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Chapter 3 

TRANSPOSING COMPUTER TOOLS FROM THE 
MATHEMATICAL SCIENCES INTO TEACHING. 
Some possible obstacles. 

Jean-Baptiste LAGRANGE 
IUFM de Reims & DIDIREM, Université Paris 7 

Abstract:  Thanks to the work of mathematicians, software designers and mathematics 
educators, computer algebra is now available on calculators that students can 
afford for classroom use. These new artifacts certainly open up stimulating 
prospects, but we should not look on them just as a miraculous solution to 
difficulties of teaching. We ought to initiate an in-depth reflection on their 
educational use in relation to the wider evolution of mathematics.   
In this chapter, we will discuss how the new tools offered to students fit into 
the evolution of mathematics itself, and of mathematics teaching and learning. 
We will also consider difficulties in adapting teaching which often make 
integrating these new tools something of an adventure. 

Key words: Transposition, Mathematical Sciences, Algorithms, Experimentation. 

1. THE FUTURE OF MATHEMATICS TEACHING 

In recent years there has been much discussion in France about the future 
of mathematics teaching (chapter 1). An official committee (the CREM, 
Commission de Réflexion sur l'Enseignement des Mathématiques) was 
created to think about what this future should be. According to this 
committee, a dramatic change has occurred over the past 50 years; 
mathematics is now produced and used by a great variety of people. One 
consequence is that we have to change our conception of mathematics to 
consider “the mathematical sciences” which are not just the concern of 
mathematicians. 

The impact of ICT on mathematics teaching was a central issue in the 
discussion. The CREM committee devoted a report to this topic. According 
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to this report, as ICT pervades all of society, mathematics is to be found 
everywhere in modern life, but people have no means to perceive this. Thus 
mathematics teaching should aim to make people aware of this hidden 
mathematics. ICT has also changed mathematics itself as the mathematical 
sciences now include an experimental dimension helped by the wide use of 
mathematical software.  

According to the CREM, the use of mathematical software could help  
mathematics education to adapt to this new situation. A drawback is the 
sophistication of the mathematical software proposed for students’ use, 
contrasting with the conceptual simplicity and clarity of traditional 
mathematics teaching According to the CREM, the possibility of achieving a 
similar simplicity and clarity should be secured by teaching basic ideas of 
data processing. 

 
Box 3-1. 

Extract from the CREM report (Kahane 2002). 
In the recent evolution of mathematics, many new sources and outputs have appeared, as well 
as considerable work on existing mathematics. Other sciences and practices have provided 
mathematics with new problems, methods and concepts. New concepts and theories have 
been created and have sometimes proved useful in unexpected applications. Simulations 
based on mathematical models are present in every scientific activity and the development of 
mathematics benefits from both internal and external interaction. Thus mathematics is far 
from being just a matter for mathematicians. Contemporary mathematics can be described as 
a pumping, distilling and irrigating process involving  physicists, computer scientists, 
engineers, biologists and economists together with mathematicians in the strict sense of the 
word. 

 
As the CREM noted, curricula have recognized a need for such teaching 

but never really implemented it because of a lack of curricular contents and 
classroom activities. According to the CREM new prospects are opened up 
by the use of mathematical software, provided that teaching can clarify for 
students how mathematical data is represented and processed. Thus, basic 
notions about data representation and processing should be studied, together 
with numerical and symbolic experimental processes, number representation 
and processing, induction, graphs, convexity, continued fractions… This 
could provide the framework for a new algorithmic way of thinking in the 
common culture.  
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2. INTEGRATING NEW TOOLS: A PROBLEM OF 

TRANSPOSITION 

The goal of this book –conceptualizing the integration of symbolic 
calculators– is consistent with the above concern. The numerical, graphic, 
symbolic and programming capabilities of the new calculators to be found at 
school level are a transposition of computerized tools used in mathematical 
sciences. Thus they can play a major role in the future of mathematics 
teaching, not just as pedagogical aids but as a vehicle for new approaches. 
However, their use could conceal the mathematical basis of these approaches 
if teaching does not adapt its goals, contents and methods. 

