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RESIDUAL SUPERSINGULAR IWASAWA THEORY AND SIGNED IWASAWA INVARIANTS

FILIPPO A. E. NUCCIO MORTARINO MAJNO DI CAPRIGLIO AND RAMDORAI SUJATHA

Abstract. For an odd prime p and a supersingular elliptic curve over a number field, this article introduces a
fine signed residual Selmer group, under certain hypotheses on the base field. This group depends purely on
the residual representation at p, yet captures information about the Iwasawa theoretic invariants of the signed
p∞-Selmer group that arise in supersingular Iwasawa theory. Working in this residual setting provides a natural
framework for studying congruences modulo p in Iwasawa theory.

1. Introduction

Iwasawa theory of Galois representations, especially those arising from elliptic curves and modular
forms, affords deep insights into the arithmetic of these objects over number fields. The Iwasawa theoretic
invariants, especially the µ and λ invariants, play a central role in this study. The Iwasawa theory for
ordinary elliptic curves, and more generally for ordinary Galois representations, was initiated by Mazur
in [Maz72] and Greenberg in [Gre89]. The corresponding theory for supersingular elliptic curves is subtler
and was already begun by Perrin-Riou in [PR90]. In the last couple of decades, the supersingular Iwasawa
theory has gained considerable momentum (see [Kob03, Pol03, IP06, LLZ10, Spr12, Kim13, Kim18, KO18]
and references therein).

Greenberg and Vatsal investigated in [GV00] the behaviour of Iwasawa invariants for ordinary elliptic
curves whose residual representations are congruent. The objects of study are the dual p∞-Selmer groups
of the elliptic curves over the cyclotomic Zp-extension of the base field, which is assumed to be a number
field. Specifically, let p be an odd prime and Ei, i = 1, 2 be two elliptic curves over Q with good ordinary
reduction at p. Greenberg and Vatsal prove that the vanishing of the µ-invariant for the dual p∞-Selmer
group of one of the curves implies the vanishing for the other. Their study makes crucial use of a non-
primitive dual Selmer group, which has the same µ-invariant as the dual p∞-Selmer group. When the
µ-invariants vanish, they also prove the equality of the λ-invariants for the non-primitive dual p∞-Selmer
groups for E1 and E2. However, they provide examples showing that the λ-invariants for the dual p∞-
Selmer groups do not coincide. These results have been extended to the representations coming from
higher weight modular forms by Emerton, Pollack and Weston in [EPW06], and to more general base
fields and Zp-extensions by, among others, Hachimori in [Hac11] and by Kidwell in [Kid18]. A crucial
input in the study of p∞-Selmer groups in the ordinary case is a deep result of Kato (see [Kat04]) which
implies that the dual p∞-Selmer groups (and their non-primitive counterparts) are torsion modules over
the Iwasawa algebra.

When E/Q is an elliptic curve having good, supersingular reduction at p, the dual p∞-Selmer group is
no longer torsion. Kobayashi defined the signed p∞-Selmer in [Kob03], making use of special subgroups
of the local Mordell–Weil groups along the cyclotomic tower which were already considered by Perrin-
Riou. These signed p∞-Selmer groups are torsion over the Iwasawa algebra and display properties that
are strikingly similar to those of the p∞-Selmer group in the ordinary case and come equipped with signed
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Iwasawa invariants λ±, µ±. Analogous results to those of Greenberg–Vatsal for these signed invariants
were proved by Kim in [Kim09], again making use of the notion of non-primitive Selmer groups. The
study of signed Selmer groups for higher weight modular forms has been initiated by Lei, Loeffler and
Zerbes in [LLZ10] through the theory of Wach modules, and extensions of Greenberg–Vatsal results in this
setting can be found in [HL19] by Hatley and Lei. The definition of the signed Selmer groups has been
extended to a broader class of number fields in [IP06, Kim13, KO18]. In this article we will mainly refer
to Kitajima–Otsuki’s paper. Our work sheds more light on the behaviour of the Iwasawa invariants for
the dual signed p∞-Selmer groups of elliptic curves in the supersingular case. The results proved here are
more general than those in [Kim09].

The novelty in our approach is that we systematically work with the residual representation of a su-
persingular elliptic curve defined over a number field L satisfying certain conditions (see Section 2, in
particular hypothesis Hyp 1 therein), instead of working with Ep∞ . In particular, we introduce a new
Selmer group, attached to the Galois representation Ep of p-torsion points of E, which we call fine signed
residual Selmer group. It depends only on the isomorphism class of the residual Galois representation Ep, yet
captures the full Iwasawa-theoretic information about the µ±- and the λ±-invariants of the usual signed
p∞-Selmer group. The group that we introduce is to be viewed as the residual, signed, analogue of the
fine p∞-Selmer group introduced by Coates and the second author in [CS05]. In loc. cit. , the authors pos-
tulate a conjecture, referred to as Conjecture A, which asserts that the Iwasawa µ-invariant of the dual fine
p∞-Selmer group over Lcyc vanishes. It is pertinent to remark here that Conjecture A depends only on the
residual Galois representation (see [Gre11] and [Suj10]) and its formulation is independent of the reduc-
tion type at p of the elliptic curve. Working directly with the fine signed residual Selmer group provides
a conceptual framework to explore the comparison of Iwasawa-theoretic invariants, when the residual
representations are isomorphic. It also potentially provides the right context for explaining a plethora of
congruences in arithmetic, such as the congruences between complex and p-adic L-values which occur
when the residual representations are isomorphic. We hope to return to this subject of framing a residual
Iwasawa theory in our future works.

The main results of this paper are Theorem 4.12 and Theorem 4.14. Under certain hypothesis Hyp 1
and Hyp 2, and assuming Conjecture A, Theorem 4.12 provides a criterion for the µ±-invariant of the
signed p∞-Selmer group to vanish, purely in terms of the fine signed residual Selmer group. We refer to
the main body of the paper for its statement, because it involves some morphism whose definition is too
technical for this introduction.

As an application of Theorem 4.12, the next theorem provides a criterion for the µ±-invariant of the
signed p∞-Selmer group to vanish, purely in terms of the fine signed residual Selmer group. In the follow-
ing, denote by X±((Ej)p∞ /Lcyc) the dual signed p∞- Selmer groups, as defined in [KO18, Definition 2.1]
(see also Definition 3.6):

Theorem 4.14. Let E1,E2 be two elliptic curves defined over L, satisfying hypotheses Hyp 1 and Hyp 2. Suppose
that the residual Galois representations (E1)p and (E2)p are isomorphic.

Let µ±
Ej

and λ±
Ej

be the Iwasawa invariants of X±((Ej)p∞ /Lcyc), for j = 1, 2. Then, for both choices of sign,

µ±
E1

= 0⇐⇒ µ±
E2

= 0.

For each sign ∗ ∈ {+,−} for which this vanishing happens, we also have

λ∗
Ej

= ρ∗ + δEj

where δEj
is as in Definition 4.4 and ρ± := ρ±

E1
= ρ±

E2
is as in (35).
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The first term ρ∗ in the above statement depends only on the residual representation and is independent
of the sign. The second term δEj

depends on the structure of the local p-torsion of the elliptic curve over
the first layer of the cyclotomic tower at the set of primes of bad reduction, together with the primes above
p with ordinary reduction. We refer the reader to the main body of the paper for the precise definitions of
these numerical invariants.

Our methods also show that the difference λ+ − λ− depends only on the residual representation, a fact
which was already observed by Kim in [Kim09, Remark 3.3] for L = Q. Proposition 3.8 and Proposition 3.9
are the key technical tools needed to show that the definition of the fine signed residual Selmer group
depends only on the residual representation. They compare the reduction type at places above p of two
residually isomorphic elliptic curve at primes above p, and are of independent interest. The first result
relies on Honda–Tate theory and is a typical feature of supersingular reduction, while the second relies
upon a result by Raynaud on finite flat group schemes killed by p.

In ongoing works we extend these results in the following different directions. First, to higher weight
modular forms over the cyclotomic extension, second to multiple Zp-extensions, and finally to the multiply
signed Selmer groups as well as non-commutative p-adic Lie extensions.

The paper consists of five sections, including this introductory section. In Section 2, we introduce
notation and some preliminaries about the local structure of elliptic curves with supersingular reduction.
In Section 3, we recall the main properties of plus/minus Kummer maps and Selmer groups, mainly
building upon [KO18], and we introduce the fine signed residual Selmer group. In Section 4, we study
the Iwasawa theory of this group and state our main results. The final section presents some numerical
examples that illustrate our results.

Acknowledgement. We would like to thank Laurent Berger for inviting the second author to ENS Lyon in
June 2018 which led to initiating this research. This work was continued during the visit of the first author
to the Pacific Institute of Mathematical Sciences (PIMS), Vancouver benefiting of a CNRS-PIMS exchange.
F. A. E. N. gratefully acknowledges the support and hospitality of PIMS and of the University of British
Columbia, as well as the acceuil en délégation à l’UMI-3069 du CNRS. S. R. gratefully acknowledges support
from NSERC Discovery grant 201903987. We would also like to thank Matthieu Romagny for helpful
correspondence.

2. Preliminaries

In this paper L denotes a fixed number field of absolute degree [L : Q] = N, and E/L is an elliptic curve
defined over L. Throughout, p will denote an odd prime ≥ 3, Sp denotes the set of primes above p in L
and Tp(E) will denote the Tate module of E. The following hypothesis is assumed throughout (cf. [KO18,
Theorem 1.3 (i)–(v)]):

Hyp 1

(i) The curve E/L has good reduction at all primes in Sp;
Denote by Sss ⊆ Sp the set of primes above p where E has supersingular reduction.

(ii) Sss is non-empty;
(iii) all primes p1, . . . , pd in Sss split completely in L/Q, so Lpi

∼= Qp for all 1 ≤ i ≤ d;
(iv) 1 + p − |Ẽ(Fpi

)| = 0, where Ẽ is the reduction of E modulo any of the prime ideals
p1, . . . , pd and Fpi

denotes the residue field of pi.
(v) The ramification index e(π) in the extension L/Q of every prime π ∈ Sp where E has

good, ordinary reduction, is at most p− 1.

Remark 2.1. Kitajima and Otsuki work in a slightly greater generality, allowing the supersingular primes to
be simply unramified in L/Q, provided the curve is defined over a subfield where they split completely.
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Points (i)–(iv) in Hyp 1 ensure that the signed Selmer groups are defined (see Section 3). Point (v) in Hyp 1
ensures that the fine signed residual Selmer group depends only on the residual Galois representation Ep

(cf. Proposition 3.8 and Proposition 3.9).

Let us set the notation that will be used in the paper.

Notation 2.2. The set Sp of primes above p is the disjoint union Sp = Sss ∐ Sord, where Sord = {π1, . . . , πs}
is the (possibly empty) set of primes where E has good, ordinary reduction. Consider the cyclotomic Zp-
extension Lcyc/L of L, with intermediate layers Ln, for n ≥ 0, so that Gal(Ln/L) ∼= Z/pnZ and L0 = L.
By Hyp 1, all primes pi ∈ Sss split in L, so they are all totally ramified in Lcyc/L. Let pn,i denote the prime
ideal of Ln above pi, for 1 ≤ i ≤ d and let Ln,i be the localisation of Ln at pn,i. For ease of notation, we often
suppress the index i since these fields, for fixed n, are all isomorphic to the nth layer of the cyclotomic
extension of L0

∼= Qp. In particular, Lcyc,i
∼= (Qcyc)pcyc,i . We also need to consider the fields obtained

by adjoining p-power order roots of unity to L0,i = L0. Set kn = L0(ζpn+1), for n ≥ −1, where ζpn+1 is

a primitive pn+1th root of unity. For all n ≥ −1, we let mn be the maximal ideal of kn. In particular,
k−1
∼= Qp and m−1

∼= pZp. The Galois group Gal(k0/L0) is denoted by ∆. It is isomorphic to Gal(kn/Ln)
for all n ≥ 0, and we tacitly identify these groups throughout.

