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1. INTRODUCTION 

Ocean waves are a huge resource of renewable energy for utilisation. Wave energy converter (WEC) 

devices are being developed to enable capture of this energy resource. In the late 1980s, the principle of 

extraction energy from waves was studied (Falnes, 2007) and it showed that reactive control can increase 

significantly wave power extraction for a heaving point-absorber. Since then, studies on the control strategies 

and their implementations have been a focus in the field of wave energy research (Ringwood, 2014). 

Majority of the wave energy control studies used linear potential flow theory and Cummins equation as 

the basis for modelling hydrodynamics arising from wave-body interaction, which is essential for the 

implementation of control simulation as well as for the formulation of model-based control strategies 

(Penalba, 2016). Although this simplifies/linearises the control problem as well as speeds up the simulation 

process, the utilisation of linear solver (which assumes that the wave steepness and body motion are both 

small) contradicts the large motion arising from the reactively controlled wave energy converter and thus 

does not ensure the fidelity of the control simulation results in medium to large wave conditions. On the 

extreme opposite, the Navier-Stokes equation based CFD captures the full nonlinear hydrodynamics in the 

wave-body interaction problem leading to high fidelity simulation results regardless of the system 

operational conditions, however, is barely used in the study of wave energy converter control due to its high 

computational requirement. Compromise between the linear method and the Navier-Stokes solver also exists 

(Wuillaume, 2019). A typical example is the weak-scatterer potential flow method proposed for seakeeping 

analysis of ship with forward speed (Pawlowski, 1991), which is formulated based on the assumption that the 

perturbation wave field generated by the body oscillation is small compared to the incident wave field, such 

as the free surface conditions can be linearised at the incident wave elevation level. The weak-scatterer 

method takes into account the unsteady and nonlinear hydrodynamic loads associated with dynamic wave-

body interaction as long as the aforementioned assumption is satisfied and that viscosity effects remain 

negligible. However, it remains questionable if the weak-scatterer method is suitable for solving wave 

energy converter control problem where large perturbation wave field is expected given the large resonant 

motion of the body. A further simplified version of the weak-scatterer method is the body-exact potential 

method that assumes the free surface conditions can be linearised around the mean free surface elevation 𝑧 =
0. This solver was proposed to account for the body motion induced nonlinearities but is only valid when 

small steepness waves are present. It is a compromise between the weak-scatterer method and the linear 

method. 

The proposed study intends to conduct a comparison study on the aforementioned four wave-body 

interaction modelling methods in terms of their fidelity in solving the reactive control problem of a 

submerged point-absorber (PA) WEC. 

 

2. WAVE-BODY INTERACTION MODELLING METHODS 

Table 1 summarises the main differences between the four wave-body interaction modelling methods. 

1) Navier-Stokes equation (CFD) solver: Navier-Stokes equations are a set of partial differential 

equations that describe the motion of fluids as a relationship between flow velocity (or momentum) and 

pressure. For the incompressible sea water, the Navier-Stokes equations can be written in the general form as: 

𝜌(𝜕𝐮
𝜕𝑡⁄ + 𝐮 ∙ ∇𝐮) = −∇𝑝 + ∇ ∙ (𝜇∇𝐮) + 𝐟                      (1a) 
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∇ ∙ 𝐮 = 0                       (1b) 

where 𝐮, 𝜌, 𝑝, 𝜇 and 𝐟 are the velocity vector, density, pressure, dynamic viscosity and external force (e.g. 

gravity force) and ∇ is the gradient operator. Solving Equation (1) stepwise across the computational domain 

of the numerical wave tank under boundary conditions and integrating the total stress over the wetted body 

surface 𝑆𝐵(𝑡) result in the total hydrodynamic force acting on the body (Meng, 2017). The advantage of CFD 

solvers are that they are not based on any linearisation assumption, take into account the real fluid viscosity, 

can accommodate turbulence effects and other nonlinear phenomena that may occur during a simulation. 

However, these benefits come at a cost of high level of complexity and very high computation time relative 

to linear models. In this study, the OpenFOAM package (e.g. OLAFOAM and interFoam utility) forms the 

CFD solver (specifically the Reynold-averaged Navier-Stokes model) as described by Meng et al. (2017). 