In this chapter, we will take advantage of didactical theorization and 
classroom observation to better understand these new approaches, and to 
look into the way in which teaching could be adapted. First we will focus on 
the global question of the impact of “the mathematical sciences” on 
teaching, taking into account that the purposes of professional 
mathematicians and researchers differ from the aims of teaching. We will 
use the notion of “didactical transposition”. When he introduced this notion 
Chevallard (1985 p.14) stressed that “what happens inside a didactical 
system cannot be understood without considering what happens outside1”. 
He proposed to consider “genesis, filiations, gaps and reorganizations” 
interrelating mathematics teaching and professional mathematics. In this 
approach, mathematics in research and in school can be seen as a set of 
knowledge and practices in transposition between two institutions, the first 
one aiming at the production of knowledge and the other at its study2. French 
curricula clearly consider this prospect when they stress the role of the 
calculator in helping experimental approaches and the use of spreadsheets or 
calculators in carrying out algorithms (Box 1-1, Box 3-2). Filiations clearly 
appear but there must be hidden obstacles because this prospect was never 
really implemented in classrooms.  

We see a cause of these obstacles in the different aims of the two 
institutions. Professional mathematics favors new approaches and 
reorganizations on the basis of productivity and mathematical correctness. In 
official research fields, data and methods to obtain conjectures using 
mathematical software are now being published and discussed. Some 
mathematicians specialize in the production and publication of experimental 
outcomes, while other mathematicians use these conjectures to work on 
proofs. 

Experimental mathematics is that branch of mathematics that concerns itself 
ultimately with codification and transmission of insights within the 
mathematical community through the use of experimental exploration of 
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conjectures and more informal beliefs and a careful analysis of the data 
acquired in this pursuit (Borwein et al. 1996). 

In addition, computer science techniques in research motivate 
fundamental mathematical work about algorithms. Effectiveness –existence 
of an algorithm to solve a given problem–, complexity –the algorithm’s 
properties in relation to processing time and data size– and efficiency –the 
practical conditions for the use of the algorithm on a given technology- are 
important notions in this work (Rouiller, Roy 2001, p. 35). 

In contrast, teaching, especially in the general (rather than vocational) 
stream, is not primarily interested in improving mathematical productivity 
by way of new tools but rather in the transmission of a mathematical culture. 
The kernel of this culture lies in the social expectations of parents, students 
and teachers, and generally does not change easily. In order to survive in 
contemporary societies where ICT has a major role, this kernel should now 
integrate the potential of new tools and mathematical activity inspired by the 
mathematical sciences. Because the kernel was built when only traditional 
tools existed, this integration has a cost -a not-obvious in-depth 
reorganization- and resistance can be expected. To look at this 
reorganization, we will distinguish two dimensions, one about algorithms 
and the other about experimental approaches. These dimensions are certainly 
closely interrelated in the mathematical sciences, but, as we shall see, 
obstacles to their integration into teaching and learning are dissimilar. 

3. ALGORITHMS IN MATHEMATICS TEACHING 

Curricula have recommended the use of “programmable” calculators for 
fifteen years. A study of textbooks and practices shows that only graphic and 
numerical capabilities have actually been used in classrooms. More recently, 
the Euclidean algorithm for the greatest common divisor appeared at the 9th 
grade and prime number search algorithms were introduced in the 12th grade. 
To look into the difficulties of transposition we will consider the 9th grade 
curriculum, analyzing how an algorithmic idea was transposed from 
advanced mathematics and how it was (mis)understood in textbooks. 
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Box 3-2. 

Algorithmic approach in the French grade 9 curriculum 
 

“The goal is to develop an overview of numbers and to emphasize algorithmic treatments” 
Content Intended proficiency Comments 

… 
4 – Integer and 
rational numbers. 
Common divisors. 
Irreducible 
fractions. 

Being able to find whether 
two given numbers have a 
common divisor greater 
than one. 
… 
Being able to simplify a 
given fraction into an 
irreducible fraction. 

… The sum and the difference of two 
multiples of an integer are themselves 
multiples of this integer. It is then possible 
to build an algorithm (Euclid’s or 
another). This algorithm will give the 
GCD of two integers and answer the 
question [of knowing whether a fraction is 
irreducible]… Teaching will take 
advantage of spreadsheets and CAS for 
this topic. 