Let S = Sp ∐ Sbad where Sbad = {l1, . . . , lr} is the finite set of primes of bad reduction for E/L. The
maximal extension of L unramified outside of S will be denoted LS. We usually write v or w to denote
generic primes above S in an extension of L. Given an extension L′/L, we sometimes abuse notation and
again denote by S the primes of L′ above primes in S. When we need to specify the field, we write S∗L ′ for

∗ ∈ {∅, ord, ss, bad} to denote the sets of primes of L′ above primes in S∗.
Given any field K ∈ {Ln, Ln,v,kn} (for some 0 ≤ n < ∞ and possibly some prime v ∈ S of Ln), its ring

of integers will be denoted by OK; when K is a local field, we further denote its residue field by Fv. For
K as above, write K̃ = LS if K = Ln, K̃ = kn = Qp if K = kn and K̃ = (LS)w = Ln,v, for some extension
w | v, when K = Ln,v. The corresponding Galois groups Gal(K̃/K) are denoted, respectively, by G

S
n , Gkn

and GLn,v ; in case v = pi, this will be denoted GLi
. When K ∈ {Ln,v,kn}, and M is any Galois module, we

usually write Hi(K, M) to denote the cohomology group Hi(Gal(K̃/K), M).

The Galois module of pt-torsion points of E is denoted Ept , and more generally Mpt will denote the

submodule consisting of the pt-torsion elements in M. By a slight abuse of notation, Ẽ/Fp is the reduction
of E modulo any of the prime ideals pi, all the reductions being isomorphic. Similarly, E is the formal group
of E over Zp = OL0 . As discussed in [Kob03, Corollary 8.5] and [KO18, § 3.1], there is a Zp-isomorphism
E ∼= Fss between the formal group of E/Zp and the supersingular formal group Fss whose logarithm of
Honda type t2 + p (the group Fss is denoted by G in [KO18]: in our setting the automorphism ϕ in loc. cit. is
trivial).

3. Plus and minus decomposition

3.1. The signed Kummer maps. The aim of this section is to gather some results about the plus/minus
decomposition, mainly taken from [KO18], which in turn relies on [Kob03]. Most of the results men-
tioned below are either well-known or easy adaptations to the finite Galois module of p-torsion points, of
arguments which are normally stated for the divisible module of p∞-torsion points.

We start with a general remark about vanishing of global torsion points for E along the cyclotomic
extension.
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Proposition 3.1. For every n ≥ 0, the torsion subgroup E(mn)p is trivial. In particular,

E(kn)p = E(Ln)p = E(Ln)p = {0} for all n ≥ 0.

Proof. See [KO18, Proposition 3.1]. �

Following the pivotal works [PR90] and [Kob03] by Perrin-Riou and Kobayashi, respectively, we now
define plus/minus subgroups of the local points, as follows.

Definition 3.2 ([KO18, Definitions 2.1 and 3.13]). With notations as above we denote, for every n ≥ 1,

E+(mn) = {P ∈ E(mn)
∣∣ Trn

m+1(P) ∈ E(mm) for all − 1 ≤ m ≤ n− 1, m even}

and

E−(mn) = {P ∈ E(mn)
∣∣ Trn

m+1(P) ∈ E(mm) for all − 1 ≤ m ≤ n− 1, m odd}

Similarly, we set

E
+(kn) = {P ∈ E(kn)

∣∣ Trn
m+1(P) ∈ E(km) for all − 1 ≤ m ≤ n− 1, m evem}

and

E
−(kn) = {P ∈ E(kn)

∣∣ Trn
m+1(P) ∈ E(km) for all − 1 ≤ m ≤ n− 1, m odd}

and we let E±(Ln) = E
±(kn)∆ = H0(∆,E±(kn)).

The next lemma compares the formal signed subgroups of local points with the whole signed subgroups:

Lemma 3.3 (see [KO18, Lemma 3.14]). Let p = pi ∈ Sss and let L = L0,i. For all n ≥ 1 there are exact sequences

(1) 0 −→ E±(mn) −→ E
±(kn) −→ D±n −→ 0

where D±n ⊆ Ẽ(Fp) is a finite group, of prime-to-p order bounded independently of n.
More generally, if K/L is any algebraic extension and mK is the maximal ideal of its valuation ring, there is an

exact sequence

(2) 0 −→ E(mK) −→ E(K) −→ D −→ 0

where D is a finite group of prime-to-p order, inducing an isomorphism

E(m
Qp

)p∞ ∼= E(Qp)p∞ .

Proof. Fix m ≥ −1 and consider the commutative diagram

0 // E(mm) //
� _

��

E(km) //
� _

��

Ẽ(Fp) // 0

0 // E(mm+1) // E(km+1) // Ẽ(Fp) // 0

which induces, by the snake lemma, an isomorphism

E(mm+1)/E(mm)
∼=
−→ E(km+1)/E(km).
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Now fix n ≥ m + 1: the above sequence fits into the commutative diagram of exact sequences

0 // ker T̂rn
m+1

//
� _

��

ker Trn
m+1

//
� _

��

Ẽ(Fp)

0 // E(mn) //

T̂rn
m+1

��

E(kn) //

Trn
m+1

��

Ẽ(Fp) //

��

0

0 // E(mm+1)/E(mm)
∼=

// E(km+1)/E(km) // 0 // 0

where T̂rn
m+1 (resp. Trn

m+1) denotes the trace map followed by reduction modulo E(mm+1) (resp. modulo

E(km+1)). In particular, we deduce that ker T̂rn
m+1 is a subgroup of ker Trn

m+1 with quotient contained
inside Ẽ(Fp), for every m ≤ n− 1. Taking intersections, we find

E±(mn) =
⋂

(−1)m=±1
−1≤m≤n−1

ker T̂rn
m+1 and E

±(kn) =
⋂

(−1)m=±1
−1≤m≤n−1

ker Trn
m+1

and therefore an exact sequence

0 −→ E±(mn) −→ E
±(kn) −→ D±n −→ 0

for some D±n ⊆ Ẽ(Fp). Since E has supersingular reduction at p, the order of Ẽ(Fp) is prime-to-p.
The final isomorphism is simply a translation of the fact that Ẽ(Fp) has no p-torsion. Using the exact

sequence

0 −→ E(mK) −→ E(K) −→ Ẽ(OK/mK) −→ 0,

one obtains
E(mK)p∞ ∼= E(K)p∞

and taking direct limit over all L ⊆ K ⊆ Qp , we deduce the isomorphism in the statement. �

Let K ∈ {Ln,kn, Ln,v} and G ∈ {G S
n , Gkn

, GLn,v}. Recall that for each integer t ≥ 0, there exists the
following functorial exact sequence for Ept /K

0 −→ E(K)/pt
E(K)

κ
pt

K−→ H1(G,Ept) −→ H1(G,E)pt −→ 0

where κ
pt

K is the Kummer map.

Lemma 3.4 (see [Kob03, Lemma 8.17]). For every n ≥ 1 and every t ≥ 1, there is an injection

E
±(Ln)/pt

E
±(Ln) −֒→ E(Ln)/pt

E(Ln)

which induces injections

κ
±,pt

Ln
: E±(Ln)/pt

E
±(Ln) −֒→ H1(Ln,Ept).

Similarly, there are injections

κ
±,pt

Ln
: E±(m∆

n )/ptE±(m∆
n ) −֒→ H1(Ln,Ept).
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Proof. Let us first show that

(3) E
±(kn)/pt

E
±(kn) −֒→ E(kn)/pt

E(kn)

is injective. An element in

ker
(
E
±(kn)/pt

E
±(kn) −→ E(kn)/pt

E(kn)
)

is represented by a point P ∈ E
±(kn) such that P = ptQ for some Q ∈ E(kn). Choose now m ≤ n− 1 such

that (−1)m = ±1. Taking the trace of P down to km+1 we obtain that Trn
m+1(P) ∈ E(km), by definition of

E
±. On the other hand, Trn

m+1(P) = pt Trn
m+1(Q), hence for all σ ∈ Gal(km+1/km) we have pt(σTrn

m+1(Q)−
Trn

m+1(Q)) = 0. Thus Trn
m+1(Q) ∈ E(km) thanks to Proposition 3.1, which implies Q ∈ E

±(kn) and the
arrow in (3) is injective. For each ∗ ∈ {∅,+,−}, taking ∆-cohomology of the tautological exact sequence
defining E

∗(kn)/pt
E
∗(kn) gives

0 −→ E
∗(Ln)

·pt

−→ E
∗(Ln) −→ H0(∆,E∗(kn)/pt

E
∗(kn)

)
−→ H1(∆,E∗(Ln))pt −→ 0.

The last module is trivial, because ∆ has order prime-to-p, so

(4) H0(∆,E∗(kn)/pt
E
∗(kn)

)
= E

∗(Ln)/pt
E
∗(Ln).

Taking ∆-invariants of the injections in (3) establishes the first part of the lemma. The second is analogous,
upon replacing E

± with E±. �

In light of the above Lemma, we can define, for all n ≥ 0 (and all pi if we need to keep track of the local
Galois groups), the signed Kummer sequence as the exact sequence

(5) 0 −→ E
±(Ln)/pt

E
±(Ln)

κ
±,pt

Ln−→ H1(GLn ,Ept) −→ H1(GLn ,Ept)/ Im κ
±,pt

Ln
−→ 0

and refer to κ
±,pt

K as the signed Kummer map. Analogous signed Kummer exact sequence can be defined
for the formal group E, as follows:

(6) 0 −→ E±(Ln)/ptE±(m∆
n )

κ
±,pt

Ln−→ H1(GLn ,Ept) −→ H1(GLn ,Ept)/κ
±,pt

Ln

(
E±(m∆

n )
)
−→ 0

Remark 3.5. It is perhaps interesting to stress that the signed Kummer map defined in (5) does not arise as
a connecting homomorphism in Galois cohomology. Indeed, E± is only defined at the level of points for
extensions in the cyclotomic tower and it is not a sub-representation of E, since in the supersingular case
the local Galois representation Ep∞ is irreducible.

3.2. The signed Selmer groups. We use the notation introduced in 2.2. For generalities regarding the
classical Selmer group for Ept /Ln (for 1 ≤ t < ∞) and for Ep∞ /Ln we refer to [CS10, Chapters 1 and 2].
They are defined as

Sel(Ept /Ln) = ker
(

H1(G S
n ,Ept) −→

⊕

v∈SLn

H1(Ln,v,E)pt

)

= ker
(

H1(G S
n ,Ept) −→

⊕

v∈SLn\S
ss
Ln

H1(Ln,v,E)pt ⊕
d⊕

i=1

H1(Ln,i,E)pt

)

= ker
(

H1(G S
n ,Ept) −→

⊕

v∈SLn\S
ss
Ln

H1(Ln,v,Ept)/ Im κ
pt

Ln,i
⊕

d⊕

i=1

H1(Ln,i,Ept)/ Im κ
pt

Ln,i

)
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where we isolate the local terms at primes in Sss for future comparison with signed Selmer groups. Passing
to the limit over t, one defines

Sel(Ep∞ /Ln) = lim
−→

t

Sel(Ept /Ln).

In the supersingular reduction case, the Iwasawa theory of the signed Selmer groups as initially defined
by Perrin-Riou and Kobayashi respectively in [PR90] and [Kob03] is of particular interest. The residual
signed Selmer groups are defined below and we postpone a larger discussion, from the Iwasawa-theoretic
point of view, to Section 4. Our main reference is the work [KO18] by Kitajima–Otsuki.

