Supporting information

Coordination Self-Assembly through Weak Interactions in *Meso-*Dialkoxyphosphoryl-Substituted Zinc Porphyrinates

Sergey E. Nefedov,^{*[a]} Kirill P. Birin,^[b] Alla Bessmertnykh-Lemeune,^{*[c]} Yulia Y. Enakieva,^[a,b] Anna A. Sinelshchikova,^[b] Yulia G. Gorbunova,^[a,b] Aslan Y. Tsivadze,^[a,b] Christine Stern,^[c] Yuanyuan Fang,^[d] and Karl M. Kadish^[d]

[a] Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow, 119991, Russia[b] Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, GSP-1, Moscow, 119071, Russia

[c] Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne Franche-Comté, UMR CRNS n° 6302, 9 Avenue Alain Savary, BP 47870, Dijon 21078 CEDEX, France

[d] Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States

Table of contents

1.	Summary of crystal data and structure refinement for porphyrins Zn5–Zn9	
2.	Crystal data for porphyrin Zn5	5
3.	Crystal data for porphyrins Zn6	8
4.	Crystal data for porphyrin Zn7	
5.	Crystal data for porphyrin Zn8	
6.	Crystal data for porphyrin Zn9	
7.	Schematic representation of crystal packing Zn8 and Zn9	
8.	NMR studies of the self-assembly of porphyrins Zn5–Zn11	23
9.	UV-vis studies of complex Zn10	
10.	Powder X-Ray diffraction analysis of porphyrins Zn5-Zn9	
10.	Electrochemical data for Zn10	
11.	References	

1. Summary of crystal data and structure refinement for porphyrins Zn5–Zn9.

X-ray structure analysis of **Zn5-Zn9**: Bruker AXS SMART 1000, CCD-detector λ (MoK*a*) = 0.71073Å, graphite monochromator, ω -scanning. Corrections for absorption were made by SADABS [1]. The structure was solved by direct method and refined by full-matrix least squares method for F^2 with anisotropic parameters for all non-hydrogen atoms. All calculations were performed with the use of the SAINT [2] and SHELXTL-97 [3] program packages.

Special details

[Zn5]_n

The carbons atoms (C35-C36) of ethyl substitutes are disordered at the same sites.

The aryl atoms (C28-C32) are disordered over two sites with occupancies 0.5:0.5.

[Zn6]_n

The n-butyl substitutes are disordered at the same sites.

Two n-butyl C atoms (C39A-C40A) is disordered over two sites with occupancies 0.5:0.5.

[Zn7]_n

The carbons atoms (C36-C37) of ethyl substitutes are disordered at the same sites.

The carbon atom (C34) of other ethyl substitutes is disordered over two sites with occupancies

0.5:0.5

$[Zn8]_n$

The carbons atoms of ethyl substitutes are disordered at the same sites.

[**Zn9**]_n

All atoms of Et-and OMe substitutes are disordered at the same sites.

