradually the number 

of equivalents of each cation, it is clearly evidenced that the complexes 3.X+ were formed. Indeed, both aromatic 

and aliphatic regions dramatically change as the number of equivalent of the added cation increases (Figure 5 and 

SI figure S10). 

Most of the protons in these two regions are affected, shifting progressively downfield or upfield, and are 

preeminent after the addition of 1 equiv of X+. If an excess of cation X+ is added no further chemical shift is noticed 

in these two regions. Remarkably, in the 1H aromatic region of the free host 3 the multiplet centered at 6.56 ppm 

splits into two separated triplet signals (one at downfield and the second one at upfield) after addition of 1 equiv of 

Cs+. Moreover, in the 1H aliphatic region, the two multiplets centered respectively at 4.08 and 3.99 ppm are more 

strongly affected upon complexation as four new signals are observed both at downfield and upfield compared to 

the two original multiplets. These findings indicate that the binding of Cs+, as well as for the others cations takes 

place mostly, in the crown ether part as reported on similar systems. The excellent selectivity toward cesium was 

found and ascribed to the combined electrostatic and cation-π interactions arising respectively from cesium and 

oxygens of the crown ether or the aromatic rings of the scaffold.11-13 In addition, the observed chemical shifts 

associated to the addition of the cations are greater when the Cs+ is added compared to K+ and Rb+ pinpointing that 

the host molecule 3 interacts more strongly with Cs+ than the others. 

As previously demonstrated, K+ and Rb+ are putative interfering analytes for Cs+, even though they display lower 

affinity constants. In order to have more insights on that, guest-displacement experiments were performed both by 

UV-visible and 1H NMR (Figure 6 and SI Figure S10). 

As exemplified, starting from complex 3.K+ the incremental addition of Cs+ amounts leads to a dramatically change 

of the 1H NMR spectrum. After complete addition of 1 equiv of Cs+ the obtained 1H NMR spectrum appears to be 

the footprint of the one of the complex 3.Cs+. This behavior reflects the greater ability of 3 to bind Cs+ compared 

to K+, as Cs+ is able to replace K+ guest. Moreover, if an admixture of cations is added to the chelator 3, the obtained 
1H NMR corresponds to the one of 3.Cs+ when Cs+ is added alone. Identical trends were observed by UV-visible 

experiments (see SI Figure S11). 

These features constitute a clear proof that the host molecule 3 behaves as a specific and selective probe to the 

cesium cation even if competitive cations are present in the medium. 

The intrinsic sensing properties of the novel chelator 3 with respect to Cs+, led us to consider its possible use in a 

sensor device such as a Chem-FET. Nevertheless, prior to its implementation in a real device it is required to graft 

it efficiently on a suitable surface. In this context, we have recently demonstrated that SLM (Single Lipid 

Monolayer)18-21 can be used as efficient organic dielectrics in Field Effect Transistors devices. Respectively we 

have implemented a methodology that ensures us to have SLM with unprecedented mechanical and electrical 

properties.39,40 Based on these relevant facts, we decided to functionalize the chelator 3 with an appropriate 

anchoring group in order to be grafted on an engineered SLM. 



 

 

 

 

Thus, owing our strategy, the triethoxysilane group was selected and used as anchoring group. From 3, this 

functional group can be easily introduced on the allyl part of the lower rim in one step using the Karstedt catalyst 

(Scheme 2).41 The target functionalized compound 4 was obtained in 59% and was used without further purification 

in the next step. Indeed, compound 4 might be also contaminated by the bis-silylated derivative but this will not 

have any consequence on the grafting (see SI Figure S9). 

 

 

Firstly a sample of a free-OH lipid was assembled on an edge-tailored silicon prism to form a self-assembled 

monolayer (SAM) and then polymerized within the plane of the monolayer by applying a protocol mastered by our 

group to form 5.18-21 The obtained SLM 5 was successfully characterized in situ; prior to grafting the host compound 

4, using a homemade Infrared cell placed in an attenuated total reflectance mode Fourier-transform infrared (ATR-

FTIR) spectrophotometer (see SI Figure S12). The initiation and propagation of the polymerization in the outer 

plane was initiated and ensured by the polycondensation of triethoxysilane group with the ester group on the top of 

the SLM 5 (Scheme 3). It was performed by exposing the supported lipid monolayer to 0.25 mM solution of the 

substituted chelators 4 in anhydrous 1,4-dioxane. 

 

Scheme 2: Synthesis of the host modified molecule 

Scheme 3:  Modification of the Single Lipid Monolayer with 4. 



 

FTIR spectra confirm the occurrence of the condensation reaction (Figure 7). After 1h exposure in the chelator 

solution and rinsing, a decrease and a shift of the peak assigned to the carbonyl of the ester head groups (νC=O at 

1702 cm-1) and the appearance of new bands in the 1000-1300 cm-1 assigned to siloxane and/or calixarene bonding  

(νSi-O, νC-O), indicating the successful anchoring of the host molecule 4 on the surface. In addition the spectra show 

that the intensity and position of the peaks corresponding to the aliphatic chains of the lipids (sym. νCH2 at 2849 cm-

1 and asym. νCH2 at 2917 cm-1) remain unchanged indicating that the close-packed structure of the lipid monolayer 

is preserved.42 All these observations are in favor of a successful anchoring of the host molecule at the surface of 

the SLM. This unique combination of this novel interface is of great interest to be used as active layer in a Chem-

FET. Preliminary results based on an electrolyte gated organic field effect transistor (EG-OFET) modified by the 

modified SLM 6 clearly evidence the capture of Cs+ (see SI, Figure S13). Measurements were performed in PBS, 

i.e. Similar behavior is obtained even  in presence of competitive cation like K+ or Na+. Thus the tendencies observed 

from the free chelator 3 in solution are confirmed when the latter is grafted onto the SLM. 

 

CONCLUSION 

We reported herein the synthesis and the characterization of a novel and innovative interface based on the 

combination of a calix[4]arene tethered with a benzocrown ether and a single lipid monolayer (SLM) that can be 

used as an effective sensing layer in a Chem-FET. Indeed, the newly appended calix[4]arene possesses remarkable 

sensitivity and selectivity toward Cs+, over other interfering cations while the SLM presents high mechanical and 

electrical properties as previously demonstrated. This unique combination of properties makes this innovative and 

novel interface a system of choice for the foreseen applications. Preliminary results conducted on an EG-OFET 

have demonstrated the effectiveness of this innovative interface for the specific detection of Cs+. Further work and 

improvements are now under progress. 
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