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ABSTRACT 

The plasmonic amplification of non-linear vibrational sum frequency spectroscopy (SFG) at 

the surfaces of gold nanoparticles is systematically investigated by tuning the incident visible 

wavelength. The SFG spectra of dodecanethiol-coated gold nanoparticles chemically deposited 

on silicon are recorded for twenty visible wavelengths. The vibrational intensities of thiol 

methyl stretches extracted from the experimental measurements vary with the visible color of 

the SFG process and show amplification by coupling to plasmon excitation. Since the 

enhancement is maximal in the orange-red region rather than in the green, as expected from the 

dipolar model for surface plasmon resonances, it is attributed mostly to hotspots created in 

particle multimers, in spite of their low surface densities. A simple model accounting for the 

longitudinal surface plasmons of multimers allows to recover the experimental spectral 

dispersion. 

 

TOC 

 

 

  



3 

 

Surface-Enhanced Raman Spectroscopy (SERS),1 benefitting from local electromagnetic field 

enhancements in the visible through plasmon excitation, is a widely used optical tool giving 

access to vibrational fingerprints of molecules at surfaces. With the same assets as SERS as for 

chemical sensitivity and wavelengths ranges, infrared-visible Sum-Frequency Generation 

(SFG) spectroscopy is in addition intrinsically surface specific as a consequence of its 

symmetry properties. It has indeed proved its ability to extract static,2,3 dynamic,4,5 structural,6,7 

and orientational information8–10 through vibrational excitations of molecules adsorbed on 

planar surfaces, as well as from a wide range of systems like air-water,6,11–16 solid-liquid or 

buried interfaces.11,17–25 For nanostructured materials, it should also become a useful tool to 

monitor the chemistry taking place at the surfaces of nano-objects,26 essential for the 

comprehensive design of nanosensors27 and nanocatalysts.28 

Despite the apparent discrepancy between the spherical symmetry of nanoparticles and SFG 

selection rules (a small spherical particle fully covered with molecules produces no measurable 

signal), the vibrational SFG response of molecules decorating nanospheres grafted on a 

substrate has been calculated and shows enhancements in the visible range (as in SERS) due to 

the local excitation of surface plasmon resonances.29 This is also true for the molecules 

constituting the grafting monolayer sandwiched between the particles and the substrate.29 

Amplification of SFG spectroscopic signals has been shown on long deposited gold cylinders, 

30 for which the inversion symmetry is greatly broken. In the case of spheres, no direct evidence 

of such enhancement has been provided and, for gold particles, the amplification factors are 

expected to be rather small. Consequently, SERS amplification has never been measured, to 

our knowledge, for isolated small gold spheres (even if the contrast part of the enhancement 

factors deduced from tip-enhanced Raman spectroscopy measurements relies on local field 

amplification between the half-sphere tip and the substrate31), which makes the challenge even 

more interesting. Several authors have shown the possibility to monitor by SFG molecules at 
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the surfaces of plasmonic spherical particles,32–41 and to make the difference between thiols 

adsorbed on the particles and silanes used to graft them on silicon surfaces.36 Showing 

vibrational enhancement in the small (i.e. for diameters up to a few tens of nanometers) particle 

case will prove that SFG is a promising tool for a local spectroscopic analysis of all 

nanostructured materials, with a high sensitivity to species located in the very local field around 

the nanostructures. 

In this letter, we provide experimental evidence of a plasmonic enhancement of SFG vibrational 

signatures of terminal methyl moieties of dodecanethiol (DDT) grafted on gold nanoparticles. 

The evolution of the vibrational intensities as a function of the visible wavelength shows a 

direct effect of the optical properties of the particles. It does not primarily relate to the surface 

plasmon resonances of the isolated particles but, despite their low surface density, to the 

plasmonic properties of the hotspots between nearby particles. 