Identification code	Zn5	Zn6	Zn7	Zn8	Zn9
CCDC	1844989	1844992	1844991	1844990	1844993
Empirical formula	C ₃₆ H ₂₉ N ₄ O ₃ PZn	C40H35N4O3PZn	C ₃₈ H ₂₇ N ₅ O ₄ PZn	$C_{152}H_{132}N_{16}O_{12}P_4Zn_4$	$C_{152}H_{140}N_{16}O_{20}P_4Zn_4$
Formula weight	661.97	716.06	713.98	2760.09	2896.15
Temperature/K	150(2)	150(2)	150(2)	150(2)	150(2)
Crystal system	monoclinic	orthorhombic	monoclinic	tetragonal	tetragonal
Space group	P21	Pbca	C2/c	P-42 ₁ c	P-42 ₁ c
a/Å	11.2709(17)	11.4139(14)	33.220(5)	21.1528(7)	20.973(4)
b/Å	10.9305(16)	21.797(3)	10.1145(15)	21.1528(7)	20.973(4)
c/Å	13.289(2)	26.842(3)	23.218(3)	15.1147(6)	15.568(4)
α/°	90	90	90	90	90
β/°	109.961(2)	90	117.342(2)	90	90
γ/°	90	90	90	90	90
Volume/Å ³	1538.8(4)	6678.0(14)	6929.6(18)	6762.9(5)	6848(3)
Z	2	8	8	2	2
$\rho_{calc}g/cm^3$	1.429	1.424	1.369	1.355	1.405
μ/mm ⁻¹	0.894	0.830	0.803	0.817	0.814
F(000)	684.0	2976.0	2936.0	2864.0	3008.0
Crystal size/mm ³	0.24 imes 0.22 imes 0.20	0.24 imes 0.22 imes 0.20	$0.22 \times 0.20 \times 0.18$	$0.22 \times 0.20 \times 0.18$	$0.22 \times 0.20 \times 0.18$
2@ range for data collection/°	4.95 to 59.99	3.74 to 57.99	4.95 to 60.00	3.85 to 59.99	4.68 to 54.00
	$-15 \le h \le 15$,	$-15 \le h \le 15$,	$-46 \le h \le 46,$	$-29 \le h \le 25,$	$-25 \le h \le 26,$
Index ranges	$-15 \le k \le 15,$	$-29 \le k \le 25,$	$-14 \le k \le 14,$	$-15 \le k \le 29,$	$-26 \le k \le 26,$
	$-18 \le l \le 18$	$-36 \le l \le 36$	$-32 \le l \le 32$	$-19 \le l \le 21$	$-19 \le l \le 19$
Reflections collected	18125	56745	39845	35445	52423
Independent reflections	8851 [$R_{int} = 0.0384, R_{sigma} = 0.0738$]	8878 [$R_{int} = 0.1202, R_{sigma} = 0.0867$]	$[10104 [R_{int} = 0.1455, R_{sigma} = 0.1464]$	9858 [$R_{int} = 0.0548$, $R_{sigma} = 0.0804$]	[7469 [$R_{int} = 0.2027$, $R_{sigma} = 0.1346$]
Data/restraints/parameters	8851/3/397	8878/0/402	10104/0/452	9858/0/429	7469/0/435
Goodness-of-fit on F ²	1.006	1.147	0.957	0.972	1.088
^a Final R indexes [I>= 2σ (I)]	$R_1 = 0.0493, wR_2 = 0.1043$	$R_1 = 0.0736, wR_2 = 0.1661$	$R_1 = 0.0616$, $wR_2 = 0.1170$	$R_1 = 0.0391, wR_2 = 0.0608$	$R_1 = 0.0872, wR_2 = 0.2020$
^a Final R indexes [all data]	$R_1 = 0.0654, wR_2 = 0.1110$	$R_1 = 0.1366, wR_2 = 0.1946$	$R_1 = 0.1525, wR_2 = 0.1514$	$R_1 = 0.0631, wR_2 = 0.0632$	$R_1 = 0.1645, wR_2 = 0.2377$
Largest diff. peak/hole / e Å ⁻³	0.84/-0.38	1.63/-1.81	0.59/-0.41	0.88/-0.54	1.19/-0.57

Table S1. Crystal data and structure refinement for complexes Zn5–Zn9.

 ${}^{a}R_{I} = \Sigma \left| \left| F_{o} \right| - \left| F_{c} \right| \right| / \Sigma \left| F_{o} \right| ; wR_{2} = \{ \Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma w(F_{o}^{2})^{2} \}^{1/2}$

Table S2. Selected bond distances and angles in dialkoxyphosphorylporphyrins Zn5–Zn9.