 
The curriculum (Box 3-2) introduces the Euclidean algorithm in terms of 

two dimensions. The first one is theoretical: a fundamental property of 
divisors helps to build the algorithm. The second dimension is practical: 
offering the algorithm as means to recognize and obtain irreducible fractions. 
In addition, this dimension helps to insert the algorithmic approach inside 
the ‘usual’ mathematics. From the study of these two dimensions, 
mathematical and algorithmic meaning can be expected. 

This introduction is consistent with the approach to algorithms current in 
advanced mathematics. For instance, the extracts from a computer science 
classic (Box 3-3) show that, at this level, the Euclidean algorithm helps to 
understand the notion of data processing (chapter 0), and to introduce a 
method for the formulation of algorithms (chapter 7). On one hand, the idea 
of transposing this approach into secondary teaching is stimulating because 
the algorithm appears to derive logically from properties of the GCD and 
from mathematically expressed constraints of execution (decrease of x+y). 
Emphasizing the links between an algorithm and the underlying 
mathematical properties is certainly something interesting to transpose into 
secondary education. On the other hand, the method deals with difficult 
logical concepts like weakest precondition and weakest condition such that 
the execution is guaranteed to decrease a function.  
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Box 3-3. 

Euclid’s algorithm in a computer science classic (Dijkstra 1976) 
Chapter 0:  Executional abstraction 
Let us consider a mechanism. On a cardboard with grid points, the only numbers written 

are the values 1 through 500 along both axes. The “answer line” with the equation x=y is 
drawn. When we wish to find the greatest common divisor of two values X and Y, we place a 
pebble on the grid point with the coordinates x=X and y = Y. As long as the pebble is not 
lying on the “answer line”, we consider the smallest ?equilateral rectangular triangle with its 
right angle coinciding with the pebble and one sharp angle on one of the axes. The pebble is 
then moved to the grid point coinciding with the other sharp angle of the triangle. The above 
move is repeated as long as the pebble has not yet arrived on the answer line.  

Chapter 7: Euclid's algorithm revisited 
… I shall now devote yet another chapter to Euclid’s algorithm. I expect that in the 

meantime some of my readers will already have coded it in the form  
(x ,  y):= (X , Y); 
do   x>y -> x:=x-y ;  y>x -> y:=y-x   od;  
print(x) 
Let us now try to forget the cardboard game and let us try to invent Euclid’s algorithm 

afresh (...) Collecting our knowledge we can write down : 
GCD(X,Y)= GCD(Y,X) 
GCD(X,Y)= GCD(X,X+Y)= GCD(X,X-Y) 
GCD(X,Y)= abs(X) if X=Y 
…This is strongly suggestive of an algorithm that establishes the truth of  

P=(GCD(X,Y)=GCD(x,y) and x>0 and y>0 )…whereafter we ‘massage’ (x,y) in such way 
that the relation P is kept invariant. If we can manage this massaging process so as to reach a 
stage satisfying x=y, then we have found our answer by taking the absolute value of x (…) 

For the assignment x:=x-y we find the weakest condition such that the execution is 
guaranteed to decrease x+y is y>0, a condition that is implied by P. 

Full of hope, we investigate the weakest precondition in order that P is valid after the 
assignment x :=x-y. (We find) GCD(X,Y)=GCD(x-y,y) and x-y>0 and y>0. The outmost 
terms can be dropped as they are implied by P and we are left with the middle one. 

Thus we find  x>y -> x:=x-y and x>y -> x:=x-y… 
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Box 3-4. 