Definition 3.6. For every intermediate number field L ⊆ Ln ( Lcyc define the fine signed residual Selmer
group as

R±
(
Ep/Ln

)
= ker

(
H1(G S

n ,Ep)→
⊕

l∈Sbad
Ln

H1(Ln,l ,Ep)⊕
⊕

π∈Sord
Ln

H1(Ln,π , Ẽp)⊕
d⊕

i=1

H1(Ln,i,Ep)/ Im κ
±,p
Ln,i

)
,

where, at an ordinary prime π, Ẽp is seen as a GLn,π -module through the surjection GLn,π ։ Gur
Ln,π

= GFπ .
Similarly, the usual signed Selmer group is defined as

Sel±
(
Ep∞ /Ln

)
= ker

(
H1(G S

n ,Ep∞)→
⊕

v∈SLn\S
ss
Ln

H1(Ln,v,E)p∞ ⊕
d⊕

i=1

H1(Ln,i,Ep∞)/ Im κ
±,p∞

Ln,i

)
.

The rationale for the nomenclature in this definition is that R±
(
Ep/Ln

)
contains the usual fine Selmer

group for Ep. As the notation suggests, these fine residual signed Selmer groups only depend upon the
isomorphism class of Ep rather than on the curve E itself, at least when assuming Hyp 1. This is the content
of Corollary 4.3, which relies on Proposition 3.8 and Proposition 3.9 below.

We start with the following technical lemma:

Lemma 3.7. Fix n ≥ 0 and let G ∈ {G S
n , GLn , GLn,l} for some l ∈ Sbad. Denote by ψG,n = ψn the natural

surjective arrow

ψn : H1(G,Ep) −→ H1(G,Ep∞)p.

For π ∈ Sord and G = GLn,π let

ψ̃G,n = ψ̃n : H1(G, Ẽp) −→ H1(G, Ẽp∞)p

be the analogous surjection for the Galois representation Ẽp∞ . Then the following assertions hold.

i) If G ∈ {G S
n , GLn}, then ψn is an isomorphism.

ii) If G = GLn,l for some l ∈ Sbad, then ker ψn is an Fp-vector space of dimension dimFp (ker ψn) =

dimFp E(Ln,l)p ≤ 2.

iii) If G = GLn,π for some π ∈ Sord, then ker ψ̃n is an Fp-vector space of dimension dimFp(ker ψ̃n) =

dimFp Ẽ(Ln,π)p ≤ 1.

Proof. Taking G-cohomology of the exact sequence

(7) 0 −→ Ep −→ Ep∞ −→ Ep∞ −→ 0

gives an exact sequence

(8) 0 −→ ker ψn = H0(G,Ep∞)/p H0(G,Ep∞) −→ H1(G,Ep)
ψn
−→ H1(G,Ep∞)p −→ 0.
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When G ∈ {G S
n , GLn}, the first term in (8) is trivial thanks to Proposition 3.1 and assertion ii) follows.

When G = GLn,l for some l ∈ Sbad, the first term in (8) has Fp-dimension equal to dimFp E(Ln,l)p, since
E(Ln,l)p∞ is finite. Moreover, the group H0(G,Ep) is a subgroup of E(Ll)p

∼= (Fp)2. This shows that this
dimension is bounded by 2, whence assertion ii).

Finally, when G = GLn,π for some π ∈ Sord, replace (7) by

0 −→ Ẽp −→ Ẽp∞ −→ Ẽp∞ −→ 0

to obtain an exact sequence

(9) 0 −→ ker ψ̃n = H0(G, Ẽp∞)/p H0(G, Ẽp∞) −→ H1(G, Ẽp)
ψ̃n
−→ H1(G, Ẽp∞)p −→ 0.

The first term in (9) is a Fp-vector space of dimension bounded by dimFp Ẽ(Fπ)p∞ /pẼ(Fπ )p∞ ∼= Fp. This
finishes the proof. �

Let us now move to the proof that the local conditions in the definition of the fine residual signed Selmer
group depend only on the residual representation also for primes above p, beginning with supersingular
primes. Under our standing assumption Hyp 1, E is supersingular at all primes p1, . . . , pd and the exact
sequence (2) induces an isomorphism H1(Ln,i,Ep∞) ∼= H1(Ln,i,Ep∞), for all n ≥ 0. On the other hand, the

exact sequence (1) shows that the images of the signed Kummer maps κ
±,p∞

Ln,i

(
E
±
(
Li,n)

)
and κ

±,p∞

Ln,i

(
E±

(
m∆

n )
)

are isomorphic. It is straightforward to check that these isomorphisms are compatible, and in turn induce
isomorphisms

(10) H1(Ln,i,Ep∞)/ Im(κ
±,p∞

Ln,i
) ∼= H1(Ln,i,Ep∞)/κ

±,p∞

Ln,i

(
E±(m∆

n )
)
.

As discussed in [Kob03, Corollary 8.5] and [KO18, § 3.1], there is a OL0 = Zp-isomorphism

(11) log
Fss
◦ exp

E
: E

∼=
−→ Fss

where Fss is the supersingular formal group whose logarithm log
Fss

is of Honda type t2 + p. In par-
ticular, the isomorphism class of the formal group E is independent of the curve E, whenever the curve
satisfies Hyp 1. Moreover, for every n there are two subgroups F±ss(mn) ⊆ Fss(mn) defined by the same
norm relations defining E± (see Definition 3.2), but for points on the formal group Fss rather than E.
Equivalently, they are defined as

F±ss(mn) = (log
Fss
◦ exp

E
)
(
E±(mn)

)
.

Therefore, as subgroups of Fss(mn), they are independent of E for all n ≥ 0. Moreover, there is an evident
definition of the analogues of the signed Kummer sequence (6) for Fss and F±ss instead of E. Combining (10)
with (11) gives

H1(Ln,i,Ep∞)/ Im(κ
±,p∞

Ln,i
) ∼= H1(Ln,i, (Fss)p∞)/κ

±,p∞

Ln,i

(
F±ss(m

∆
n )
)
,

where the right-hand side does not depend on E. We summarise the above discussion in the following

Proposition 3.8. Let E/L be an elliptic curve satisfying hypothesis Hyp 1. For all 1 ≤ i ≤ d and all n ≥ 0, there
are functorial isomorphisms

H1(Ln,i,Ep∞)/ Im(κ
±,p∞

Ln,i
) ∼= H1(Ln,i, (Fss)p∞)/κ

±,p∞

Ln,i

(
F±ss(m

∆
n )

)

In particular, the modules H1(Ln,i,Ep∞)/ Im(κ
±,p∞

Ln,i
) are independent of E, since the right-hand sides are.
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Proof. The fact that the first isomorphism is functorial follows from Honda theory, which shows that the
isomorphism between Fss and E is given by log

E
◦ exp

Fss
(see [Kob03, Theorem 8.3 (ii)]). �

What remains to be proven is the analogue of the above result when replacing Ep∞ by Ep, which is the
module we are ultimately interested in. This is done in Proposition 4.1-d), as we move up the cyclotomic
tower. Concerning ordinary primes, we have the following result.

Proposition 3.9. Let E1,E2 be two elliptic curves defined over L satisfying hypothesis Hyp 1. Let Sss
j (resp. Sord

j )
denote the set of primes where Ej has supersingular (resp. ordinary) reduction, for j = 1, 2. Then

i) Sss
1 = Sss

2 and Sord
1 = Sord

2 . Denote these sets simply by Sss and Sord, respectively.

ii) Every isomorphism (E1)p
∼= (E2)p induces an isomorphism (Ẽ1)p

∼= (Ẽ2)p and, in particular, an isomor-
phism

H1(Ln,π , (Ẽ1)p) ∼= H1(Ln,π , (Ẽ2)p) for all n ≥ 0.

Proof. Starting with i), observe that an equality Sss
1 = Sss

2 will imply Sord
1 = Sord

2 because Sord
j = Sp \ Sss

j

(by Hyp 1, both curves have good reduction at all primes in Sp). To show the claimed equality, pick a prime
p ∈ Sss

1 . By Hyp 1, Lp
∼= Qp is absolutely unramified. Denote by Ej the Néron model of Ej. (see [Sil94,

IV, Corollary 6.3] for the existence of this model). Note that the operations of passing to the generic
(resp. special) fibre and of computing the kernel of multiplication by p are fibre products. Thus these two
operations commute and, in particular, the generic (resp. special) fibre of the finite, flat OLp

-group scheme
(Ej)p is isomorphic to (Ej)p (resp. to (Ẽj)p), for j = 1, 2. Applying [Ray74, Corollaire 3.3.6], we see that
the hypothesis (E1)p

∼= (E2)p (as Galois modules or, what amounts to the same, as finite, flat Lp-group
schemes) grants the existence of an isomorphism

(12) (E1)p
∼= (E2)p

of finite, flat OLp
-group schemes. By taking closed fibres, this yields an isomorphism

(Ẽ1)p
∼= (E1)p/Fp

∼= (E2)p/Fp

∼= (Ẽ2)p

as finite flat Fp-group schemes. This shows that the elliptic cuve Ẽ2 has supersingular reduction at p and
Sss

1 ⊆ Sss
2 . By reversing the role of E1 and E2, this yields Sss

1 = Sss
2 , as claimed.

Passing to ii), let π be a prime where one, and hence both curves, have ordinary reduction. The
assumption e(π) < p − 1 allows us to again apply [Ray74, Corollaire 3.3.6] and the isomorphism (12)
holds again, where now Ej denotes the Néron model of Ej/Lπ . Taking closed fibres, we obtain

(Ẽ1)p
∼= (E1)p/Fπ

∼= (E2)p/Fπ

∼= (Ẽ2)p

finishing the proof of the proposition. �

4. Iwasawa theory for the signed Selmer groups

4.1. Cyclotomic fine signed residual Selmer groups. In this section we focus on the Iwasawa theory for
the fine signed residual Selmer group introduced in Definition 3.6. Retaining the notation introduced in 2.2,
set G S

cyc = Gal(LS/Lcyc). Denote by Γ the Galois group Gal(Lcyc/L) ∼= Gal(Lcyc/Qp), let Λ(Γ) = Zp[[Γ]]

be its Iwasawa algebra, and set Ω(Γ) = Fp[[Γ]]. For any module M over an Iwasawa algebra, its Pontryagin
dual HomZp(M, Qp/Zp) is denoted by M∧. When M is discrete, we say that it is cofinitely generated
(resp. cofree, cotorsion, of corank equal to m ∈ N) to mean that M∧ is finitely generated (resp. free, torsion,
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of rank equal to m) over the Iwasawa algebra. Observe that, given any co-finitely generated Λ(Γ)-module
M, there is an equality M∧/pM∧ = (Mp)

∧, inducing the inequality

corankΛ(Γ) M ≤ corankΩ(Γ) Mp

which is an equality if and only if the µ invariant of M∧ vanishes.
Thanks to Lemma 3.4, there is an inclusion of subgroups in H1(Ln,Ep)

Im(κ
±,p
Ln

) −֒→ Im(κ
p
Ln

),

which will play a role in defining the Selmer groups. We display the subscript 1 ≤ i ≤ d to keep track of
the local Galois cohomology groups, writing Im(κ

±,p
Ln,i

) →֒ Im(κ
p
Ln,i

) ⊆ H1(Ln,i,Ep).
By taking the direct limit of the exact sequence (5) over the subextensions inside Lcyc/L gives the exact

sequences, for all 1 ≤ t ≤ ∞,

(13) 0 −→ E
±(Lcyc)/pt

E
±(Lcyc)

κ
±,pt

Lcyc
−→ H1(Lcyc,Ept) −→ H1(Lcyc,E)/ Im(κ

±,pt

Lcyc,i
) −→ 0,

The following proposition is the main technical tool needed to compare local and global cohomology
groups of the residual representation Ep along the cyclotomic tower, with those of the representation Ep∞ .
We refer to Lemma 3.7 for the definition of the arrows ψ in the statement below.