Compound	Zn-N	Zn-O ^a	Zn/N ₄ ^b	RMSD N ₄ ^c	P/N_4^d	planes	$P(O)(OEt)_2$	planes N ₄ /Ar	max	C–Ar	Zn/Zn ^f	N ₄ /N ₄ planes
	[Å]	[Å]	[Å]	[Å]	[Å]	N ₄ /CP=O	[Å]	dihedral	C N ₄ ^e	[Å]	[Å]	angle ^g
						dihedral		angle [°]	[Å]			[⁰]
						angle [°]						
[Zn5] _n	2.052(4)	2.071(3)	0.268	±0.015	0.046	8.9	1.469(3) (P=O)	80.9	-0.242	1.487(3)	7.939	84.8
	2.060(3)						1.564(3) (P–O)	62.9				
	2.064(4)						1.570(3) (P–O)					
	2.074(3)						1.790(4) (P–C)					
[Zn6] _n	2.062(3)	2.113(3)	0.282	±0.028	-0,216	7.4	1.475(3) (P=O)	80.6	-0.326	1.501(4)	8.063	88.9
	2.064(4)						1.569(3) (P–O)	60.2		1.506(4)		
	2.067(3)						1.575(3) (P–O)					
	2.068(4)						1.808(4) (P–C)					
[Zn7] _n	2.067(3)	2.081(2)	0.333	±0.013	0.056	34.9	1.468(3) (P=O)	75.2	-0.321	1.498(3)1.	7.863	85.8
	2.073(3)						1.549(3) (P–O)	60.1		504(3)		
	2.074(3)						1.556(3) (P–O)					
	2.074(3)						1.799(4) (P–C)					
[Zn8] ₄	2.061(2)	2.072(2)	0.305	±0.010	-0.242	10.3	1.469(2) (P=O)	72.6	-0.396	1.500(3)	8.042	86.3
	2.070(3)						1.565(2) (P–O)	71.4		1.510(3)		
	2.075(3)						1.569(2) (P–O)					
	2.075(2)						1.798(3 (P–C)					
[Zn9] ₄	2.043(11)	2.083(8)	-0.310	± 0.000	0;139	9.3	1.456(9) (P=O)	73.7	0.317	1.516(9)1.	8.053	87.8
	2.056(9)						1.543(1) (P–O)	73.7		534(9)		
	2.069(10)						1.56(1) (P–O)					
	2.090(10)						1.750(15) (P–C)					

^a Axial coordination bond.

 $^{\rm b}$ Deviation of the zinc atom from the mean N_4 plane of the macrocycle.

^c RMS deviation of carbon atoms from the mean N_4 plane of the macrocycle.

^d Deviation of the phosphorus atom from the mean N_4 plane of the macrocycle.

^e Maximal deviation of carbon atoms of the macrocycle from the mean N_4 plane of this macrocycle.

^f Distance between two nearest zinc atoms.

^g Dihedral angle formed by the mean N₄ planes of the nearest porphyrin molecules

2. Crystal data for porphyrin Zn5.

Figure S1. Independent part of coordination polymer $[Zn5]_n$ (30% probability ellipsoids). Hydrogen atoms are omitted for clarity.

Figure S2. Fragment of coordination polymer $[Zn5]_n$ (30% probability ellipsoids). Hydrogen atoms are omitted for clarity.

Figure S3. Two polymer chains of coordination polymer $[Zn5]_n$ interacting through C-H^{...}Zn,N contacts. Hydrogen atoms are omitted for clarity.

Figure S4. Crystal packing of coordination polymer $[Zn5]_n$. Hydrogen atoms are omitted for clarity.

Table S3. Selected bond distances (Å) and angles (deg) for complex $[Zn5]_n$.

Zn(1)-N(4)	2.052(4)	Zn(1)-N(3)	2.060(3)
Zn(1)-N(2)	2.064(4)	Zn(1)-N(1)	2.074(3)
Zn(1)-O(1)	2.071(3)	P(1)-O(1)	1.469(3)
P(1)-O(3)	1.564(3)	P(1)-O(2)	1.570(3)
P(1)-C(21)	1.790(4)	N(1)-C(4)	1.359(6)
N(1)-C(1)	1.382(6)	N(2)-C(9)	1.365(6)
N(2)-C(6)	1.370(6)	N(3)-C(20)	1.370(5)
N(3)-C(17)	1.383(5)	N(4)-C(22)	1.367(5)
N(4)-C(25)	1.380(5)	O(2)-C(33)	1.444(6)
O(3)-C(35)	1.475(7)		

