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Abstract 

A new methodology for MOSFET characterization making use of the on-resistance characteristics 

Ron(Vg,Vd)=Vd/Id(Vg,Vd) and associated derivatives dRon/dVg and dRon/dVd is proposed. This 

approach enables to eliminate the influence of source-drain series resistance Rsd not only in linear 

region but also in non-linear region of MOSFET operation. Therefore, it allows for intrinsic 

MOSFET parameter extraction free from source and drain series resistance. 
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1. Introduction 

A precise extraction of MOSFET electrical parameters is needed for the proper engineering and 

optimization of CMOS technologies. Numerous methods have been proposed during the past 

decades for the MOSFET parameter extraction, mainly based on the Id(Vg,Vd) transfer or output 

drain current characteristics [1-12]. In this context, the Y-function technique, where Yg=Id/√gm, gm 

being the transconductance, has proven very efficient for MOSFET parameter extraction in linear 

region, since it eliminates the impact of source-drain series resistance Rsd [2, 7, 11, 12], at least when 

Rsd is constant with gate voltage. 

In this paper, we propose a new methodology for MOSFET characterization making use of the 

on-resistance characteristics Ron(Vg,Vd)=Vd/Id(Vg,Vd) and associated derivatives dRon/dVg and 

dRon/dVd. Indeed, this approach enables to eliminate the influence of Rsd not only in linear region but 

also in non-linear region of MOSFET operation.  

 

2. Ron Methodology principles 

Considering Ohm’s law, the power dissipated in a MOSFET, P=IdVd, can be expressed as [13], 

2022
dondddsdd IRIRIRVIP ++==       (1)  

where Ron
0 is the intrinsic on-resistance, Rs and Rd are the source and drain series resistances, 

respectively. Therefore, it can be shown from (1) that the extrinsic on-resistance Ron is simply 

obtained by adding Rs and Rd to the intrinsic on-resistance, Ron
0 as [13], 

0
ondson RRRR ++=          (2) 

As a result, Eq. (2) indicates that, as it was the case for MOSFET linear operation region [1-12], 

the use of on-resistance Ron allows generalizing the application of Ohm’s law to the MOSFET non 

linear operation region. In turn, assuming as usual constant Rs and Rd, it implies that one could 

suppress the influence of the source and drain series resistance by dealing with its derivatives with 
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respect to Vg, as it was previously done in ohmic linear regime [1-12], but also with respect to Vd for 

any Vg and Vd bias condition. 

It should be mentioned that this approach can be regarded as an attempt to generalize the concept 

of Y-function, originally derived for linear regime, to the non-linear operation region. Indeed, 

generalized Y-functions can be defined from the derivative of Ron with respect to Vg and Vd as: 

gon

d
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It is worth noting that Eq. (3) naturally reduces to the standard definition for the Y-function, 

Yg=Id/√gm=√β.√Vd.(Vg-Vt) for small Vd at strong inversion.  

 

A. Long channel MOSFET at strong inversion 

For long channel devices, based on the classical MOSFET model valid in strong inversion, we 

have [14]:  

)2/(. dgtd
L

d VVVI −= β     with   0.. µC
L

W
ox=β      (5) 

where Vgt=Vg-Vt is the gate voltage overdrive, Cox the gate oxide capacitance per unit area, L the 

channel length, W the channel width and µ0 the low-field mobility. It is easy to show using the 

definition of the total resistance (Ron= Vd/Id) that the corresponding expressions for the on-resistance 

Ron and associated derivatives dRon/dVg and dRon/dVd are given by: 
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Note the proportionality of dRon/dVg and dRon/dVd with Ron
2.  

 

B. Short channel MOSFET at strong inversion 

For short channel devices, using the classical MOSFET model accounting for saturation velocity 

effect, we have [14]:  
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where vsat is the carrier saturation velocity. The associated expressions for the total on-resistance Ron 

(Ron= Vd/Id) and associated derivatives dRon/dVg and dRon/dVd can also be derived and now read, 
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In this case, it should be noted that, unlike long channel devices, (dRon/dVd)/(-dRon/dVg) is no longer 

constant with Vd. 