Proposition 4.1. Let G ∈ {G S
cyc, GLcyc , GLcyc,w} where w | v ∈ Sbad ∪ Sord. Write κ

±,p∞

Lcyc,w
to denote κ

p∞

Lcyc,w
when

w | v ∈ Sbad ∪ Sord (in particular, these maps are independent of the sign ±).

a) If G ∈ {G S
cyc, GLcyc}, the map ψG,cyc is an isomorphism H1(G,Ep)

∼=
−→ H1(G,Ep∞)p.

b) If G = GLcyc,w for some w | l ∈ Sbad, the kernel of ψw,cyc : H1(G,Ep) ։ H1(G,Ep∞)p is finite, of dimension

dimFp(ker ψw,cyc) = dimFp E(Lcyc,w)p ≤ 2, and

corankΩ(Γ) H1(G,Ep) = corankΩ(Γ) H1(G,Ep∞)p.

c) If G = GLcyc,w for some w | π ∈ Sord, ψ̃w,cyc extends to a surjective map

ψ̃w,cyc : H1(G, Ẽp)−։ H1(G,E)p =
(

H1(G,Ep∞)/ Im(κ
±,p∞

Lw,cyc
)
)

p

whose kernel is finite, of dimension dimFp(ker ψ̃w,cyc) = dimFp Ẽ(Fw)p ≤ 1, and

corankΩ(Γ) H1(G, Ẽp) = corankΩ(Γ)

(
H1(G,Ep∞)/ Im(κ

±,p∞

Lw,cyc
)
)

p
.

d) If G = GLcyc , the morphism ψp,cyc induces an isomorphism

ψ±p,cyc : H1(G,Ep)/ Im(κ
±,p
Lcyc

)
∼=
−→

(
H1(G,Ep∞)/ Im(κ

±,p∞

Lcyc
)
)

p

giving

corankΩ(Γ)

(
H1(G,Ep)/ Im(κ

±,p
Lcyc

)
)
= corankΩ(Γ)

(
H1(G,Ep∞)/ Im(κ

±,p∞

Lcyc
)
)

p
.

Proof. The isomorphism in a) follows immediately from passing to the direct limit of the isomorphisms at
finite levels, proven in Lemma 3.7-i). Similarly, the description of the kernels in b) follows from passing to
the direct limit in Lemma 3.7-ii).
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The proof of c) relies on the theory of deeply ramified extensions as defined by Coates and Greenberg
(see [CG96], in particular Theorem 2.13 ibid., noting that the cyclotomic Zp-extension is deeply ramified).
Consider the exact sequence

0 −→ Ap∞ −→ Ep∞ −→ Ẽp∞ −→ 0,

where A is the formal group of E/OLcyc,π . Then the long exact G-cohomology sequence gives

(14) 0 −→ H1(G,Ep∞)/ Im(H1(G,Ap∞)) −→ H1(G, Ẽp∞) −→ H2(G,Ap∞).

We claim that H2(G,Ap∞) = 0. Indeed, H2(G,Ap∞) = lim
−→

H2(G,Apt) and it will be enough to show that

H2(G,Apt) = 0 for all t ≥ 0. This follows from the fact that G has p-cohomological dimension 1 (see [Ser94,
proof of Proposition 9, Chapitre II, §3.3]).

Thus we obtain from (14) an isomorphism

H1(G,Ep∞)/ Im(H1(G,Ap∞)) ∼= H1(G, Ẽp∞).

By [CG96, Proposition 4.3 and diagram (4.8)], we further have

H1(G,E)p∞ = H1(G,Ep∞)/ Im(κ
±,p∞

Lcyc,w
) = H1(G,Ep∞)/ Im(H1(G,Ap∞)).

Hence H1(G,E)p∞
∼= H1(G, Ẽp∞) and, in particular,

(15) H1(G,E)p
∼= H1(G, Ẽp∞)p.

It follows that the surjective arrow ψ̃w,cyc : H1(G, Ẽp) ։ H1(G, Ẽp∞)p takes values in H1(G,E)p and its
kernel is finite, of Fp-dimension less or equal to 1, by Lemma 3.7-iii).

The equality of Ω(Γ)-coranks in b) and c) follows from the fact that a finite module has trivial Ω(Γ)-rank.
To prove assertion d), note that E±(Lcyc) is p-torsion free. Indeed, E±(Lcyc)p = E±(m∆

∞)p by Lemma 3.3.
But E±(mcyc)p ⊆ E(mcyc)p = 0, by Proposition 3.1, hence E

±(Lcyc)p = 0. In particular, E±(Lcyc) is a direct
limit of free Zp-modules of finite rank, hence Tor1

Zp
(E±(Lcyc), Qp/Zp) = 0. Consider the exact sequence

0 −→ Z/p −→ Qp/Zp −→ Qp/Zp −→ 0.

Tensoring it with E
±(Lcyc) over Zp yields

(16) E
±(Lcyc)⊗Z/p ∼= (E±(Lcyc)⊗Qp/Zp)p.

Now, the map ψ±p,cyc, defined as the composition of ψp,cyc with reduction modulo Im κ
±,p∞

Lcyc
, appears in the

following diagram of exact sequences:

0 // E
±(Lcyc)⊗Z/p

κ
±,p
Lcyc

//

∼=

��

H1(Lcyc,Ep) //

∼= ψ
G

S
cyc

��

H1(Lcyc,Ep)/ Im κ
±,p
Lcyc

//

ψ±p,cyc
��

0

0 //
(
E
±(Lcyc)⊗Qp/Zp

)
p

κ
±,p∞

Lcyc
// H1(Lcyc,Ep∞)p

//α
//
(

H1(Lcyc,Ep∞)/ Im κ
±,p∞

Lcyc

)
p

(17)

The first vertical arrow is an isomorphism in light of (16), and the second vertical arrow is an isomorphism
thanks to a). The snake lemma implies that ψ±p,cyc is injective and coker(ψ±p,cyc) = coker(α). To show that
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α is surjective observe that the bottom row in (17) is the beginning of the Tori
Zp

(−, Z/p)-sequence of the
tautological exact sequence

0 −→ E
±(Lcyc)⊗Qp/Zp

κ
±,p∞

Lcyc
−−−→ H1(Lcyc,Ep∞) −→ H1(Lcyc,Ep∞)/ Im κ

±,p∞

Lcyc
−→ 0

and therefore coker(α) is contained in
(
E
±(Lcyc)⊗Qp/Zp

)
⊗Z/p =

(
E
±(Lcyc)⊗Qp/Zp

)
/p

(
E
±(Lcyc)⊗Qp/Zp

)
.

Since E
±(Lcyc)⊗Qp/Zp is divisible, the above module is trivial, establishing the surjectivity of α and thus

of ψ±p,cyc. This finishes the proof of the proposition. �

Let us now pass to Selmer groups. We refer to [CS10, Chapter 2] for generalities on Iwasawa theory for
elliptic curves over cyclotomic extensions and, in particular, for the definitions of the groups Sel(Lcyc/Ep∞)
in the ordinary case.

Definition 4.2. The fine signed residual Selmer group R±(Ept /Lcyc) is defined as

R±
(
Ep/Lcyc

)
= lim
−→
res

R±
(
Ep/Ln

)

and the usual signed Selmer group is defined as

Sel±
(
Ep∞ /Lcyc

)
= lim
−→
res

Sel±
(
Ep∞ /Ln

)
.

The groups R±
(
Ep/Lcyc

)
are discrete Ω(Γ)-modules, whose Pontryagin duals are compact, finitely gen-

erated over Ω(Γ). Similarly, the groups Sel±
(
Ep∞ /Lcyc

)
are discrete, cofinitely generated Λ(Γ)-modules.

For v ∈ S, denote by ±K̃v(Ep/Lcyc) the Ω(Γ)-module

±K̃v(Ep/Lcyc) =





⊕

w|l

H1(Lw,cyc,Ep) if v = l ∈ Sbad

⊕

w|π

H1(Lw,cyc, Ẽp) if v = π ∈ Sord

H1(Lcyc,i,Ep)/ Im(κ
±,p
Lcyc,i

) if v = pi ∈ Sss.

Similarly, define J±v (Ep∞/Lcyc) as the Λ(Γ)-module

J±v (Ep∞ /Lcyc) =
⊕

w|v

H1(Lw,cyc,Ep∞)/ Im(κ
±,p∞

Lw,cyc
)

where, as in Proposition 4.1, we set κ
±,p∞

Lw,cyc
= κ

p∞

Lw,cyc
for all w | v ∈ S \ Sss. By definition, the fine signed

residual Selmer group (resp. the usual signed Selmer group) give the following exact sequences:

0 −→ R±
(
Ep/Lcyc

)
−→ H1(G S

cyc,Ep)
ξ±p
−→

⊕

v∈S

±K̃v(Ep/Lcyc)(18)
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resp.

0 −→ Sel±
(
Ep∞ /Lcyc

)
−→ H1(G S

cyc,Ep∞)
ξ±

p∞

−−→
⊕

v∈S

(
J±v (Ep∞ /Lcyc)

)
.(19)

As a consequence of the results in Section 3, we can now check that the local conditions ±K̃v(Ep/Lcyc)

depend only on the residual representation Ep. This is immediate at all l ∈ Sbad, and follows from Propo-
sition 3.9 at all primes π ∈ Sord by taking inductive limit along the cyclotomic tower. Concerning primes
p ∈ Sss, this independence follows from combining Proposition 3.8 with the isomorphism in Proposi-
tion 4.1-d). The fact that the local conditions depend only on the residual representation implies that the
same holds for the fine residual signed Selmer group. We record this as

Corollary 4.3. Let E1,E2 be two elliptic curves over L satisfying Hyp 1 such that (E1)p
∼= (E2)p. Then

R±
(
(E1)p/Lcyc

)
∼= R±

(
(E2)p/Lcyc

)
.

Kim considers in [Kim09] the primitive and non-primitive Selmer groups along the lines of [GreVat00].
Corollary 4.5 below is the analogue of [Kim09, Proposition 2.10] for the fine signed residual Selmer groups.
In order to state it, let us introduce a final notation. For all w | v ∈ Sbad ∪ Sord, let gv be the number of
primes w lying above v in Lcyc. Further, for v = l ∈ Sbad and q | l in Lcyc, denote by L1

q the first layer of
the cyclotomic extension Lcyc,q/Ll . Note that L1

q is also the unique unramified extension of degree p of Ll .
Recall that, for any place v, the residue field at that place is denoted by Fv.

Definition 4.4. For all l ∈ Sbad, choose a place q of Lcyc above l. We define the defect of E as

δE := ∑
l∈Sbad

gl · dimFp E(L
1
q)p + ∑

π∈Sord

gπ dimFp Ẽ(Fπ)p ≤ 2 ∑
l∈Sbad

gl + ∑
π∈Sord

gπ .

The fact that dimFp E(L
1
q)p is independent of q | l follows from Lcyc/L being Galois, since E is defined over

L.

Corollary 4.5. There are injections

ϕ± : R±
(
Ep/Lcyc

)
−֒→ Sel±

(
Ep∞ /Lcyc

)
p

whose cokernel is finite, of dimension dimFp coker(ϕ±) ≤ δE. In particular,

corankΩ(Γ)R
±
(
Ep/Lcyc

)
= corankΩ(Γ) Sel±

(
Ep∞ /Lcyc

)
p
.

Moreover, when ξ±p is surjective, dimFp coker(ϕ±) = δE, independently of the sign ±.