Bond distances (Å)

N(4)-Zn(1)-N(3) 88.61(13)	N(4)-Zn(1)-N(2) 164.21(14)
N(3)-Zn(1)-N(2) 89.17(14)	N(4)-Zn(1)-O(1) 98.16(14)
N(3)-Zn(1)-O(1) 95.57(13)	N(2)-Zn(1)-O(1) 97.61(15)
N(4)-Zn(1)-N(1) 89.67(16)	N(3)-Zn(1)-N(1) 165.92(14)
N(2)-Zn(1)-N(1) 88.69(16)	O(1)-Zn(1)-N(1) 98.51(13)
O(1)-P(1)-O(3) 114.56(19)	O(1)-P(1)-O(2) 111.91(18)
O(3)-P(1)-O(2) 98.62(17)	O(1)-P(1)-C(21) 112.86(18)
O(3)-P(1)-C(21) 108.41(18)	O(2)-P(1)-C(21) 109.52(18)
C(4)-N(1)-C(1) 106.7(4)	C(4)-N(1)-Zn(1) 126.7(4)
C(1)-N(1)-Zn(1) 125.9(3)	C(9)-N(2)-C(6) 106.8(4)
C(9)-N(2)-Zn(1) 126.4(3)	C(6)-N(2)-Zn(1) 126.0(4)
C(20)-N(3)-C(17) 106.4(3)	C(20)-N(3)-Zn(1) 127.0(3)
C(17)-N(3)-Zn(1) 125.7(3)	C(22)-N(4)-C(25) 106.7(3)
C(22)-N(4)-Zn(1) 127.7(3)	C(25)-N(4)-Zn(1) 125.4(3)
P(1)-O(1)-Zn(1) 148.1(2)	C(33)-O(2)-P(1) 119.7(3)
C(35)-O(3)-P(1) 122.8(3)	

3. Crystal data for porphyrin Zn6.

Figure S5. Independent part of coordination polymer $[Zn6]_n$ (30% probability ellipsoids). Hydrogen atoms are omitted for clarity.

Figure S6. Fragment of coordination polymer $[Zn6]_n$ (30% probability ellipsoids). Hydrogen atoms are omitted for clarity.

Figure S7. π - π Contacts between two porphyrin macrocycles in neighboring polymeric chains observed in the crystal of [**Zn6**]_n. Hydrogen atoms are omitted for clarity.

Figure S8. Crystal packing of coordination polymer $[Zn6]_n$. Hydrogen atoms are omitted for clarity.

Table S4. Selected bond distances (Å) and angles (deg) for complex $[Zn6]_n$.

Zn(1)-N(4)	2.062(3)	Zn(1)-N(3)	2.064(4)	
Zn(1)-N(2)	2.067(3)	Zn(1)-N(1)	2.068(4)	
Zn(1)-O(1)	2.113(3)	P(1)-O(1)	1.475(3)	
P(1)-O(2)	1.569(3)	P(1)-O(3)	1.575(3)	
P(1)-C(21)	1.808(4)	O(2)-C(33)	1.443(6)	
O(3)-C(37)	1.481(9)	N(1)-C(1)	1.365(5)	
N(1)-C(4)	1.371(6)	N(2)-C(9)	1.361(5)	
N(2)-C(6)	1.363(6)	N(3)-C(20)	1.368(5)	
N(3)-C(17)	1.388(5)	N(4)-C(22)	1.363(6)	
N(4)-C(25)	1.378(5)			

Bond distances (Å)