The SFG intensity radiated by a surface is given by42,43 

 
23

2SFG (2)

SFG vis IR eff vis IR3 2

SFG

8
I( ) I( )I( )

c cos

 
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where θ
SFG

 is the emission angle of the SFG reflected beam and I(ω) stands for the beam 

intensity at frequency ω (refractive index of air is unity). The SFG signal experimentally 

measured is proportional to its total radiated intensity and, after taking into account the 

wavelength-dependent efficiency of the detection setup,44 provides the dispersion of |χ(2)
eff

|2, 

χ(2)
eff

 being the effective second order non-linear susceptibility42 (Fresnel factors on silicon 

show a smooth and rather small dispersion in the visible range, Fresnel-weighted χ(2)
eff

 values 

will be used in the following for experimental points and simulations). The complex third rank 

order tensor χ(2)
eff

 sums up one Lorentzian term per molecular vibration (χ(2)
eff,mol

) and one 
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contribution (χ(2)
eff,NR

) from the inorganic components, essentially the silicon substrate, labelled 

non-resonant (NR) with respect to the IR wavelength but varying in amplitude and phase with 

the visible wavelength. Interferences between these two contributions arise because of the 

summation of the χ(2)
eff

 amplitudes, whereas only the total intensity is experimentally measured: 

 
2

(2) (2)

SFG eff ,mol eff ,NRI      (2) 
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A

i
 

   
  (3) 

For the analysis of the coupling between plasmon excitation and non-linear optics, in line with 

our previous study on DDT adsorbed on gold,43,45,46 twenty vibrational spectra were recorded 

on DDT-coated gold nanoparticles deposited on silicon while tuning the visible color between 

442 and 710 nm (see Experimental Section). Gold particles (diameter 13.5 nm) were grafted on 

silicon through an alkoxysilane layer (APTES) modified with mercaptoundecanoic acid 

(MUA). Such particles have a cuboctahedral shape,47 and thiols form small self-assembled 

layers on the facets.48,49 As on planar gold, long alkanethiol chains favor lateral interactions and 

lead to long range molecular order.49 We have checked by SFG that DDT led to a better 

organization than shorter alkanethiols (see Supplementary Information for sample preparation 

and characterizations). The corresponding |χ(2)
eff

|2 are shown in Figure 1. As is clearly seen in 

the red visible spectral range, they exhibit three vibrations corresponding to the stretching 

modes of DDT methyl endgroups at 2888 cm-1 (symmetric stretch, ss), 2951 cm-1 (Fermi 

resonance, FR) and 2974 cm-1 (antisymmetric stretch, as). It is known that incomplete 

silanization reaction of alkoxysilanes on silicon may lead to poisoning from residual CH2 and 

CH3 modes from the grafting layer.36,50,51 The presence of CH2 vibration modes is therefore 
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possible, their amplitudes showing the degree of disorder inside both the grafting and 

functionalization layers. We have checked that the sample was mostly free from these effects 

(see SI for details). 

The spectra can be classified into three regions as a function of the visible wavelength: in the 

orange-red zone, high intensity CH3 modes distinctly appear above a very small non-resonant 

background. At the blue side of the visible spectrum, the resonant amplitudes decrease whereas 

the non-resonant grows, as the SFG photons may excite electronic transitions inside silicon, 

producing spectra where Lorentzian-shaped peaks strongly interfere with a high level of 

background. In the intermediate zone (green region), the amplitudes of the resonant and non-

resonant signals are comparable, resulting in pronounced interference with profiles evolving 

from peaks to dips through derivative shapes. 

 

Figure 1. Series of SFG spectra of the Si/AuNP/DDT interface for twenty visible wavelengths (open circles). Lines 

are fits according to equations 2 and 3 (see text for details). All spectra share a common scale.  
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Determining the effects of plasmon excitation on the molecular vibrational amplitudes Ai 

requires extracting them from the experimental spectra. On planar gold,43,46 the complex 

amplitudes of vibrations do not depend on the visible color (for molecules without electronic 

resonances in the visible), and can be used as an internal reference for the gold signals in 

amplitude and in phase. The goal here is oppositely to measure their variations when the visible 

color is tuned, in order to quantify the influence of plasmon resonances on the molecular non-

linear susceptibility. The presence of a non-resonant background, varying in amplitude and 

phase from blue to red, makes it necessary to fit the spectra according to Equations 2 and 3.42,43 

Consistently fitting twenty spectra with three resonances, sharing a common width Γ, and a 

non-resonant with unknown amplitude and phase has been shown challenging in the past.43,52 

Details are provided in the SI. 

In Figure 2A, we show the evolutions of the vibrational intensities of the three CH3 modes as a 

function of the visible wavelength. The coherent lineshapes for the three resonances show the 

reliability of the fits, as we expect similar evolutions for symmetric and antisymmetric 

stretches.29 The intensities show a regular increase from blue to green, followed by two broad 

maxima in the low energy region around 580 and 660 nm. This fact proves that plasmon 

influences indeed the molecular SFG response in the vicinity of the nanoparticles and produces 

a net enhancement of the SFG intensities. 
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Figure 2. Intensities of the methyl vibrations versus the visible wavelength: (A) Experimental values extracted 

from the spectra of Figure 1. (B) Simulations of the experimental dispersion for symmetric stretch, with (solid line) 

and without (dotted line) inclusion of the substrate effects (εm=1.44, α=35°) compared to the experimental points 

(black). Curves are scaled as indicated to ease comparison. 