Euclid’s algorithm in a 9th grade textbook (Chapiron & al. 1999) 
A method using iterated subtractions helps to find the Greatest Common Divisor of two 
numbers. This method is very old and known as Euclid’s algorithm. The flow chart [below] 
explains how it works. Calculations are easy but repetitive and sometimes long. A spreadsheet 
helps to calculate more quickly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
It appears that the curriculum considered the interest of the method but 

not the difficulties of its existence as an isolated object. Proof of this can be 
found in the way in which textbooks (mis)interpret the curriculum. In 
contrast with the curriculum and Dijkstra’s book, a typical textbook (Box 
3-4) presents neither practical nor theoretical dimensions of Euclid’s 
algorithm. It offers just a flow chart and a ‘push button’ translation into a 
spreadsheet. Other textbooks also adopt this approach. The reason why 
textbooks did not follow the curriculum when it offered the algorithm for 
practical simplification of fractions is that they judged that this use is not 
realistic. The logical difficulties of constructing the algorithm from 
properties of the GCD and the constraints of execution certainly explain why 
textbooks offer no theoretical dimension. Obviously, the curriculum tried to 
introduce Euclid’s algorithm without much change in the more general 
background. Under  these conditions the algorithm is an isolated object 
without a real mathematical existence, and textbooks are not able to make 
something interesting of this object. 

Introducing a real algorithmic dimension by using calculators in 
mathematics teaching and learning would imply greater change. But, then, 
another difficulty would be that there is very little didactical research able to 

Two numbers A and B 

are A and B equal? 

This number is 
the GCD 

Order the two numbers 

Calculate the difference 

Replace the greater number 
by the difference 

Yes No 
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offer help in thinking about this change. Research about the learning of 
algorithmic processing tends to be old and isolated. Rogalski & Samurçay 
(1990) found important conceptual difficulties, even with very simple 
iterative processes, but no other research studies followed. There are also too 
few research studies about data representation (Aharoni 2000 is a very 
isolated example). The case of the algorithmic approach shows that, even 
when powerful tools are available, we remain a long way short of achieving 
a cultural algorithmic way of thinking, through a satisfactory transposition of 
advanced mathematics to teaching and learning in the secondary school. 

4. EXPERIMENTAL APPROACHES IN TEACHING 
AND LEARNING 

As compared to algorithms, the experimental dimension of mathematical 
sciences seems at first sight more easy to transpose into the kernel of 
mathematical culture, as mentioned above. In mathematical research, 
producing and trying conjectures helps to discover new theorems and to 
build new theories. Experimental approaches cannot have this role in 
teaching, but other contributions are generally expected. Authors like Péres 
(1998) and Kutzler (1997) start from the idea that experimenting can help 
students to develop a more in-depth understanding of mathematics. They 
generally stress that ‘traditional teaching’ does not work properly because 
students have just to repeat routines and are not allowed to search by 
themselves. In these authors’ view, experimenting with new tools will be a 
remedy. For instance, students, even with weak abilities in arithmetic or 
algebraic procedures, might be able to use symbolic calculators to explore 
advanced mathematical domains or to try several approaches to problems 
that they could not do by hand. Thus, with new tools, mathematical teaching 
would become more interesting and accessible to more students.  

On one hand, using the potentialities of new tools in experimental 
approaches is a stimulating idea. The visualizing capabilities of computers 
could help more varied access to mathematical problems and concepts. 
Exploring a problem, students could study a number of examples, using 
varied representations of objects and inductive as well as deductive 
approaches. On the other hand, in learning, as in mathematical sciences, 
understanding of concepts does not emerge spontaneously from observation, 
even with the help of powerful tools.  

Experimental approaches in research are harnessed to the production of 
new knowledge. This articulation is what Borwein & al. (ibid. p. 16) named 
“theoretical experimentation” and includes structuring a domain to formulate 
hypotheses, deriving examples to try with a machine, interpreting the 
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machine results… Transposition should thus maintain the linking of 
experimentation with theoretical elaboration. Reflecting on this transposition 
at the beginning of the TI-92 experiment, we found that, in teaching and 
learning, this articulation is far from obvious, and that authors stressing the 
potentialities of new tools generally tended to underestimate the difficulties 
of their classroom use. To explain this, let us look at classroom situations 
involving an experimental activity. 