N(4)-Zn(1)-N(3) 88.35(13)	N(4)-Zn(1)-N(2) 165.84(14)
N(3)-Zn(1)-N(2) 89.46(13)	N(4)-Zn(1)-N(1) 88.79(14)
N(3)-Zn(1)-N(1) 162.69(15)	N(2)-Zn(1)-N(1) 89.16(14)
N(4)-Zn(1)-O(1) 96.75(13)	N(3)-Zn(1)-O(1) 98.39(14)
N(2)-Zn(1)-O(1) 97.41(13)	N(1)-Zn(1)-O(1) 98.90(14)
O(1)-P(1)-O(2) 113.14(19)	O(1)-P(1)-O(3) 114.4(2)
O(2)-P(1)-O(3) 97.93(18)	O(1)-P(1)-C(21) 113.53(18)
O(2)-P(1)-C(21) 108.0(2)	O(3)-P(1)-C(21) 108.6(2)
P(1)-O(1)-Zn(1) 147.42(19)	C(33)-O(2)-P(1) 119.0(3)
C(37)-O(3)-P(1) 117.1(4)	C(1)-N(1)-C(4) 106.9(4)
C(1)-N(1)-Zn(1) 126.7(3)	C(4)-N(1)-Zn(1) 125.8(3)
C(9)-N(2)-C(6) 106.6(4)	C(9)-N(2)-Zn(1) 125.8(3)
C(6)-N(2)-Zn(1) 126.9(3)	C(20)-N(3)-C(17) 106.2(3)
C(20)-N(3)-Zn(1) 129.2(3)	C(17)-N(3)-Zn(1) 124.4(3)
C(22)-N(4)-C(25) 107.2(3)	C(22)-N(4)-Zn(1) 127.8(3)
C(25)-N(4)-Zn(1) 125.0(3)	

4. Crystal data for porphyrin Zn7.

Figure S9. Independent part of coordination polymer $[Zn7]_n$ (30% probability ellipsoids). Hydrogen atoms are omitted for clarity.

Figure S10. Fragment of coordination polymer $[Zn7]_n$ (30% probability ellipsoids). Hydrogen atoms are omitted for clarity.

Figure S11. π - π Contacts between two porphyrin macrocycles in neighboring polymeric chains observed in the crystal of $[Zn7]_n$. Hydrogen atoms are omitted for clarity.

Figure S12. Crystal packing of coordination polymer $[Zn7]_n$. Hydrogen atoms are omitted for clarity.

Table S5. Selected bond distances (Å) and angles (deg) for complex $[Zn7]_n$.

Zn(1)-N(1)	2.067(3)	Zn(1)-N(4)	2.073(3)	
Zn(1)-N(3)	2.074(3)	Zn(1)-N(2)	2.074(3)	
Zn(1)-O(1)	2.081(2)	P(1)-O(1)	1.468(3)	
P(1)-O(2)	1.549(3)	P(1)-O(3)	1.556(3)	
P(1)-C(38)	1.799(4)	O(2)-C(34A)	1.296(15)	
O(2)-C(34)	1.376(7)	O(3)-C(36)	1.452(6)	
N(1)-C(1)	1.360(4)	N(1)-C(4)	1.376(4)	
N(2)-C(16)	1.363(4)	N(2)-C(13)	1.365(4)	
N(3)-C(21)	1.358(4)	N(3)-C(18)	1.363(4)	
N(4)-C(33)	1.378(4)	N(4)-C(30)	1.385(4)	
N(5)-C(10)	1.147(5)	N(6)-C(27)	1.138(5)	

Bond distances (Å)