2) Weak-scatterer potential flow (WSP) solver: The potential flow theory was established based on 

the assumptions that the fluid is irrotational, incompressible and inviscid. Without considering the viscosity 

and turbulence, the potential flow theory introduced the velocity potential 𝜙, the only one scalar function that 

is necessary to compute the three dimensional fluid velocity. Thus, the velocity potential can be evaluated 

using a boundary element method and the total pressure can be solved from the Bernoulli’s equation 

(Wuillaume, 2019): 

𝑝 = −𝜌 (
𝜕𝜙

𝜕𝑡
+

1

2
∇𝜙 ∙ ∇𝜙 + 𝑔𝑧)           (2) 

where – 𝜌𝑔𝑧 is the hydrostatic pressure. The total dynamic force acting on the body is then calculated by 

integrating the total pressure over the instantaneous wetted surface of the body 𝑆𝐵(𝑡). Due to the high 

computational demand associated with the fully nonlinear potential flow method in solving the real varying 

intersection curves between the free surface and bodies, decomposition of the velocity potential and the wave 

elevation into incident and perturbed quantities were applied and the weak-scatterer hypothesis was proposed 

(Pawlowski et al., 1991). It assumed the perturbed quantities are small compared to the incident quantities: 

{
𝜙 = 𝜙𝐼 + 𝜙𝑃

𝜙𝑃 = 𝒪(𝜙𝐼)
.             (3) 

In this case, the free surface boundary equations are linearised around the known incident free surface 

elevation 𝑧 = 𝜂𝐼(𝑥, 𝑦, 𝑡). Thus, the perturbed waves are not required to be meshed which largely reduce 

computational demand. Due to the free surface conditions, wave breaking cannot be modelled. In this study, 

the WS_CN numerical tool as described in detail by Wuillaume (2019) will be used as the WSP solver. 

3) Body-exact potential flow (BEP) solver: The potential flow theory based solver can be further 

simplified under small wave conditions (e.g. wave steepness, 𝜖 ≪ 1). Thus, the free surface conditions can be 

linearised around the mean surface elevation 𝑧 = 0. This forces the free surface mesh remain planar, which 

enables a faster mesh convergence and reduction of computing time. The pressure is integrated over the 

wetted body surface 𝑆𝐵(𝑡) subject to “body-exact” motion and delimited by the mean wave elevation. In the 

WS_CN numerical tool, an option of linearising the free surface conditions around the mean surface 

elevation exists and thus the WS_CN numerical tool can be configured as the BEP solver for use in this study. 

4) Linear potential flow (LP) solver: The potential flow theory based solver can be simplified to its 

neatest form, by assuming that wave steepness, 𝜖, is small and the body undergoes small amplitude motion, 

𝐴𝑚. Consequently, the free surface conditions can be linearised around the mean free surface elevation 𝑧 = 0 

and the body meshes are fixed at the rest position of the body. This leads to a linearised model, where the 

perturbed component can be further decomposed into a diffraction component and a radiation component: 

{
𝜙 = 𝜙𝐼 + 𝜙𝐷 + 𝜙𝑅

𝜖 ≪ 1, 𝐴𝑚 ≪ 1 
.            (4) 

The elementary problems for these velocity potentials are solved and the total hydrodynamic force is 

obtained by summing the excitation force and the radiation force. The linearised model can be solved either 

in the time domain (Cummins, 1962) or in the frequency domain, with hydrodynamic functions/coefficients 

(e.g. added mass, radiation damping and excitation force) pre-calculated using boundary element solver (e.g. 

WAMIT, NEMOH, Aquaplus). Surface piercing (e.g. when a fully submerged buoy pierces the free surface) 

cannot be modelled in this case given the linearised surface and body conditions. In this study, a frequency-

domain based linear solver is applied (Ding, 2018). 
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Table 1. Main differences between the four wave-body interaction modelling methods  

 Linear potential 

flow solver 

Body-exact potential 

flow solver 

Weak-scatterer 

potential solver 

Navier-Stokes based 

CFD solver 

Assumption 

{

Irrotational and 
inviscid fluid,

𝜖 ≪ 1,
𝐴𝑚 ≪ 1

 
{
Irrotational and 

inviscid fluid,
𝜖 ≪ 1

 {

Irrotational and 
inviscid fluid,

𝜙𝑃 = 𝒪(𝜙𝐼)
 

 

Isotropic fluid 

Hydrodynamics 

decomposition 
𝜙 = 𝜙𝐼 + 𝜙𝐷 + 𝜙𝑅 𝜙 = 𝜙𝐼 + 𝜙𝑃 NA 

Meshed free surface 𝑧 = 0 𝑧 = 𝜂𝐼(𝑥, 𝑦, 𝑡) 𝑧 = 𝜂(𝑥, 𝑦, 𝑡) 