We consider two classes of situations. In the first class, students have to 
observe and interpret a number of calculator answers. For instance, 
approaching multiple representations of a concept, students have to consider 
perceptually how a mathematical property appears as a phenomenon in 
several windows of a calculator; or in an applied mathematics course, 
students are meant to use a CAS to avoid too complicated hand calculation. 
In the second class of situations students have to experiment on symbolic 
phenomena and find general structures by induction. In other words, students 
have to observe ‘how the machine does it’, try to discover techniques ‘to do 
the same as the machine’ and give a mathematical interpretation of the 
machine operation. The two classes of situations differ in terms of the 
consideration given to the machine operation. In the first class,  a student is 
expected just to use the computer output as mathematically relevant results, 
whereas  in the second (s)he is meant to think about how they were obtained. 

Berry & al (1994) identified “five potential ways to integrate the use of 
DERIVE into a mathematical course” (Box 3-5). The first class of situation 
that we consider in this chapter corresponds to potential way 2 and 5 (“as a 
problem solving assistant” and “an aid to visualization and interpretation”) 
and the second class corresponds to potential way 3 (“as an investigative or 
exploratory environment”). 

Let us consider a situation from the first class, related to the idea of 
function. To help students to approach this idea, it is important to provide 
them with varied views on the relationship between representations. For 
instance one view of the relationship between algebraic definition and 
graphic representation arises through considering that a zero of the function 
corresponds to an intersection point between the graphic representation and 
the x-axis. It is not a spontaneous view because, at first, students see the 
intersection’s coordinates as the solution of a two equation system. To help 
students to interpret graphically the zeros of a function, it is interesting to 
ask them to consider together these values –obtained by algebraic solution- 
and the coordinates of the intersection points -read from the graph. Using 
symbolic calculators is helpful because the two operations are performed by 
specific commands in two separate windows. 



10 Chapter 3
 
Box 3-5. 

Classroom situations involving an experimental activity.  
(Berry & al 1994) 

DERIVE as a problem solving assistant (p. 84) 
In many mathematical modeling courses greater emphasis is placed  on the formulation of 

problems and the interpretation of results, rather than the solution of the mathematical 
problems that may occur. Similarly, courses in applied mathematics may wish to concentrate 
more on the concepts and relationships that form the basis of the study but may also include 
extensive use of algebraic manipulation or calculus. In the past the emphasis in these types of 
courses has become distorted due to the large amount of time spent by the students obtaining 
solutions to problems compared to the important formulation and interpretation stages (…) By 
reducing the time that students need to spend obtaining solutions and increasing their 
reliability and their accuracy, DERIVE allows more emphasis to be placed on the formulation 
and interpretation phases of mathematical modeling or applied mathematics. In particular it 
allows students to use mathematical concepts and techniques that they understand in 
principle, can apply in simple cases, but find difficult to apply in the more complex cases that 
may arise in real problem solving. 

DERIVE as an aid to visualization and interpretation (p. 93) 
It is important for students to be able to visualize and interpret mathematical results. 

Often with some higher level mathematics it is quite hard for students to do so and DERIVE 
can offer an environment in which it is possible to do mathematics and create visual images 
that allow students to interpret and comment on the results they have obtained. A student may 
show that a Maclaurin series approximation to sin x is x – x3/6. It is quite hard however for 
the student to relate this back to the original function, or establish the range of values over 
which the approximation is reasonable. It is very simple to produce a series approximation of 
this type on DERIVE and compare its plot with a plot of the original function.   

DERIVE as an investigative or exploratory environment (p. 86) 
It is possible to use DERIVE as an environment in which students can exploit and learn 

new mathematics by making discoveries for themselves(…) One very real benefit of this 
approach is that the students can gain an intuitive feel for mathematical ideas and principles 
before they receive a forma1 introduction to the mathematics.  As an example consider the 
chain and product rules for differentiation. A typical text book introduction would give either 
a formal statement or derivation of the rule followed by worked examples. Alternative 
approaches designed to develop in students an initial intuitive feel for these rules have been 
laborious for students to carry out. DERIVE however offers the potential to develop these 
intuitive ideas very easily.  

 
Situations of this type are often presented to promote the use of new 

tools, but it is seldom mentioned that they are effective only if students have 
a suitable preparation. Wain (1994) reports on an observation of students not 
able to recognize the decimal value that they read in the graphic window as 
an approximation of the symbolic solution that they obtained in the algebraic 
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window. In contrast with the teacher’s expectation, they could not see a 
relationship between zeros and intersection points.  