N(1)-Zn(1)-N(4) 88.02(11)	N(1)-Zn(1)-N(3) 160.76(12)
N(4)-Zn(1)-N(3) 88.66(11)	N(1)-Zn(1)-N(2) 88.63(11)
N(4)-Zn(1)-N(2) 162.30(11)	N(3)-Zn(1)-N(2) 88.80(11)
N(1)-Zn(1)-O(1) 98.42(11)	N(4)-Zn(1)-O(1) 99.00(10)
N(3)-Zn(1)-O(1) 100.82(11)	N(2)-Zn(1)-O(1) 98.69(10)
O(1)-P(1)-O(2) 112.73(17)	O(1)-P(1)-O(3) 111.13(16)
O(2)-P(1)-O(3) 101.23(19)	O(1)-P(1)-C(38) 111.91(16)
O(2)-P(1)-C(38) 108.16(17)	O(3)-P(1)-C(38) 111.19(16)
P(1)-O(1)-Zn(1) 137.47(16)	C(34A)-O(2)-P(1) 133.5(8)
C(34)-O(2)-P(1) 131.1(4)	C(36)-O(3)-P(1) 118.9(3)
C(1)-N(1)-C(4) 107.1(3)	C(1)-N(1)-Zn(1) 127.0(2)
C(4)-N(1)-Zn(1) 125.2(2)	C(16)-N(2)-C(13) 106.4(3)
C(16)-N(2)-Zn(1) 125.6(2)	C(13)-N(2)-Zn(1) 126.4(2)
C(21)-N(3)-C(18) 106.7(3)	C(21)-N(3)-Zn(1) 126.7(2)
C(18)-N(3)-Zn(1) 125.3(2)	C(33)-N(4)-C(30) 106.7(3)
C(33)-N(4)-Zn(1) 127.5(2)	C(30)-N(4)-Zn(1) 125.6(2)

5. Crystal data for porphyrin Zn8.

Figure S13. Independent part of tetrmer $[Zn8]_4$ (30% probability ellipsoids). Hydrogen atoms are omitted for clarity.

Figure S14. ORTEP view of tetramer $[Zn8]_4$ (30% probability ellipsoids). Hydrogen atoms are omitted for clarity.

Figure S15. Crystal packing of coordination polymer [Zn8]₄. Hydrogen atoms are omitted for clarity.

Table S6. Selected bond distances (Å) and angles (deg) for complex [Zn8]₄.

Zn(1)-N(4)	2.061(2)	Zn(1)-N(1)	2.070(3)	
Zn(1)-O(1)	2.0722(19)	Zn(1)-N(3)	2.075(3)	
Zn(1)-N(2)	2.075(2)	P(1)-O(1)	1.469(2)	
P(1)-O(2)	1.565(2)	P(1)-O(3)	1.569(2)	
P(1)-C(1)	1.798(3)	O(2)-C(35)	1.450(5)	
O(3)-C(37)	1.444(4)	N(1)-C(2)	1.378(4)	
N(1)-C(5)	1.382(4)	N(2)-C(14)	1.367(4)	
N(2)-C(17)	1.370(4)	N(3)-C(22)	1.361(4)	
N(3)-C(19)	1.373(4)	N(4)-C(34)	1.358(4)	
N(4)-C(31)	1.391(4)			

Bond distances (Å)

N(4)-Zn(1)-N(1) 87.90(10)	N(4)-Zn(1)-O(1) 98.10(9)
N(1)-Zn(1)-O(1) 99.85(9)	N(4)-Zn(1)-N(3) 89.13(10)
N(1)-Zn(1)-N(3) 162.51(10)	O(1)-Zn(1)-N(3) 97.64(9)
N(4)-Zn(1)-N(2) 163.60(10)	N(1)-Zn(1)-N(2) 89.20(10)
O(1)-Zn(1)-N(2) 98.30(9)	N(3)-Zn(1)-N(2) 88.80(10)
O(1)-P(1)-O(2) 115.24(13)	O(1)-P(1)-O(3) 112.83(13)
O(2)-P(1)-O(3) 97.65(14)	O(1)-P(1)-C(1) 112.54(13)
O(2)-P(1)-C(1) 108.52(14)	O(3)-P(1)-C(1) 109.01(14)
P(1)-O(1)-Zn(1) 139.42(13)	C(35)-O(2)-P(1) 118.7(3)
C(37)-O(3)-P(1) 119.2(2)	C(2)-N(1)-C(5) 106.6(3)
C(2)-N(1)-Zn(1) 128.7(2)	C(5)-N(1)-Zn(1) 124.7(2)
C(14)-N(2)-C(17) 106.5(3)	C(14)-N(2)-Zn(1) 126.0(2)
C(17)-N(2)-Zn(1) 125.8(2)	C(22)-N(3)-C(19) 106.6(3)
C(22)-N(3)-Zn(1) 126.9(2)	C(19)-N(3)-Zn(1) 125.6(2)
C(34)-N(4)-C(31) 107.0(2)	C(34)-N(4)-Zn(1) 128.0(2)
C(31)-N(4)-Zn(1) 124.8(2)	

6. Crystal data for porphyrins Zn9.

Figure S16. Independent part of tetrmer $[Zn9]_4$ (30% probability ellipsoids). Hydrogen atoms are omitted for clarity.