 

3. Results and discussion 

In order to validate the above analysis, the on-resistance Ron(Vg,Vd) and the associated derivative 

characteristics have been reconstructed from Id(Vg,Vd) measurements performed on nMOSFETs 

from a 14nm FDSOI technology (as in [15] with gate width W=1µm and gate lengths from 

L=300nm down to L=60nm. 
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The impact of Rs and Rd was tested by adding external resistors (here Rext=400Ω) in series with 

source and drain electrodes. For example, Fig. 1 illustrates how the Id(Vg) characteristics measured in 

linear operation (Vd=20mV) are significantly modified by the insertion of an external series 

resistance, especially as the gate length L is  reduced. Figure 2 confirms the fact that the on-

resistance Ron is well shifted by Rext from linear to non linear triode region as Vd varies from 0 to 

0.5V. Moreover, Fig. 3 clearly indicates that dRon/dVg is independent of Rext for long and short 

channel devices. However, Fig. 4 reveals that, although dRon/dVd is independent of Rext for long 

channel devices, it is slightly varying with Rext for short devices. This fact could possibly be related 

to the assumptions we have considered. More precisely, in our theory low-field mobility, µ0, is 

considered independent of the gate voltage, Vg, and also the source and drain series resistances, Rs 

and Rd, do not depend on Vg. 

As a result, Fig. 5 shows that the generalized Y-function characteristics Yg(Vg) are well immune 

to Rext as expected from Eqs (2)-(3) whatever the channel length. This feature demonstrates that the 

Yg(Vg) function does provide information on the intrinsic MOSFET operation – free from series 

resistance effect- not only in ohmic region but also in non linear operation region i.e. for large drain 

voltage. Instead, for short channel, the generalized Y-function characteristics Yd(Vd) of Fig. 6 

slightly varies with Rext, especially in triode region. Therefore, the Yd(Vd) characteristics are not 

perfectly immune to Rext, contrary to Yg(Vg) characteristics. 

Figure 7 shows that the ratio (dRon/dVd)/(dRon/dVg) is lying around 0.5 from linear to non-linear 

region as predicted from Eqs (7)-(8) for long channel devices, emphasizing the consistency of Ron 

model of Eqs (6)-(8). 

As suggested from Eq. (7) and shown in Fig. 8, the on-resistance Ron varies linearly with 

(dRon/dVg)
1/2 for long channel devices. This property could be used to extract the intrinsic Rsd of a 

single device after extrapolation of the straight line on y axis to zero abscissa as illustrated in Fig. 8. 

It should be noted that the extracted value of Rsd (≈650Ω) by this method falls in agreement with the 

one extracted with standard techniques using several gate lengths as in [15]. For short channel 
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devices, this property seems also to be applied as shown in Fig. 8, despite the difference in Eq. (11). 

However, in this case, the extracted Rsd value differs from the one extracted by standard techniques 

[15] and long channel case. Therefore, because of the extrapolation inaccuracy and limitation for 

short channel devices, we do not recommend this method for Rsd extraction on single short channel 

devices due to larger extrapolation error. 

Figures 9 and 10 show the variations of (dRon/dVd)/(dRon/dVg) with Vd for various channel 

lengths and how they can be satisfactorily modeled by saturation velocity effect using Eqs (11) and 

(12). However, the deviations at low drain voltage should be noted and are difficult to be interpreted 

by the simple model of Eqs (11) and (12). 

In order to confirm the previous analysis and gain physical insight, we have performed calibrated 

modelling of the device characterstics using the Lambert function based compact model of [10] 

after inclusion of saturation velocity and series resistance effects. Typical calibration curves 

obtained with this compact model for the transfer characteristics gm(Vg) and output chacracteristics 

Id(Vd) are shown in Figs 11 and 12 for linear and non linear regions for  short channel device 

(L=60nm). As can be seen from Fig. 13, the modeled dRon/dVg(Vg) and dRon/dVd(Vd) 

characteristics allow to reproduce satisfactorily the experimental data of Figs 3 and 4 and, in 

particular, some dependence of dRon/dVd(Vd) curves with Rext. These simulations confirm that 

dRon/dVg(Vg) and, by turn, Yg(Vg) are perfectly immune to Rext, whereas dRon/dVd(Vd) and Yd(Vd) 

varies somehow with Rext, expecially in short channel devices. 

 

4. Conclusions 

A new methodology for MOSFET characterization using the on-resistance Ron(Vg,Vd) and 

associated derivatives dRon/dVg and dRon/dVd characteristics has been presented. This approach 

enables to eliminate the influence of Rsd not only in linear region but also in non-linear region of 

MOSFET operation. However, the dRon/dVd(Vd) characteristics are not perfectly independent of 

external series resistance - especially for short devices, as confirmed by simulation. Instead, the 
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dRon/dVg(Vg) and, by turn, Yg(Vg) characteristics are found perfectly immune to source-drain series 

resistance, generalizing the use of Y-function to non linear operation region. This methodology 

should be very useful for MOSFET intrinsic parameter extraction over full gate and drain voltage 

operation range. 
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Figure captions 

Fig. 1. Experimental Id(Vg) characteristics with Rext=400Ω (dashed line) and without Rext (solid 

line) for Vd=20mV and  various channels L.   