Our opinion is that, before experiencing this situation, students should 
have been prepared to recognize the differing form taken by a number under 
several types of expression, particularly exact symbolic expressions in the 
symbolic window and approximate values in the tabular or graphic window. 
Delgoulet & Guin (1997) designed and experimented with classroom 
activities to achieve this preparation. See chapter 9 §2. 

Box 3-6 provides another example of a situation where it was assumed 
that CAS use would be transparent to students. DERIVE was supposed to 
help students to acquire better methods of transforming trigonometric 
expressions by performing automatically the more technical part of the 
transformation. But it failed because of students’ misunderstanding of what a 
simplification process involves for a machine. Ruthven’s analysis put to the 
fore the ‘sense of the command’ that would be necessary. Even when CAS is 
‘just a tool’ an understanding of its technical operation cannot be avoided. 

In the second class of classroom situations, symbolic capabilities are 
means for students to carry out algebraic transformations before knowing 
how to perform paper/pencil techniques and even before knowing the 
existence of these techniques and their mathematical underpinning. After a 
first encounter with notions like limits or derivatives, students could use a 
symbolic calculator to experiment with symbolic transformations (limits or 
derivatives of sums and products, for instance) and become aware of 
algebraic rules (or algebraic techniques) applied by the machine. They could 
then imagine general structures underpinning these rules.  

This use of computer tools is also a stimulating prospect but we have to 
be aware that for students, detecting symbolic phenomena and inductively 
formulating algebraic rules and techniques might not be so obvious. During 
the TI-92 calculator experiment (chapter 9) we had to reflect on how an 
experimental inductive activity about symbolic techniques for limits and 
derivatives could really be made to work.  

Our first concern was to find questions that could provoke students’ 
inductive reflection. Questions like ‘observe what happens’ do not 
necessarily yield interesting observations. Many algebraic transformations 
actually maintain the structure of most expressions -for instance when the 
sum of limits is the limit of the sum- and such examples are, of course, not 
problematic. Even when the structure is not maintained –for instance in the 
case of indefinite limits or of differentiation of a product– students do not 
spontaneously start thinking inductively. Results that the teacher expected to 
be amazing to students (for instance DERIVE simplifications for the chain 
and product rules of differentiation in Box 3-5) did not alone create much 
surprise. The learning situation has to bring to the fore puzzling peculiarities 
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and to challenge students’ anticipations. For instance it is often interesting to 
prepare examples where students’ predictions will very probably be wrong 
and to ask them to compare these predictions with the calculator’s answer. 

 
Box 3-6. 

Difficulties with emergent subgoals. The task of transforming the trigonometric sum, 
sin(x)+sin(2x), into a trigonometric product. 

(Ruthven 2002, pp. 287-8) 
 

The French research provides a specific example in an episode in which students – relatively 
experienced in using CAS – were charged with the task of transforming the trigonometric 
sum, sin(x)+sin(2x), into a trigonometric product (Lagrange 2000, p. 5).  
In response to a programmed command, the CAS gave the expression 
2 sin((2x+x)/2) cos((2x-x)/2). The students wanted to simplify this to 
2 sin(3x/2) cos(x/2). To their surprise, the response of the CAS to repeated 
simplify commands was first to give the original expression and then 
sin(x) + 2 sin(x) cos(x). To the students, aware of the overarching goal, the 
emergent subgoal of simplifying the subsidiary algebraic expressions 2x+x and 2x-x was 
clear. To them, this was transparently the sense of the command to simplify. In other words, 
their articulation of the simplification operation was a situated one. But, of course, no model 
of the larger task – and no situated sense of the command – was available to the CAS; it was 
unable to take account of the wider mathematical context giving rise to the instruction. The 
machine is unable to interpret or adapt an instruction to accord with the wider purpose so 
evident to a user; it can only operate literally, either in terms of the formal elections made by 
the user, or of preset defaults – which, as in this case, may fail to coincide serendipitously 
with the wider purpose of the user. The effective instrumentation of mathematical reasoning 
by means of a CAS depends, then, on precise reframing of situated purposive actions into the 
decontextualised formal register of the machine, and a corresponding reframing of results. 