Proof. Consider the commutative diagram

0 // R±
(
Ep/Lcyc

)
//

ϕ±

��

H1(G S
cyc,Ep)

ξ±p
//

∼=

��

⊕

v∈S

±K̃v(Ep/Lcyc)

⊕
ϕ±v

��

0 // Sel±
(
Ep∞ /Lcyc

)
p

// H1(G S
cyc,Ep∞)p

ξ±
p∞

//
⊕

v∈S

(
J±v (Ep∞ /Lcyc)

)
p

(20)
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The central vertical arrow is an isomorphism thanks to Proposition 4.1-a). The local arrows ϕ±v can be
decomposed as

ϕ±v =
⊕

w|v

ϕ±w

and each ϕ±w is induced by the corresponding arrow ψw,cyc of Proposition 4.1. More precisely,

ϕ±w =





ψw,cyc : H1(Lw,cyc,Ep) −→ H1(Lw,cyc,Ep∞)p =
(

H1(Lw,cyc,Ep∞)/ Im(κ
±,p∞

Lw,cyc
)
)

p
if v = l ∈ Sbad

ψ̃w,cyc : H1(Lw,cyc, Ẽp) −→ H1(Lw,cyc, Ẽp∞)p =
(

H1(Lw,cyc,Ep∞)/ Im(κ
±,p∞

Lw,cyc
)
)

p
if v = π ∈ Sord

ψ±p,cyc : H1(Lcyc,Ep)/ Im(κ
±,p
Lcyc

)
∼=
−→

(
H1(Lcyc,Ep∞)/ Im(κ

±,p∞

Lcyc
)
)

p
if v = p ∈ Sss

Indeed, the first equality

H1(Lw,cyc,Ep∞)p =
(

H1(Lw,cyc,Ep∞)/ Im(κ
±,p∞

Lw,cyc
)
)

p

follows from the fact that Im(κ
±,p∞

Lw,cyc
) = 0, since E(Lw,cyc)⊗Qp/Zp = 0 when v /∈ Sp. The second equality

H1(Lw,cyc, Ẽp∞)p =
(

H1(Lw,cyc,Ep∞)/ Im(κ
±,p∞

Lw,cyc
)
)

p

follows from (15), because

H1(Lw,cyc,E)p =
(

H1(Lw,cyc,Ep∞)/ Im(κ
±,p∞

Lw,cyc
)
)

p
.

Similarly, the fact that ψ±p,cyc takes values in
(

H1(Lcyc,Ep∞)/ Im(κ
±,p∞

Lcyc
)
)

p
and is an isomorphism follows

from Proposition 4.1-d).
By applying the snake lemma to (20) we see that

(21) coker(ϕ±) ⊆
⊕

q|l∈Sbad

ker
(
ψq,cyc

)
⊕

⊕

w|π∈Sord

ker
(
ψ̃w,cyc

)

and the inclusion in (21) is an equality when ξ±p is surjective.
It follows from (21) and Proposition 4.1-b)–c) that

dimFp coker(ϕ±) ≤ dimFp

⊕

q|l∈Sbad

dimFp E(Lcyc,w)p + dimFp

⊕

w|π∈Sord

dimFp Ẽ(Fw)p

which is an equality if ξ±p is surjective. To prove the statement of the corollary, we need to show that

dimFp E(Lcyc,q)p = E(L1
q)p if q | l ∈ Sbad(22)

and

dimFp Ẽ(Fw)p = dimFp Ẽ(Fπ)p for all w | π ∈ Sord.(23)

The equality in (23) simply follows from the fact that the inertia degree of every p-adic prime is 1 along
the Zp-cyclotomic Lcyc/L, whence Fw = Fπ .
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Concerning (22), we argue as follows. If dimFp E(Ll)p = 2, then the full torsion of E(Ll) is already
defined over Ll , hence E(Ll)p = E(L1

q)p = E(Lcyc,q)p. If dimFp E(Ll)p = 0, then the p-group E(Lcyc,q)p

has no non-zero fixed point under the action of the pro-p-group Γ = Gal(Lcyc,q/Ll), and must be trivial.
Hence E(Lcyc,q)p = 0 = E(L1

q)p. Finally, if dimFp E(Ll)p = 1 but dimFp E(Lcyc,q)p = 2, we need to
show that dimFp E(L

1
q)p = 2. The assumption that dimFp E(Lcyc,q)p = 2 implies that the action of Γ in

Aut
(
E(Lcyc,w)p

)
induces, upon fixing a basis, a 2-dimensional linear representation

̺ : Γ −→ GL2(Fp).

As GL2(Fp) contains no element of order p2, ̺ factors through Γ/Γp = Gal(L1
q/Ll), so Γp acts trivially

on E(Lcyc,q)p. This implies that E(Lcyc,q)p = E(L1
q)p also in this case, and concludes the proof of the

corollary. �

4.2. Cassels–Poiutou–Tate exact sequence and Iwasawa cohomology. For n ∈ N ∪ {cyc}, let X(Ep∞ /Ln)
denote the Pontryagin duals

X(Ep∞ /Ln) = HomZp

(
Sel(Ep∞ /Ln), Qp/Zp

)
.

These modules clearly admit signed versions, defined as

X±(Ep∞ /Ln) = HomZp(Sel±
(
Ep∞ /Ln

)
, Qp/Zp).

Similarly, the duals of the fine signed residual Selmer groups are defined as

Y±(Ep/Ln) = HomZp(R
±
(
Ep/Ln

)
, Qp/Zp).

Both X(Ep∞ /Lcyc) and X±(Ep∞ /Lcyc) are finitely generated compact Λ(Γ)-modules and it follows from
Corollary 4.5 that the Ω(Γ)-modules Y±(Ep/Ln) are finitely generated. Further, Corollary 4.3 implies
that they only depend upon the isomorphism class of Ep. As a last piece of notation, suppose that K ∈

{Ln, Lv, Ln} for some 0 ≤ n < ∞, and retain notation from (2.2): in particular, K̃ = Qp if K = Ln, K̃ = Lv

if K = Lv and K̃ = LS if K = L. Let M be a compact Zp-module with a continuous Gal(K̃/K)-action. The
Iwasawa cohomology modules Hi

Iw(K, M) (for all i ≥ 1) are defined as the projective limit, with respect to
corestriction maps

Hi
Iw(K, M) = lim

←−
K⊆K′⊆Kcyc

Hi(K̃/K′, M).

For consistency with the notation for usual cohomology, when K = Ln we write Hi
Iw(G

S
n , M) rather than

Hi
Iw(Ln, M). The reader is referred to [PR92, §3.1] for generalities about Iwasawa cohomology. In particular,

the above Λ(Γ)-modules are known to be trivial for i 6= 1, 2.
A fundamental tool for the study of the Iwasawa theory of Selmer groups is the Cassels–Poitou–Tate

exact sequence, for which we refer to [CS10, Theorem 1.5] and which we now briefly recall. Fix n ∈ N and
consider the self-dual module M = Ep. Put

Wv =





0 if v = l ∈ Sbad

Im(κ
±,p
Ln,i

) if v = pi ∈ Sss (1 ≤ i ≤ d)

H1(Ln,πi
, (Aπ)p) if v = πi ∈ Sord (1 ≤ i ≤ s)
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where Aπ denotes the formal group of E/OLπ
. These coincide with the local conditions in Definition 3.6,

so that R±
(
Ep/Ln

)
sit in the exact sequences (one for each sign ±)

0 −→ R±
(
Ep/Ln

)
−→ H1(G S

n ,Ep) −→
⊕

v∈S

H1(Lv,n,Ep)/Wv .

For all v ∈ S, let W⊥v denote the orthogonal complement of Wv in the Tate pairing

H1(Lv,n,Ep)×H1(Lv,n,Ep) −→ Q/Z

and define R⊥,±(
Ep/L

)
as the kernel

0 −→ R⊥,±(
Ep/Ln

)
−→ H1(G S

n ,Ep) −→
⊕

v∈S

H1(Lv,n,Ep)/W⊥v .

This gives two Cassels–Poitou–Tate exact sequences

(24)

0 −→ R±
(
Ep/Ln

)
−→ H1(G S

n ,Ep) −→
⊕

v∈S

H1(Lv,n,Ep)/Wv−→
(
R⊥,±(

Ep/Ln

))∧
−→

−→ H2(G S
n ,Ep) −→

⊕

w|v∈S

H2(Ln,v,Ep) −→ 0

where the final 0 comes from Proposition 3.1.
In order to study to the limit, as n → ∞ along the cyclotomic tower, of the Cassels–Poitou–Tate se-

quences, consider the group

S
±(Ep/Lcyc) = lim

←−
cores

R⊥,±(
Ep/Ln

)
⊆ H1

Iw(G
S
n ,Ep).

This is a Ω(Γ)-module whose relevance for our study comes from the following observation (cf. [LS18,
Lemma 2.6 and Remark 2.7], where the case of an elliptic curve with ordinary reduction at p is considered):

Lemma 4.6. There is an isomorphism

S
±(Ep/Lcyc)

∧ ∼= lim
−→

(cores)∧

(
R⊥,±(

Ep/Ln
))∧

.

Moreover, the group S ±(Ep/Lcyc) is free as Ω(Γ)-module.

Proof. The displayed isomorphism simply follows from the definition, since

S
±(Ep/Lcyc)

∧
= Hom

(
lim
←−
cores

R⊥,±(Ep/Ln), Qp/Zp

)

= lim
−→

(cores)∧
Hom

(
R⊥,±(Ep/Ln), Qp/Zp

)

= lim
−→

(cores)∧

(
R⊥,±(

Ep/Ln
))∧

.

To show that S ±(Ep/Lcyc) is a free Ω(Γ)-module, note that Jannsen’s spectral sequence [Jan14, Corol-
lary 13] takes the form

E
p,q
2 = Extp

Ω(Γ)

(
Hom

(
Hq(G S

cyc,Ep), Fp

)
, Ω(Γ)

)
=⇒ Hp+q

Iw (G S,Ep).
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By Proposition 3.1, E
p,0
2 = 0 for all p ≥ 1. Hence, E1,0

2 = E1,0
∞ = 0 and E0,1

2 = E0,1
∞ . It follows that

E0,1
2 = HomΩ(Γ)

(
HomFp(H

1(G S
cyc,Ep), Fp), Ω(Γ)

)
∼= H1

Iw(G
S,Ep).

In particular, the first Iwasawa cohomology group of Ep is torsion-free over Ω(Γ), and hence free since Ω(Γ)

is a PID. By taking projective limit, with respect to corestriction, of the inclusions R⊥,±
(
Ep/Ln

)
→֒

H1(G S
n ,Ep), we obtain an injection

S
±(Ep/Lcyc) −֒−→ H1

Iw(G
S,Ep).

Since Ω(Γ) is a principal ideal domain, a submodule of a free module is itself free, finishing the proof. �

Given two subextensions L ⊆ Ln ⊆ Lm ⊆ Lcyc, consider the corresponding exact sequences (24) . The
restriction map on cohomology induces morphisms between the first three (resp. the last two) terms. A
standard argument in local Tate duality shows that connecting the fourth terms via the Pontryagin dual of
corestriction

(cores)∧ :
(
R⊥,±(

Ep/Ln
))∧
−→

(
R⊥,±(

Ep/Lm
))∧

(m ≥ n ≥ 0)

of (24), gives commutative diagrams of exact sequences. By taking the direct limit over n, Lemma 4.6 gives
exact sequences

(25)

0 −→ R±
(
Ep/Lcyc

)
−→ H1(G S

cyc,Ep)
ξ±p
−→

⊕

v∈S

±K̃v(Ep/Lcyc) −→ S
±(Ep/Lcyc)

∧
−→

−→H2(G S
cyc,Ep) −→

⊕

w|v∈S

H2(Lcyc,w,Ep) −→ 0

where the morphism ξ±p and the Ω(Γ)-modules ±K̃v(Ep/Lcyc) where introduced in (18).
We go back to the study of R±

(
Ep/Lcyc

)
. Unlike the ordinary case, the full Selmer group

Sel(Ep∞ /Lcyc) = ker
(

H1(G S
∞,Ep∞) −→

⊕

w|v∈S

H1(Lcyc,w,E)p∞

)

= ker
(

H1(G S
∞,Ep∞) −→

⊕

w|v∈S\Sss

H1(Lcyc,w,E)p∞ ⊕
d⊕

i=1

H1(Lcyc,i,Ep∞)/ Im(κ
p∞

Lcyc,i
)

)(26)

is not Λ(Γ)-cotorsion, in general. Indeed, as is discussed in the proof of [CS10, Theorem 2.6], each local
term H1(Lcyc,i,E)p∞ has Λ(Γ)-corank equal to 0 or 1 depending on the reduction type of Ẽ/Fp and this
implies that Sel(Ep∞ /Lcyc) is not Λ(Γ)-cotorsion in the supersingular case. In the ordinary reduction case,
Mazur asked in [Maz72, §6] whether Sel(Ep∞ /Lcyc) is co-torsion. This is known to be true if Sel(Ep∞ /L) is
finite or if L = Q (see [CS10, Theorem 2.8 and Theorem 2.18]).