Fig. 2. Ron(Vd) with Rext=400Ω (dashed line) and without Rext (solid line) for Vg=1V (L=60nm and 

300nm, Vt=0.4V).  

Fig. 3. dRon/dVg(Vd) with Rext=400Ω (dashed line) and without Rext (solid line) for Vg=1V 

(L=300nm and 60nm).  

Fig. 4. dRon/dVd(Vd) with Rext=400Ω (dashed line) and without Rext (solid line) for Vg=1V 

(L=300nm and 60nm).  

Fig. 5. Yg(Vg) with Rext=400Ω (dashed line) and without Rext (solid line) for various Vd and Vg=1V 

(L=60nm  and 300nm). 

Fig. 6. Yd vs √Vd with Rext=400Ω (dashed line) and without Rext (solid line) for Vg=1V (L=60nm  

and 300nm). 

Fig. 7. (dRon/dVd)/(dRon/dVg) vs Vd with Rext=400Ω (dashed line) and without Rext (solid line) for 

Vg=1V (L=300nm). 

Fig. 8. Ron vs (dRon/dVg)
1/2 as Vd is varying from 0 to 0.5V with Rext=400Ω (dashed line) and 

without Rext (solid line) for Vg=1V (L=60nm and 300nm). Extraction of Rsd by extrapolation 

on y axis to zero abscissa. 

Fig. 9. Experimental (dRon/dVd)/(dRon/dVg) vs Vd without Rext for various L (Vg=1V). 

Fig. 10. Modeled (dRon/dVd)/(dRon/dVg) vs Vd for various L (Vg=1V, vsat=2.107cm/s, 

µ0=140cm2/Vs, Vt=0.4V). 

Fig. 11. Experimental (left) and modeled (right) gm(Vg) characteristics with Rext=400Ω and without 

Rext for L=60nm (Vd=20mV). 

Fig. 12. Experimental (left) and modeled (right) Id(Vd) characteristics with Rext=400Ω and without 

Rext for L=60nm (Vg=1V). 
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Fig. 13. Modeled dRon/dVg and dRon/dVd vs Vd characteristics with Rext=400Ω and without Rext for 

L=60nm (Vg=1V). 
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Fig. 1. Experimental Id(Vg) characteristics with Rext=400Ω (dashed line) and without Rext (solid 

line) for Vd=20mV and  various channels L.   
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Fig. 2. Ron(Vd) with Rext=400Ω (dashed line) and without Rext (solid line) for Vg=1V (L=60nm and 
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Fig. 3. dRon/dVg(Vd) with Rext=400Ω (dashed line) and without Rext (solid line) for Vg=1V 

(L=300nm and 60nm).  
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Fig. 4. dRon/dVd(Vd) with Rext=400Ω (dashed line) and without Rext (solid line) for Vg=1V 

(L=300nm and 60nm).  
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Fig. 5. Yg(Vg) with Rext=400Ω (dashed line) and without Rext (solid line) for various Vd and Vg=1V 

(L=60nm  and 300nm). 
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Fig. 6. Yd vs √Vd with Rext=400Ω (dashed line) and without Rext (solid line) for Vg=1V (L=60nm  

and 300nm). 
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Fig. 7. (dRon/dVd)/(dRon/dVg) vs Vd with Rext=400Ω (dashed line) and without Rext (solid line) for 

Vg=1V (L=300nm). 
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Fig. 8. Ron vs (dRon/dVg)
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axis to zero abscissa. 
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Fig. 9. Experimental (dRon/dVd)/(dRon/dVg) vs Vd without Rext for various L (Vg=1V). 
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Fig. 10. Modeled (dRon/dVd)/(dRon/dVg) vs Vd for various L (Vg=1V, vsat=2.107cm/s, 

µ0=140cm2/Vs, Vt=0.4V). 
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Fig. 11. Experimental (left) and modeled (right) gm(Vg) characteristics with Rext=400Ω and without 

Rext for L=60nm (Vd=20mV). 
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Fig. 12. Experimental (left) and modeled (right) Id(Vd) characteristics with Rext=400Ω and without 

Rext for L=60nm (Vg=1V). 
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Fig. 13. Modeled dRon/dVg and dRon/dVd vs Vd characteristics with Rext=400Ω and without Rext for 

L=60nm (Vg=1V). 

 