Figure S17. ORTEP view of tetramer [$[Zn9]_4$ (30% probability ellipsoids). Hydrogen atoms are omitted for clarity.

Figure S18. Crystal packing of coordination polymer [Zn9]₄. Hydrogen atoms are omitted for clarity.

Table S7. Selected bond distances (Å) and angles (deg) for complex [Zn9]₄.

Zn(1)-N(2)	2.043(11)	Zn(1)-N(3)	2.056(9)	
Zn(1)-N(4)	2.069(10)	Zn(1)-N(1)	2.090(10)	
Zn(1)-O(1)	2.083(8)	P(1)-O(1)	1.456(9)	
P(1)-O(3)	1.543(10)	P(1)-O(2)	1.566(11)	
P(1)-C(17)	1.750(15)	O(2)-C(35)	1.54(2)	
O(3)-C(37)	1.47(2)	O(4)-C(9)	1.370(14)	
O(4)-C(10)	1.458(19)	O(5)-C(26)	1.413(15)	
O(5)-C(27)	1.43(2)	N(1)-C(1)	1.366(16)	
N(1)-C(4)	1.369(15)	N(2)-C(33)	1.351(16)	
N(2)-C(30)	1.407(13)	N(3)-C(18)	1.338(17)	
N(3)-C(21)	1.398(14)	N(4)-C(16)	1.361(16)	
N(4)-C(13)	1.377(14)			

Bond distances (Å)

N(2)-Zn(1)-N(4) 162.6(4)
N(2)-Zn(1)-N(1) 89.2(4)
N(4)-Zn(1)-N(1) 88.0(4)
N(3)-Zn(1)-O(1) 98.7(4)
N(1)-Zn(1)-O(1) 98.6(4)
O(1)-P(1)-O(2) 112.1(6)
O(1)-P(1)-C(17) 113.0(5)
O(2)-P(1)-C(17) 110.4(7)
C(35)-O(2)-P(1) 117.3(10)
C(9)-O(4)-C(10) 114.8(13)
C(1)-N(1)-C(4) 107.7(9)
C(4)-N(1)-Zn(1) 124.6(8)
C(33)-N(2)-Zn(1) 127.4(8)
C(18)-N(3)-C(21) 105.8(10)
C(21)-N(3)-Zn(1) 124.9(8)
C(16)-N(4)-Zn(1) 127.4(7)

7. Schematic representation of crystal packing Zn8 and Zn9.

Figure S19. Schematic representation of crystal packing of tetramers Zn8 and Zn9 using squares formed by metal atoms.

8. NMR studies of the self-assembly of porphyrins Zn5–Zn11.

Figure S20. ¹H NMR spectra of **Zn5** (toluene-d₈).

Figure S21. ¹H NMR spectra of **Zn6** (toluene-d₈).

Figure S22. ¹H NMR spectra of Zn7 (toluene-d₈).

Figure S23. ¹H NMR spectra of **Zn8** (toluene-d₈).

Figure S24. ¹H NMR spectra of Zn9 (toluene-d₈).

Figure S25. ¹H NMR spectra of Zn10 (toluene-d₈).

Figure S26. ¹H NMR spectra of Zn11 (toluene-d₈).

Figure S27. ¹H NMR spectra of Zn5 (CDCl₃).

Figure S28. ¹H NMR spectra of Zn6 (CDCl₃).

Figure S29. ¹H NMR spectra of Zn7 (CDCl₃).

Figure S30. ¹H NMR spectra of Zn8 (CDCl₃).