The observed trend however differs from the predictions of a straight plasmonic model for gold 

nanospheres, for which plasmon excitation by the visible beam lies around 510 nm (see Figure 

S1D for the visible absorption spectrum of the sample), and 620 nm for the SFG beam. We 

compare the experimental results with the predictions of the dipolar model developed in a 

previous paper29 and summarized in the SI. In the calculations, we have set all the parameters 

to their experimental values (surface density of particles and particle diameter, see SI for 

details). The DDT layer thickness and CH3 hyperpolarizability properties have been discussed 

before.29 The free parameters of the model are essentially the refractive index nm of the DDT 

layer (dielectric function εm = nm
2) around the particles, whose increase leads to a redshift of 

the plasmon peaks, and the half-aperture of the cone (α) describing the surface of the spheres 

covered with DDT, as thiol functionalization is performed after grafting the particles on the 

surface (Figure S6). We recall here that a spherical nanoparticle fully covered with molecules 

produces no measurable signal, only the symmetry breaking induced by the coverage cone 

making SFG production possible. Including the influence of the silicon substrate also induces 

an additional redshift. In Figure 2B, we compare the experimental intensities for the symmetric 
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stretch to the simulations with the reference values of nm = 1.2 and α = 35° (theoretical limit 

value for DDT in contact with the grafting layer29, Figure S6) , with and without influence of 

the substrate. The comparison illustrates that these models do not account for the experimental 

results as they do not reproduce the positions of the peaks, their relative intensities and the 

decrease towards the blue side. This discrepancy may arise from the incorrect account of the 

influence of the silicon substrate on the electric fields, which is stronger below the particle than 

above it, creating an up-down asymmetry. We also considered hybrid particles, for which this 

asymmetry is recovered (see SI for details), but could not reproduce the experimental behavior 

either (Figure S7B). Finally, taking into account the distribution of sphere radii and local 

environments (through εm) only marginally modifies the calculated dispersion and does not 

change the conclusions. 

The obvious experimental fact is that the experimental enhancement is redshifted with respect 

to the plasmonic model in the dipolar approximation for isolated spheres. Conversely, it is well-

known that longitudinal plasmonic coupling between two (or more) nanoparticles creates 

hotspots, characterized by a redshift of the plasmon resonance53 and a great increase of the local 

electric fields between the particles.54 Depending on the conditions, in particular the distance 

between the particles, local field amplification of two orders of magnitude may be expected at 

the longitudinal plasmon wavelength for interparticle distances below one nanometer.54–56 As 

both the visible and SFG wavelengths may lie in its vicinity, we may expect enhancements up 

to four magnitude orders as compared to isolated spheres. In addition, the distribution of the 

electric field in a nanoparticle dimer strongly breaks the spherical symmetry of the ensemble, 

thus contributing proportionally more to SFG production than an isolated sphere. Finally, we 

note that the positions of the experimental SFG maxima are coherent with the plasmonic 

response of multimers as measured by absorbance spectroscopy (~600 nm) when many 

aggregates are present at the surfaces, as illustrated on Figure S2. Experimental evidences thus 
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suggest that hotspots created by particle multimers greatly contribute to SFG production, even 

if their surface density is low (but not vanishing). Considering their expected high electric field 

enhancement factors, those may compensate the small number of aggregates on the surface 

(which accounts for their absence in absorbance measurements). The same effect has been 

observed in SERS, where a very small fraction of sites showing giant enhancement factors has 

been proved to contribute more to the total experimental signals than the majority of low 

enhancement sites57. As longitudinal coupling of plasmon resonances between nearby particles 

essentially takes place when the electric fields of light are polarized parallel to the surface, it 

would be interesting to perform the same kind of studies on a substrate favoring them through 

the ssp-polarization combination (glass, for example). 

It is in principle possible to model the electric field distribution around a particle multimer using 

Mie theory.58 However, this goes beyond the dipolar approximation used so far and, more 

important, it requires adjusting unknown parameters to reproduce the experimental conditions, 

namely the multimer geometries (interparticle separation, which may fluctuate a lot with great 

consequences on the plasmon resonance,59,60 number of aggregated particles and relative 

positions) and their surface densities (the small number of aggregates would require a big 

amount of large microscopy images for a statistically relevant experimental measurement 27). 