In the supersingular setting, both Perrin-Riou and Kobayashi reduce the size of the kernels in (26) by

replacing Im(κ
p∞

Lcyc
) with the smaller subgroup Im(κ

±,p∞

Lcyc
), at supersingular primes. This has the effect that

the corresponding signed Selmer group is potentially a cotorsion module over the Iwasawa algebra. We
follow the same strategy, replacing Ep∞ by Ep, and replacing signed Selmer groups by their fine residual
versions.
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4.3. Rank computation. To approach R±
(
Ep/Lcyc

)
, the main objects of study will be the maps ξ±p ap-

pearing in the exact sequence (25). We will ultimately relate the surjectivity of ξ±p to the structure of
X±(Ep∞ /Lcyc) as a Λ(Γ)-module (see Theorem 4.12). In this direction, the following hypothesis (which is
condition (vi) in [KO18, Theorem 1.3]) is crucial:

Hyp 2
The Λ(Γ)-modules X±(Ep∞ /Lcyc) are torsion and hence each admits two structural Iwa-
sawa invariants, which we denote by λ± and µ±.

The exact sequence which is crucial in our approach is (25). Concerning the term H2(G S
cyc,Ep) in it, Coates

and the second author have proposed in [CS05] the following

Conjecture A. H2(G S
cyc,Ep) = 0.

The original formulation of Conjecture A in loc. cit. is that the dual fine Selmer group Y(E/Lcyc) over
Lcyc (see [CS05, §3] for its definition) is a finitely generated Zp-module. Note that this is equivalent to
Y(E/Lcyc) being Λ(Γ)-torsion, and having µ-invariant equal to 0. The next proposition relates the two
formulations, and shows that Conjecture A implies the Weak Leopoldt Conjecture (see Remark 4.8 below).

Proposition 4.7. Conjecture A implies that H2(G S
cyc,Ep∞) = 0. Moreover, if E satisfies Hyp 2, and if µ∗ = 0 for

at least one sign ∗ ∈ {+,−}, then Conjecture A holds.

Proof. Taking G S
cyc-cohomology of the exact sequence (7) yields

H2(G S
cyc,Ep) −→ H2(G S

cyc,Ep∞)
·p
−→ H2(G S

cyc,Ep∞) −→ 0

where the surjection comes from the fact that Gal(L/Lcyc) has cohomological dimension 2 (see [NSW08,
Theorem 10.11.3 and Proposition 3.3.5]). Therefore, if H2(G S

cyc,Ep) = 0 then multiplication by p is injec-
tive on H2(G S

cyc,Ep∞). On the other hand, every class in H2(G S
cyc,Ep∞) has finite p-power order, hence

multiplication by p is injective if and only if H2(G S
cyc,Ep∞) = 0.

Suppose now that X∗(Ep∞ /Lcyc) is Λ(Γ)-torsion and µ∗ = 0. The dual fine Selmer group Y(E/Lcyc) is
defined in [CS05, (42)] as the Pontryagin dual of

ker
(

H1(G S
cyc,Ep∞) −→

⊕

w|v∈S

H1(Lcyc,w,Ep∞)
)

.

Since the above kernel injects into Sel∗
(
Ep∞ /Lcyc

)
by (19), we obtain a surjection

X∗(Ep∞ /Lcyc)−։ Y(E/Lcyc).

Our assumptions imply then that Y(E/Lcyc) is a torsion Λ(Γ)-module with trivial µ-invariant, which is
the formulation of [CS05, Conjecture A]. We are thus left to show that if Y(E/Lcyc) is Λ(Γ)-torsion and
has trivial µ-invariant, then H2(G S

cyc,Ep) = 0. But Greenberg shows in [Gre11, Proposition 4.1.6] that
the vanishing of H2(G S

cyc,Ep) is equivalent to the p-torsion subgroup Y(E/Lcyc)p being finite, and this is
certainly the case when Y(E/Lcyc) is Λ(Γ)-torsion and has trivial µ-invariant. �

Remark 4.8.

1. As is evident from the proof, only the torsionness of one of the two signed dual Selmer groups
X∗(Ep∞ /Lcyc) is needed, provided its µ-invariant vanishes.
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2. The vanishing of H2(G S
cyc,Ep∞) is known as the Weak Leopoldt Conjecture (see [Sch85, p. 348] and

[Gre89, Conjecture 3]). If L = Q, it holds by [Kat04, Theorem 12.4], at least for S = {p}; the case
for general S = Sbad ∪ {p} can be deduced from Kato’s result by combining the exact sequence
of [PR95, p. 33, (1.4.3)] with Jannsen’s spectral sequence from [Jan14, Theorem 1]. Over an arbitrary
base L, if Sel(E/L) is finite, the vanishing can be proven by combining [CS10, Proposition 1.9] with
the Hochschild–Serre spectral sequence.

3. It is clear that the validity of Conjecture A depends only upon the isomorphism class of the Galois
representation Ep.

Let us now pass to the study of Ω(Γ)-coranks of some cohomology groups, which will turn out to be a
key step in the proof of our main result. In Lemma 4.9, global cohomology and local cohomology at primes
where E does not have supersingular reduction are considered. Then, in Lemma 4.10, supersingular primes
are treated.

Lemma 4.9. Let v ∈ S \ Sss and let w | v be a place in Lcyc that lies above v. Then,

i) If v = l ∈ Sbad, the Pontryagin duals H1(Lcyc,w,Ep∞) have µ invariant equal to 0.

ii) If v = π ∈ Sord, the Pontryagin duals of H1(Lcyc,w,Ep∞)/ Im(κ
p∞

Lcyc,w
) have µ invariant equal to 0.

iii) Assuming Conjecture A, the Pontryagin dual of H1(G S
cyc,Ep∞) has trivial µ invariant as well.

As a consequence,

corankΩ(Γ) H1(Lcyc,w,Ep) = corankΛ(Γ) H1(Lcyc,w,Ep∞), w | l ∈ Sbad(27)

corankΩ(Γ) H1(Lcyc,w, Ẽp) = corankΛ(Γ)

(
H1(Lcyc,w,Ep∞)

/
Im(κ

p∞

Lcyc,w
)
)

w | π ∈ Sord(28)

and, assuming Conjecture A,

corankΩ(Γ) H1(G S
cyc,Ep) = corankΛ(Γ) H1(G S

cyc,Ep∞).(29)

Proof. We start with local cohomology, and let v ∈ S \ Sss be any prime. Greenberg proves in [Gre89,
Propositions 1 and 2] that the groups H1(Lcyc,w,Ep∞) are cofinitely generated: this implies, in particular,

that their quotients H1(Lcyc,w,Ep∞)/ Im(κ
p∞

Lcyc,w
) are cofinitely generated as well. Moreover, we claim that

the exact sequence (7) induces

H1(Lcyc,w,Ep∞)
·p
−→ H1(Lcyc,w,Ep∞) −→ H2(Lcyc,w,Ep) = 0.

The H2-term in the above sequence vanishes because GLcyc,w has p-cohomological dimension 1, as observed
in the proof of Proposition 4.1.

The fact that multiplication by p is surjective on H1(Lcyc,w,Ep∞) shows that this module is p-divisible,

and thus the same holds for the quotient H1(Lcyc,w,Ep∞)/ Im(κ
p∞

Lcyc,w
). Observe now that this divisibility is

equivalent to their Pontryagin duals having no p-torsion and, in particular, to having trivial µ invariant.
This establishes points i) and ii).

When Conjecture A holds, the same argument as above shows that multiplication by p is surjective on
H1(G S

cyc,Ep∞), whence iii).

By Proposition 4.1-a) (resp. Proposition 4.1-b)), the Pontryagin duals of the Ω(Γ)-modules H1(G S
cyc,Ep)

and H1(G S
cyc,Ep∞)p (resp. H1(Lcyc,w,Ep) and H1(Lcyc,w,Ep∞)p for some w | l ∈ Sbad) have the same rank.

Now equations (27) and (29) follow from assertions i) and iii), respectively, along with the structure theorem
for finitely generated Λ(Γ)-modules. Similarly, combining Proposition 4.1-c) with ii) yields (28). �
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We finish the study of Ω(Γ)-coranks of cohomology groups by analysing what happens at supersingular
primes. Our argument is the analogue, modulo p, of [KO18, Proposition 3.32].

Lemma 4.10. For each choice of sign ±, the Ω(Γ)-module
(

H1(Lcyc,Ep)/ Im(κ
±,p
Lcyc

)
)∧

is finitely generated and free of rank 1.

Proof. The statement will follow once we prove that

(30)
(

H1(Lcyc,Ep∞)/ Im(κ
±,p∞

Lcyc
)
)∧

is free of rank 1 as Λ(Γ)-module, thanks to Proposition 4.1-d).
The freeness claimed in (30) follows from [KO18, Lemma 3.31]. Indeed,

(
H1(Lcyc,Ep∞)/ Im(κ

±,p∞

Lcyc
)
)∧

= ker
(

H1(Lcyc,Ep∞)
∧
−։ Im(κ

±,p∞

Lcyc
)
∧)

where H1(Lcyc,Ep∞)
∧

is Λ(Γ)-free of rank 2, as proven in [Gre89, Corollary 1], and Im(κ
±,p∞

Lcyc
)
∧

is of Λ(Γ)-

rank equal to 1 and has no non-trivial finite Λ(Γ)-submodules, as follows from [KO18, Proposition 3.28 (for
χ = 1)]. �

The following Proposition is essentially well-known in the ordinary case, and it has already been proven
by Iovita–Pollack in the supersingular case under the assumption that E is defined over Q, and p splits
completely in L/Q (see [IP06, Proposition 6.1]).

Proposition 4.11. Suppose that Conjecture A holds for E/L. Then

corankΩ(Γ) H1(G S
cyc,Ep) = ∑

π∈Sord

corankΩ(Γ)
±K̃π (Ep/Lcyc) +

d

∑
i=1

corankΩ(Γ)
±K̃pi

(Ep/Lcyc)

and

∑
l∈Sbad

corankΩ(Γ)
±K̃l(Ep/Lcyc) = 0.

Proof. The proof is an adaptation of [CS10, Proof of Theorem 2.6]. We first compute the left-hand side of
the first equality. In [Gre89, Proposition 3] Greenberg proves that both H1(G S

cyc,Ep∞) and H2(G S
cyc,Ep∞) are

co-finitely generated over Λ(Γ) and further

corankΛ(Γ) H1(G S
cyc,Ep∞)− corankΛ(Γ) H2(G S

cyc,Ep∞) = 2r2 + ∑
v real place

d−v .

Here r2 is the number of complex places of L and, for each real place v of L, we denote by d−v the dimension
of the (−1)-eigenspace for a complex conjugation above v acting on Tp(E)⊗Qp. By Proposition 4.7, the
H2-term vanishes and, by the Galois invariance of the Weil pairing, we know that d−v = 1 for all real v.
Hence,

corankΛ(Γ) H1(G S
cyc,Ep∞) = [L : Q] = N.

Now (29) of Lemma 4.9 implies

corankΩ(Γ) H1(G S
cyc,Ep) = corankΛ(Γ) H1(G S

cyc,Ep∞) = N.
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Passing to the computation of the local coranks, let first π ∈ Sord. By [CS10, §2.13] (which applies here,

thanks to our convention that κ
±,p∞

Lcyc,w
= κ

p∞

Lcyc,w
when π ∈ Sord) we know

corankΛ(Γ)

⊕

w|π

(
H1(Lcyc,w,Ep∞)/ Im(κ

±,p∞

Lcyc,w
)
)
= [Lπ : Qp].