Figure S31. ¹H NMR spectra of Zn9 (CDCl₃).

Figure S32. ¹H NMR spectra of Zn10 (CDCl₃).

Figure S33. ¹H NMR spectra of Zn11 (CDCl₃).

Figure S34. $^{1}H-^{1}H$ ROESY spectrum of Zn10 at 223K (toluene-d₈).

Figure S35. $^{1}\text{H}-^{1}\text{H}$ COSY spectrum of **Zn10** at 223K (toluene-d₈).

Figure S36. ¹H NMR spectra of Zn10 (toluene-d₈/MeOD 25:1 v/v).

Figure S37. ³¹P NMR spectra of Zn10 (toluene-d₈).

9. UV-vis studies of complex Zn10.

Figure S38. Q bands region of variable-temperature UV-vis spectra of complex Zn10 in chloroform ($c = 10^{-5}$ M).

Figure S39. Q bands region of UV-vis spectrum of complex **Zn10** in toluene and its changes after addition of methanol ($c = 10^{-4}$ M, T = 298K).

Figure S40. Q bands region of variable-temperature UV-vis spectra of complex Zn10 in toluene/methanol solution (prepared by the addition of 80 μ L of MeOH to 3 mL of 10⁻⁴ M solution of complex Zn10 in toluene).

Figure S41. UV-vis spectra of **Zn10** in chloroform ($c = 9.10^{-5}$ M) at 298K before and after gradual addition of Ph₃P=O (0–1000 equiv., red line – without Ph₃P=O, black lines – titration with Ph₃PO, bold black line – final solution).

Figure S42. UV-vis spectra of 2.1^{-10⁻²} M (red line) and 1.4^{-10⁻⁵} M (blue line) solutions of complex **Zn10** in chloroform at 298 K. Left panel: Q bands region. Right panel: Soret band region.

Figure S43. Graphical analysis of \mathcal{E}_{eff} values for determination of aggregation number n, obtained for Q bands at 544 nm: $y = (1.822 \pm 0.070) x + 2.486$, $R^2 = 0.994$ and 577 nm: $y = (2.106 \pm 0.115) x + 3.607$, $R^2 = 0.988$.

10. Powder X-ray diffraction analysis of Zn5-Zn9.

The PXRD patterns of the compounds **Zn1-Zn6** are in good agreement with structures obtained in single crystal experiment. Figs show the comparison of PXRD pattern (red top pattern) with the theoretical pattern calculated from cif-file (blue bottom pattern). Only bulky sample of compound **6** shows amorphous PXRD pattern, which could not be compared with theoretical pattern.

Figure S44. Powder X-ray diffraction analysis of Zn5.

Figure S45. Powder X-ray diffraction analysis of Zn6.

Figure S46. Powder X-ray diffraction analysis of Zn7.

Figure S47. Powder X-ray diffraction analysis of Zn8.

Figure S48. Powder X-ray diffraction analysis of Zn9.

10. Electrochemical data for Zn10.

Figure S49. Correlation between redox potentials and Hammett substituents on the *meso*-phenyl groups of the porphyrin Zn10 and referenced compounds Zn5 and Zn7-Zn9, previously reported in Ref [4]. PhCN was used as a solvent.

11. References.

[1] G.M. Sheldrick, SADABS, 1997, Bruker AXS Inc., Madison, WI-53719, USA.

[2] SMART V5.051 and SAINT V5.00, Area detector control and integration software, 1998, Bruker AXS Inc., Madison, WI-53719, USA.

[3] G.M. Sheldrick, SHELXTL-97 V5.10, 1997, Bruker AXS Inc., Madison, WI-53719, USA.

[4] Y. Fang, X. Jiang, K. M. Kadish, S. E. Nefedov, G. A. Kirakosyan, Yu. Yu. Enakieva, Yu. G. Gorbunova, A. Y. Tsivadze, C. Stern, A. Bessmertnykh-Lemeune, R. Guilard, *Inorg. Chem.*, 2019, submitted.