Here, we propose to account for the experimental behavior in a phenomenological way. We 

take advantage of the similarity of plasmon excitation properties between longitudinally 

coupled spheres and isolated spheres surrounded by a high dielectric function host (Figure 3A). 

In both cases, the surface plasmon resonance experiences a redshift, while keeping a 

reproducible shape as a function of the wavelength of light. Of course, the origins of both 

redshifts are different, but as far as electronic resonance is concerned, they share a common 

behavior. In a qualitative approach, we take into account the existence of dimers and multimers 
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by adding to the dipolar contribution of isolated spheres a second contribution described by a 

strongly redshifted dipolar distribution with high values of the dielectric function εm. 

 

Figure 3. Evolution of the SFG response versus the visible wavelength: (A) As a function of εm. The graph displays 

the SFG intensities for thirty values of εm, varying from 1.0 to 4.0 along the arrow. (B) Simulations of the 

experimental dispersion for symmetric methyl stretch using two distributions in εm as described in the text. 

We therefore optimized the fit of the experimental intensities using a sum of two Gaussian 

distributions of hybrid spheres: a narrow one centered at low values of εm represents the isolated 

spheres surrounded by the DDT layer, whereas a wider one centered at higher values of εm 

accounts for the diversity of couplings in the multimers due to the varieties of geometries and 

interparticle distances. The best fits are shown on Figure 3B, with the first Gaussian centered 

at εm = 1.5 with a width (standard deviation) of 0.1, the second one at either 2.5 (width 0.9) or 

2.7 (width 0.7), and α = 30°, close to the limit value. These values are consistent with the usual 

refractive index for organic monolayers as determined by SFG spectroscopy (nm ≈ 1.2) and with 

the peak positions for the redshifted resonances. The overall plasmonic amplification over the 

visible range is recovered in this way. Its shape comes from an overlap between plasmonic 

resonances at the visible and SFG wavelengths, both from isolated and interacting particles, the 
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latter being broadened by a large distribution of interaction geometries, mostly interparticle 

distances. 

SFG spectroscopy of molecules adsorbed at the surfaces of grafted nanoparticles is strongly 

influenced by plasmon excitation. By probing the visible spectral range through the 

measurement of a series of vibrational SFG spectra, we have evidenced that the intensities of 

the molecular vibrational resonances depend on the visible wavelength. The molecular SFG 

signal may be resonantly amplified, even in the unfavorable case of small gold spherical 

nanoparticles for which the optical enhancement remains weak. The plasmon excitation 

enhancement cannot be accounted for by isolated gold particles alone. Despite the low surface 

density of multimers and aggregates, the observed redshift proves that these predominantly 

contribute to plasmonic coupling in the SFG process, as a consequence of the high local electric 

fields and symmetry breaking associated to hotspots between nearby particles. This hotspot 

effect is well-known for other enhanced spectroscopies, but is shown here for the first time in 

the case of sum-frequency generation spectroscopy, extending the field of non-linear plasmon 

excitation to molecular vibrational spectroscopy. 

EXPERIMENTAL SECTION 

 The two-colour SFG set-up is analogous to the one described before.43,61 Briefly, a ~10-

ps vanadate laser source is used to independently generate, after temporal shaping and 

amplification, tunable IR and visible beams through two dedicated optical parametric 

oscillators (OPO) based on LiNBO3 and BBO nonlinear crystals, respectively. The presence of 

a tunable visible beam (in the range 440-710 nm) makes it possible to measure the SFG response 

in the visible spectral range. SFG signals are produced in a reflection geometry at the surface 

of the sample for ppp-polarization combination, with incidence angles of 55° and 65° for the 

visible and IR beams, respectively. SFG photons are filtered from reflected and scattered visible 
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light in a double grating monochromator and measured with a photomultiplier. At each step, 

vibrational SFG spectra are recorded as a function of the IR wavenumber in the 2800-3100 cm-

1 region for a fixed visible color. In this spectral range, CH stretching vibration modes are 

detected and, for symmetry reasons, CH3 modes from the methyl endgroups of alkanethiols are 

the dominant source of vibration resonances. 

Associated Content 

Supporting Information 

Sample preparation and characterization, details on the data analysis and curve fitting, summary 

of the theoretical model, influence of the substrate on the plasmonic properties. 
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