Hence equation (28) of Lemma 4.9 yields

(31) corankΩ(Γ)

⊕

w|π

H1(Lcyc,w, Ẽp) = corankΩ(Γ)
±K̃π (Ep/Lcyc) = [Lπ : Qp].

Consider now a prime pi ∈ Sss. Lemma 4.10 implies that

(32) corankΩ(Γ)

(
H1(Lcyc,i,Ep)/ Im(κ

±,p
Lcyc

)
)
= corankΩ(Γ)

±K̃pi
(Ep/Lcyc) = 1.

Combining (31) and (32), we find

∑
π∈Sord

corankΩ(Γ)
±K̃π (Ep/Lcyc) +

d

∑
i=1

corankΩ(Γ)
±K̃pi

(Ep/Lcyc) = N

Now suppose that l is a prime in Sbad and let q be an extension of l to Lcyc. Greenberg proves in [Gre89,
Proposition 2] that the Λ(Γ)-module H1(Lcyc,q ,Ep∞) is cotorsion. Hence (27) of Lemma 4.9 implies

corankΩ(Γ)
±K̃l (Ep/Lcyc) = ∑

q|l

corankΩ(Γ) H1(Lcyc,q ,Ep) = ∑
q|l

corankΛ(Γ) H1(Lcyc,q ,Ep∞) = 0.

This completes the proof of the proposition. �

4.4. Main results. We are now in a position to state and prove our main result. Recall the exact se-
quence (25)

(25)

0 −→ R±
(
Ep/Lcyc

)
−→ H1(G S

cyc,Ep)
ξ±p
−→

⊕

v∈S

±K̃v(Ep/Lcyc) −→ S
±(Ep/Lcyc)

∧
−→

−→H2(G S
cyc,Ep) −→

⊕

w|v∈S

H2(Lcyc,w,Ep) −→ 0

and consider the projection

pr
Sp

:
⊕

v∈S

±K̃v(Ep/Lcyc)→
⊕

v∈Sp

±K̃v(Ep/Lcyc).

Define ϑ±
Ep ,Sp

, or simply ϑ±p,Sp
, as the composition pr

Sp
◦ ξ±p .

Theorem 4.12. Under our standing assumptions Hyp 1 and Hyp 2, the following assertions are equivalent:

a) ξ±p is surjective and Conjecture A holds;

b) ϑ±p,Sp
is surjective and Conjecture A holds;

c) R±
(
Ep/Lcyc

)
is Ω(Γ)-cotorsion;

d) X±(Ep∞ /Lcyc) has trivial µ-invariant.
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Proof. To show that a)⇒ c), take Pontryagin duals of the short exact sequence

0 −→ R±
(
Ep/Lcyc

)
−→ H1(G S

cyc,Ep)
ξ±p
−→

⊕

v∈S

±K̃v(Ep/Lcyc) −→ 0

to obtain

(33) 0 −→
⊕

v∈S

±K̃v(Ep/Lcyc)
∧ ξ±p

∧

−−−−→ H1(G S
cyc,Ep)

∧
−→ Y±(Ep/Lcyc) −→ 0.

By Proposition 4.11, the first two terms have the same Ω(Γ)-rank, so the third is Ω(Γ)-torsion and c)
follows. Also, when a) holds, the composition ϑ±p,Sp

= pr
Sp
◦ ξ±p is surjective, yielding a)⇒ b).

To show that c) and d) are equivalent, we first observe that a finitely generated torsion Λ(Γ)-module
M has trivial µ-invariant if and only if M/pM is a torsion Ω(Γ)-module. On the other hand, taking
Pontryagin duals of the injection of Corollary 4.5 shows that the kernel of

(
Sel±

(
Ep∞ /Lcyc

))
p

∧
= X±(Ep∞ /Lcyc)/p X±(Ep∞ /Lcyc)−։ Y±(Ep/Lcyc)

is finite, showing the equivalence between c) and d). Therefore, b)⇐ a)⇒ c)⇔ d).
We are left with the implications c) ⇒ a) and b) ⇒ a). Since c) ⇒ d) ⇒ Conjecture A, and b) con-

tains Conjecture A, we can assume from now on that H2(G S
cyc,Ep) = 0. In particular, the sequence (25)

becomes

(34) 0 −→ R±
(
Ep/Lcyc

)
−→ H1(G S

cyc,Ep)
ξ±p
−→

⊕

v∈S

±K̃v(Ep/Lcyc) −→ S
±(Ep/Lcyc)

∧
= coker(ξ±p ) −→ 0

and Proposition 4.11 yields

corankΩ(Γ)

(
R±

(
Ep/Lcyc

))
= corankΩ(Γ)

(
S
±(Ep/Lcyc)

)
.

Assuming c), it follows that S ±(Ep/Lcyc) is Ω(Γ)-torsion. On the other S ±(Ep/Lcyc) is Ω(Γ)-free, in light
of Lemma 4.6, and to be Ω(Γ)-torsion it must be trivial, establishing c)⇒ a).

Finally, assume that ϑ±p,Sp
is surjective and consider the commutative triangle

H1(G S
cyc,Ep)

ξ±p
//

ϑ±p,Sp
**❯❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

⊕

l∈Sbad

±K̃l (Ep/Lcyc)⊕
⊕

v∈Sp

±K̃v(Ep/Lcyc)

pr
Sp

��⊕

v∈Sp

±K̃v(Ep/Lcyc).

It induces an exact sequence

ker(pr
Sp
) =

⊕

l∈Sbad

±K̃l(Ep/Lcyc) −→ coker(ξ±p ) −→ coker(ϑ±p,Sp
) = 0

which implies that coker(ξ±p ) is cotorsion, thanks to Proposition 4.11. Since coker(ξ±p ) is isomorphic to

S ±(Ep/Lcyc)
∧ by (34), and S ±(Ep/Lcyc) is free by Lemma 4.6, this forces coker(ξ±p ) = 0, establishing the

final implication b)⇒ a). �
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Remark 4.13. Note that Conjecture A is pivotal to the proof and plays the role of the Weak Leopoldt
Conjecture for the residual representation Ep.

As an application of Theorem 4.12, we obtain a result along the lines of Greenberg–Vatsal’s work [GV00,
Theorem 1.4] in the supersingular setting. Results somewhat similar to Theorem 4.14 below, again in the
supersingular setting, have been obtained by Kim in [Kim09, Corollary 2.13] and by Hatley–Lei in [HL19,
Theorem 4.6], by different methods.

We denote by

(35) ρ±
E
= dimFp Y±(Ep/Lcyc)

the Fp-dimension of Y±(Ep/Lcyc). It clearly depends only upon the isomorphism class of Ep and not on E

itself.

Theorem 4.14. Let E1,E2 be two elliptic curves defined over L, satisfying hypotheses Hyp 1 and Hyp 2. Suppose
that the residual Galois representations (E1)p and (E2)p are isomorphic.

Let µ±
Ej

and λ±
Ej

be the Iwasawa invariants of X±((Ej)p∞ /Lcyc), for j = 1, 2. Then, for both choices of sign,

(36) µ±
E1

= 0⇐⇒ µ±
E2

= 0.

For each sign ∗ ∈ {+,−} for which this vanishing happens, we also have

(37) λ∗
Ej

= ρ∗ + δEj

where δEj
is as in Definition 4.4 and ρ± := ρ±

E1
= ρ±

E2
is as in (35).

Remark 4.15. As already observed in Corollary 4.5, the quantity δE is independent of the choice of sign
in {+,−}. In particular, for elliptic curves satisfying Hyp 1 and Hyp 2 and such that both their signed
µ-invariants are 0, the difference of the signed λ±-invariants depends only on the isomorphism class of
the residual representation.

The concrete way in which this result will be applied later, is the following. Suppose we are given a
family of elliptic curves (satisfying Hyp 1 and Hyp 2) with the property that their residual representations
are isomorphic. If one member A in the family satisfies µ+

A
= µ−

A
= 0, then for all other members E in the

family, we obtain µ±
E
= 0 and the difference of signed Iwasawa invariants

λ+
E
− λ−

E
= ρ+

A
− ρ−

A

is constant. In particular, if ρ+
A
= ρ−

A
, then λ+

E
= λ−

E
for all curves E in the family.

Proof. Observe first that if µ∗
Ej

= 0 for one sign ∗ ∈ {+,−} and one curve Ej, then Conjecture A holds

for both curves, thanks to Proposition 4.7. Moreover, Proposition 3.9-i) shows that the sets Sss and Sord

consisting of primes of supersingular (resp. ordinary) reduction for E1 and E2 coincide.
Fix an isomorphism (E1)p

∼= (E2)p and consider the maps

ϑ±
(Ej)p,Sp

: H1(G S
cyc, (Ej)p) −→

⊕

v∈Sp

±K̃v(Ej/Lcyc)=
⊕

π∈Sord

⊕

w|π

H1(Lcyc,w, (Ẽj)p)⊕
d⊕

i=1

H1(Ln,i, (Ej)p
)
/ Im κ

±,p
Ln,i

defined before Theorem 4.12. For all w | π ∈ Sord, the chosen isomorphism induces an isomorphism
between the H1(Lcyc,w, (Ẽj)p) (for j = 1, 2) by to Proposition 3.9-ii). Similarly, at every prime in Sss,
Proposition 3.8 gives an isomorphism between the groups

H1(Ln,, (Ej)p
)
/ Im κ

±,p
Ln,

,



RESIDUAL SUPERSINGULAR IWASAWA THEORY AND SIGNED IWASAWA INVARIANTS 25

for j = 1, 2. It follows that ϑ±
(E1)p,Sp

is surjective if and only if ϑ±
(E2)p,Sp

is surjective. Theorem 4.12 now

yields (36).
Suppose now that ∗ ∈ {+,−} is such that µ∗

E1
= µ∗

E2
= 0. By [KO18, Theorem 4.8], the Pontryagin duals

of the signed Selmer groups X∗((Ej)p∞ /Lcyc) do not have any non-zero finite Λ(Γ)-submodule. Further,
they are Λ(Γ)-torsion thanks to hypothesis Hyp 2. Therefore, for j = 1, 2,

λ∗
Ej

= length
(

X∗((Ej)p∞ /Lcyc)/p X∗((Ej)p∞ /Lcyc)
)

.

On the other hand, taking Pontryagin duals in Corollary 4.5 gives an exact sequence

(38) Vj −֒→
(

Sel∗
(
(Ej)p∞ /Lcyc

)
p

)∧
= X∗((Ej)p∞ /Lcyc)/p X∗((Ej)p∞ /Lcyc)−։ Y∗((Ej)p/Lcyc)

where Vj is an Fp-vector space of finite dimension. Since we are assuming µ∗
Ej

= 0, Theorem 4.12 implies

that ξ∗(Ej)p
is surjective and therefore, again by Corollary 4.5, we have dimFp Vj = δEj

. Taking lengths in (38)

gives

λ∗
Ej

= ρ∗ + δEj
.

and this finishes the proof. �

In the next two corollaries, we consider the main setting of Theorem 4.14. Thus, let E1,E2 be two
elliptic curves defined over L satisfying hypotheses Hyp 1 and Hyp 2, and such that the residual Galois
representations (E1)p and (E2)p are isomorphic, so ρ±

E1
= ρ±

E2
:= ρ±. By Proposition 3.9-i), the set Sord of

p-adic primes where the curves have good, ordinary reduction, coincide. Further, we assume that µ∗
E1

= 0
for one symbol ∗ ∈ {+,−}, which is equivalent to assuming µ∗

E2
= 0 by Theorem 4.14. Moreover, either

implies that Conjecture A holds for both curves, again by Theorem 4.14.