 
A second concern was the knowledge that students need in order to 

understand observations as phenomena within an inductive approach, to 
construct interesting examples, and to interpret the calculator’s answers 
correctly. An example from Pozzi (1994) will help in examining this 
question. Pozzi reports on an observation of two students who were trying to 
find a general rule for differentiating a product by observing how DERIVE 
computes derivatives of the product of a polynomial with a trigonometric 
function. Asking DERIVE to differentiate cos(x) (7x3+2x), they got 
(21x2+2)cos(x)-x(7x2+2)sin(x). They then concentrated on the central part, 
cos(x)-x(7x2+2), which they found very similar to the initial expression. 
They tried to induce a general rule involving the transformation of a product 
into a difference. Of course the central part has no meaning because it is not 
a sub-expression of the derivative. But, to students, it appeared  to be the key 
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to finding a rule because it is perceptually close to the initial expression. 
Students’ algebraic knowledge about the structure of expressions was not 
strong enough to counter balance this perceptual evidence and they could not 
make good use of DERIVE’s help.  

Thus, considering new tools as providing ‘scaffolding’ (Kutzler, 1997) 
for weak student knowledge is an idea which needs to be re-examined. From 
Pozzi’s example it is clear that we have to reflect on the prior algebraic 
knowledge required. Students do not necessarily need strong procedural 
abilities but obviously should not be lacking some key  knowledge  of 
algebraic structure (chapter 7). Finally we had another concern about 
knowledge of the target concept itself in relation to the machine operation. 
For instance if students follow an experimental approach to a concept like 
limit mainly using the transformational capabilities of CAS, they will then 
associate the concept too closely with transformational rules and/or develop 
a ‘push button’ conception of the concept. Other modifications to the 
meaning of concepts may result from computer implementation and also 
interfere with experimental computer aided activity (chapter 5).  

5. CONCLUSION 

This chapter started from the idea of transposing approaches from the 
mathematical sciences into teaching and learning as a major avenue through 
which to make sense of the use of new computer tools. We have seen that 
this is not so easy. In particular, a real teaching of algorithms is not feasible 
today because the traditional cultural kernel underpinning curricula is 
resistant, and too few research studies and experiments have been 
undertaken. Transposition of experimental approaches seems more viable, 
but difficulties are very often underestimated. We located obstacles to 
computer aided experimental activity making an intended contribution to 
conceptualization. It appears that using computer symbolic tools as resources 
in perceptual and inductive approaches requires reflection on what prior 
knowledge students need both in algebra and about the machine, on what 
questions can serve to provoke inductive thinking, and on what form 
students’ representation of concepts and of the machine operation takes.  

The consequence is that experimental computer-aided approaches to 
teaching and learning cannot be thought of as simply a matter of using a 
machine to ease problem solving or to enhance inductive activity. Following 
Ruthven (2002), using CAS for graphic and symbolic reasoning “influences 
the range and form of the tasks and techniques3 experienced by students”, 
and because tasks and techniques are resources available for more explicit 
codification it also influences “the theorization of such reasoning”. Chapter 4 
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will give an example where teachers participating in a common project take 
radically different and somehow restricting options regarding management 
of this phenomenon in the classroom. Chapter 5 will provide further insight 
both practical and theoretical. Task and technique will be offered as 
structural levels organizing the study of a mathematical domain and 
connecting experimental approaches to graphic and symbolic problem 
solving with conceptual elaboration.  

 
************************* 
Jean-Baptiste Lagrange is a Professor at the Institut Universitaire de 

Formation des Maîtres in Reims. 
He has contributed to the development of CAS use in schools and to the 
associated didactical reflection. His present work includes the design of a 
CAS environment for teaching and learning at secondary–school level and 
investigation of the classroom implementation of this environment. He is 
also working to contribute to a better understanding of the professional 
situation of teachers trying to integrate ICT. 

                                                        
1 Our translation. 
2 The notion of study is presented in Box 5.2. 
3 Our emphasis. 
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