Meshed body surface 𝑆𝐵(0) 𝑆𝐵(𝑡) 

Hydrodynamic force 

computation 

Sum of excitation 

and radiation forces 

Integration of total pressure over the wetted 

body surface 

Integration of total 

stress over the wetted 

body surface 

Fluid vortices NO YES 

Wave breaking NO YES 

Drag force NO, a Morison-like term −0.5𝜌𝐶𝐷𝐴|�̇�𝑏 − �̇�𝑓|(�̇�𝑏 − �̇�𝑓) can be added YES 

Surface piercing NO YES 

Computational speed Extremely fast Medium Slow Extremely slow 

                 
Fig. 1. Submerged heaving PA WEC 

 

3 CASE STUDIES 

Fig. 1 shows the test case, a fully submerged heaving PA WEC with parameters defined in Table 2. A 

submerged PA was selected since Sergiienko et al. (2018) showed that reactive control plays a critical role in 

enlarging the absorption bandwidth of this PA system. A spherical buoy was selected to avoid nonlinearities 

associated with fluid vortices neglected by the potential flow solvers. The power take-off (PTO) was 

simplified as a combination of a spring, a damper, and a pretension force that counteracts the net buoyancy 

force. The PA system modelled by the four wave-body interaction methods was tested under regular wave 

conditions of 0.1m and 1m wave amplitudes and 4 typical wave frequencies, respectively. The PTO spring 

and damper parameters were optimised in the linear frequency-domain solver so that the PTO damper 

absorbed power was maximised subject to a body motion constraint of 3m (Ding, 2018). This mitigated the 

occurrence of surface piercing which was not accounted for by the linear solver. The optimised PTO 

parameters were then used by all four wave-body interaction models for a comparison. Quadratic damping 

was considered as an external force in the three potential flow theory based solvers to account for the drag 

force neglected by the inviscid fluid assumption. Fluid velocity was assumed to be zero in the Morison force 

computation due to its negligible influence. Lorentz linearisation was used to convert the quadratic Morison 

equation into a linearised damping for use in the frequency-domain linear solver (Ding, 2018). 

 

4. RESULTS 

Fig. 2 shows the RAO and power absorption of the heaving buoy at two wave steepness and four typical 

wave frequencies, output by the four wave-body interaction models. By the time of abstract submission,  

Table 2. Parameters for the case studies 
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Fig. 2. Buoy heave RAO (left) and power absorption (right) under 0.1m (upper) and 1m (lower) amplitude wave 

the CFD solver results at 0.75rad/s had not yet been obtained due to HPC maintenance at the University of 

Adelaide. At low wave steepness (e.g. 0.1m amplitude), the buoy RAO did not reach the 3m displacement 

constraint so that the buoy was kept fully submerged during its free motion. In this scenario, the buoy RAO 

results output by the four solvers reached a good agreement across the frequencies whilst a discrepancy of 14% 

in the power absorption can be observed between the CFD solver result and the potential flow solver results 

at 0.85rad/s. The reason behind this discrepancy is under investigation. At high wave steepness (e.g. 1m 

amplitude), the buoy RAOs were near the 3m displacement constraint, meaning that the buoy moved very 

closely to the trough of the free surface at its upper stroke so that surface piercing and wave breaking can 

occur. In this case, both the results output by the BEP solver and the WSP solver diverged from the results of 

the linear solver (in particular at steeper/higher-frequency waves, with a discrepancy of up to 34%) since 

buoy motion induced nonlinearities (e.g. those arising from surface piercing phenomenon) became dominant 

in the system hydrodynamics. The BEP solver and the WSP solver output similar results, with a difference of 

up to 13%. In general, the WSP solver results were slightly lower than the CFD results, with a discrepancy of 

up to 8%. The small discrepancy can be attributed to the weak-scatterer hypothesis that disabled the WSP 

solver from modelling wave breaking. In conclusion, the linear solver showed poor accuracy in modelling 

reactive control of fully submerged point absorber in high steepness waves, whilst both the BEP solver and 

the WSP solvers demonstrated acceptable consistency against the CFD solver. More fundamental results (e.g. 

wave field data and meshing analysis) and new findings are to be shared at the IWWWFB workshop. 
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