Corollary 4.16. Let Sbad
1 and Sbad

2 , be the sets of primes of bad reduction for E1 and E2, respectively. If, for both

indices j ∈ {1, 2}, we have Ej(Lv)p = 0 for all v ∈ Sord ∪ Sbad
j , then

λ∗
E1

= λ∗
E2

= ρ∗.

Proof. Recall from Definition 4.4 that

(39) δEj
= ∑

l∈Sbad
j

gl · dimFp Ej(L
1
q)p + ∑

π∈Sord

gπ dimFp Ẽj(Fπ)p

where q is a prime in Lcyc above l.
The same argument as in the proof of Corollary 4.5 shows that the condition Ej(Ll)p = 0 is equivalent

to Ej(Lcyc,q)p = 0 for all q | l. In particular, the hypothesis of the corollary imply Ej(L1
q)p for all q | l.

Similarly, there are surjections

Ej(Lπ)p ։ Ẽj(Fπ)p

so Ej(Lπ)p = 0 implies Ẽj(Fπ)p = 0.
Hence all terms in (39) vanish and δE1

= δE2
= 0. The corollary follows from (37). �

Recall that, given a prime v ∈ S, we denote by gv the number of primes w | v in Lcyc.
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Corollary 4.17. Suppose that E1 is a CM curve. Then

λ∗
E2

=


ρ∗ + ∑

π∈Sord

gπ dimFp Ẽ1(Fπ )p


+ ∑

l∈Sbad
2

gl · dimFp E2(Ll)p

Remark 4.18. The interest of Corollary 4.17 lies in the fact that the quantity in parenthesis is constant along
families with isomorphic residual representation at p. Moreover, the final sum in the right-hand side
only depends on the groups E2(Ll)p (for l ∈ Sbad

2 ) and not on the behaviour of p-torsion along the local
cyclotomic towers. As we shall see in the proof, the corollary still holds only assuming that the image
of Gal(L/L) inside Aut

(
(E1)p

)
⊆ GL2(Fp) is contained in the normalizer of a Cartan subroup, which is

certainly the case when E1 is CM.

Proof. Since E1 is CM and p ≥ 3, the image of Gal(L/L) inside Aut
(
(E1)p

)
⊆ GL2(Fp) is contained in the

normalizer of a Cartan subroup. In particular, it contains no element of order p, and the same holds for the
image of Gal(L/L) inside Aut

(
(E2)p

)
because the representations are isomorphic. It follows that, for all

q | l, the pro-p-group Γ = Gal(Lcyc,q/Ll) acts trivially on E2(Lcyc,q)p, and dimFp E2(Ll)p = dimFp E2(L1
q)p.

The corollary follows from (37), combined with Definition 4.4. �

5. Numerical Examples

Our class of examples comes from the work [RS95]. Both for p = 3 and p = 5, Rubin and Silverberg
define, for each D 6≡ 0 (mod p), a family parametrised by1 t ∈ Z. All curves in the families have good, su-
persingular reduction at p and isomorphic residual Galois representations. In particular, the reduction type
is constant along families and, since all curves are defined over Q, in all cases Sord = ∅. Finally, observe
that Rubin–Silverberg’s construction shows that all family contain a CM member, and so Corollary 4.17
applies. For all choices of (p, D), the strategy will be to

1. Find one curve A in the family for which the Iwasawa invariants µ±
A

and λ±
A

have been computed
in [LMF13] and such that µ±

A
= 0. In practice, we take for A the CM curve corresponding to the

parameter t = 0.
2. Apply Theorem 4.14 (see in particular Remark 4.15) to deduce that µ± = 0 for all other members

in the family. In particular, Conjecture A holds for the whole family, by Proposition 4.7.
3. Deduce from formula (37) for λ±-invariants that ρ±

A
= λ±

A
− δA for A, and set ρ± := ρ±

A
.

4. By Corollary 4.17, we obtain

λ±
E
= ρ± + δE = ∑

ℓ∈Sbad

gℓ dimFp E(Qℓ)p

for all E in the family.
5. The key step is to find elliptic curves E in the family satisfying ap(E) = 0, to ensure that Hyp 1

holds. Note that this is only needed when p = 3, because when p = 5 the condition a5(E) = 0 is
automatically satisfied by the Hasse bound. Since all our examples are defined over Q, Hyp 2 is
always satisfied by [Kob03, Theorem 1.2].

6. Choosing any curve as in (5.), we compute the Fp-dimension of E(Qℓ)p at all primes ℓ ∈ Sbad,
together with the number of primes in Qcyc above ℓ, to find the numerical value of δE and hence of
λ±
E

.

1Actually, the parameters in the families can vary in Q, but are required to be p-integral to define curves with good reduction at
p. In our examples, we will restrict to t ∈ Z
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We will consider the families attached to D = 1,−1 for p = 3, and the families attached to D = 3 and
D = 14 for p = 5. Our source of numerical data is [LMF13]. Labels of elliptic curves follow Cremona’s
tables as in [LMF13], when available (i. e. for discriminant less than 500.000 as per October 2019). The
computations have been made in SAGE

2.

5.1. p = 3.

5.1.1. D = 1. Setting t = 0 we obtain the CM curve A = 32a2 given by y2 = x3− x. It satisfies µ±
A
= λ±

A
= 0

and this is in accordance with the fact that we found δA = 0: indeed, Sbad
A

= {2} and A(Q2)3 = 0. Moreover,
a3(A) = 0, and we obtain ρ± = 0. The curves corresponding to t = 1 and t = 2 are, respectively, E1 = 352 f 1
and E2 = 16096h1: since a3(E1) = −3 and a3(E2) = 3, we discard them.

The curve corresponding to t = 3 is E3 = 18784b1, and a3(E3) = 0. Its Iwasawa invariants are available
on [LMF13], and indeed µ±

E3
= 0. The primes of bad reduction are Sbad = {2, 587}. We found E3(Q2)3 = 0

and E3(Q587)3 = Z/3Z; since 587 is a generator of Z/9Z, it is totally inert in Qcyc/Q, so g357 = 1.
Formula (37) gives λ±

E3
= 1, in accordance with the numerical value found in [LMF13].

To show a somehow extreme example, consider t = 18. It satisfies a3(E18) = 0 and its conductor is
90.885.856 = 25 · 2840183. The dimensions of its local 3-torsion are

dimF3

(
E18(Qℓ)3

)
=

{
0 for ℓ = 2
1 for ℓ = 2840183

The multiplicative order of 2840183 modulo 37 being 6, we deduce g2840183 = 36, whence λ±
E18

= 729, and

µ±
E18

= 0 by Theorem 4.14. It is relevant here to note Kim’s observation that under these assumptions the
Iwasawa λ±-invariants can be arbitrarily large in the family (see [Kim09, p. 190]), although he does not
produce explicit examples. Note also that these Iwasawa invariants are not available on [LMF13].

5.1.2. D = −1. In this case, the CM curve for t = 0 is A = 64a4 given by y2 = x3 + x. Again, µ±
A
= λ±

A
=

0 = a3(A). We computed the defect and found δA = 0, since Sbad
A

= {2} and A(Q2)3 = 0. We obtain ρ± = 0.
The curves corresponding to the parameters t = 2, 4, 5 are, respectively, E2 = 22976p1,E4 = 423872t1
and E5 = 131392 f 1. They all exist in [LMF13], and have a3(Ei) = 0, but the Iwasawa invariants are
available only for E2 and E5: they read λ±

E2
= 3, λ±

E5
= 0. This is in accordance with formula (37): indeed,

Sbad
E2

= {2, 359}, Sbad
E5

= {2, 2053} and

dimF3

(
E2(Qℓ)3

)
=

{
0 for ℓ = 2
1 for ℓ = 359

dimF3

(
E5(Qℓ)3

)
=

{
0 for ℓ = 2
0 for ℓ = 2053

This immediately implies δE5
= 0, so λ±

E5
= 0. As 359 has order 6 modulo 27, we obtain g359 = 3, whence

δE2 = λ±
E5

= 3. The curve E4 can be treated analogously, since Sbad
E4

= {2, 37, 179} and

dimF3

(
E4(Qℓ)3

)
=





0 for ℓ = 2
2 for ℓ = 37
1 for ℓ = 179

Further, g37 = g179 = 3, whence λ±
E4

= 9, a value which is not available on [LMF13]. Also, all curves satisfy
µ± = 0 by Theorem 4.14.

2 We used commands E.q_expansion(4) to compute a3 and E(0).division_points(p) to compute torsion points.
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We finish this series of examples with the curve E149 for t = 149. Its conductor is 106.459.833.664 =
2 · 1663434901, so it has no label in Cremona’s tables, but we can compute a3(E149) = 0. We found
E149(Q2)3 = E149(Q1663434901)3 = 0, whence µ±

E149
= λ±

E149
= 0.

5.2. p = 5.

5.2.1. D = 3. The CM curve corresponding to t = 0 is A = 3888s1, given by y2 = x3 + 48. Its Iwasawa
invariants are computed in [LMF13] and µ±

A
= 0, λ±

A
= 1. To find ρ± = ρ±

A
, we need to compute δA. The

primes of bad reduction are Sbad
A

= {2, 3} and A(Qℓ)3 = 0 for both ℓ ∈ Sbad
A

, so δA = 0 and ρ± = 1.
The conductors of Et for t ∈ [−5, 15] have orders of magnitude between 107 and 1020 (except for E0 = A),
so these curves are not implemented in [LMF13]. Computing Iwasawa invariants through formula (37) is
almost immediate. As an example, we compute them for the curves E6 and E14 corresponding to t = 6 and
t = 14, respectively. First, we immediately obtain from Theorem 4.14 that µ±

E6
= µ±

E14
= 0.

The conductor of E6 is 16.847.046.490.346.928 = 24 · 35 · 4333088089081. The curve has no Qℓ-rational
5-torsion points for any of the primes ℓ ∈ {2, 3, 4333088089081}, so δE6

= 0. It follows that λ±
E6

= ρ± = 1.

The conductor of E14 is 445.766.016.078.830.163.888 = 24 · 35 · 29 · 602279 · 6564248011 and E14 does not have
neither Q2-rational nor Q3-rational 5-torsion points. On the other hand,

dimF5

(
E14(Qℓ)5

)
=





1 for ℓ = 29
1 for ℓ = 602279
2 for ℓ = 6564248011

Further, computing multiplicative orders modulo 25, we find gℓ = 1 for all ℓ ∈ {29, 602279, 6564248011}.
It follows that δE14

= 4 and λ±
E14

= δE14
+ ρ± = 5.

5.2.2. D = 14. We finish with an example where λ+ 6= λ−. Take D = 14, so that the CM member for t = 0
is A = 28224dj1, given by y2 = x2 + 224. Its Iwasawa invariants are µ±

A
= 0, and λ+

A
= 3, λ−

A
= 1. The

conductor of A is 28224 = 26 · 32 · 72 and we compute as above that δA = 0, so ρ+
A
= ρ+ = 3, ρ−

A
= ρ− = 1.

As observed in Remark 4.15, all members Et in this family satisfy λ+
E
− λ−

E
= 2, together with µ± = 0.

Again, the conductors grow very fast with t and we could not find any curve in the family for which
data are available on [LMF13]. As examples, we consider the curves for t = 6 and t = 8. The first has
Sbad
E6

= {2, 3, 7, 22621, 92081500261} and there are no Qℓ-rational 5-torsion points at ℓ ∈ Sbad
E6

except for

ℓ = 92081500261, where dimF5

(
E6(Qℓ)5

)
= 2. Since g92081500261 = 1, we find δE6

= 2 and

λ+
E6

= 5 and λ−
E6

= 3.

Finally, we consider the curve for t = 8, which has no Qℓ-rational 5-torsion point at any of the primes
ℓ ∈ Sbad

E8
= {2, 3, 7, 10861, 642211, 9447511}. It follows that δE8 = 0 and

λ+
E6

= 3 and λ−
E6

= 1.
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