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Introduction

The calculus on time scales was introduced by S. Hilger in his PhD thesis [START_REF] Hilger | Ein Masskettenkalkl mit Anwendungen auf Zentrumsmannigfaltigkeiten[END_REF] in 1988 (see also [START_REF] Hilger | Differential and difference calculus: unified ![END_REF]). The time scales calculus gives a convenient way to deal with discrete, continuous or mixed processes using a unique formalism. In 2001, this theory was used by M. Bohner [START_REF] Bohner | Calculus of variations on time scales[END_REF] and R. Hilscher and V. Zeidan [START_REF] Hilscher | Calculus of variations on time scales: weak local piecewise C 1 rd solutions with variable endpoints[END_REF] to develop a calculus of variations on time scales. This first attempt was then followed by numerous generalizations. In this article we focus on two specific calculus of variations, namely the shifted calculus of variations as introduced in [START_REF] Bohner | Calculus of variations on time scales[END_REF] and the nonshifted one as considered for example in [START_REF] Bourdin | Nonshifted calculus of variations on time scales with ∇-differentiable σ[END_REF]. In this context, many natural problems arise. One of them is to generalize to the time scales setting classical results of the calculus of variation in the continuous case. One of these problem is to obtain a time scales analogue of the Noether's Theorem relating group of symmetries and conservation laws.

The aim of this article is precisely to derive a time scales version of the Noether's theorem. We refer to the books of Olver [START_REF] Olver | Applications of Lie groups to differential equations[END_REF] and Jost [START_REF] Jost | Calculus of Variations[END_REF] for the classical case.

This problem was initially considered by Z. Bartosiewicz and D.F.M. Torres in [START_REF] Bartosiewicz | Noether's theorem on time scales[END_REF] in the context of the shifted calculus of variations and then in [START_REF] Bartosiewicz | The second Euler-Lagrange equation of variational calculus on time scales[END_REF].Two different strategies of proof are used:

• First, they proposed in [START_REF] Bartosiewicz | Noether's theorem on time scales[END_REF] to derive the Noether's theorem for transformations depending on time from the easier result obtained for transformations without changing the time. In [START_REF] Cresson | About the Noether's theorem for fractional Lagrangian systems and a generalization of the classical Jost's method of proof, 28[END_REF], we call Jost's method this way of proving the Noether's theorem as a classical reference is contained in the book [START_REF] Jost | Calculus of Variations[END_REF]. • Another method is proposed in [START_REF] Bartosiewicz | The second Euler-Lagrange equation of variational calculus on time scales[END_REF], where a second Euler-Lagrange equation is derived ([4], Theorem 5 p.12) and from which the Noether's theorem is deduced (see [START_REF] Bartosiewicz | The second Euler-Lagrange equation of variational calculus on time scales[END_REF],Section 4, Theorem 6).

Unfortunately, all these results are not correct and need to be amended. Indeed, implementing numerically the conservation law and the second order Euler-Lagrange equation states in [START_REF] Bartosiewicz | Noether's theorem on time scales[END_REF] on a specific example, we obtain incoherent results. Precisely, we use Example 3 of [START_REF] Bartosiewicz | Noether's theorem on time scales[END_REF] defined as follows:

We consider the Lagrangian introduced in [START_REF] Bartosiewicz | Noether's theorem on time scales[END_REF] (1)

L(t, x, v) = x 2 t + tv 2
for t ∈ R \ {0} and (x, v) ∈ R 2 . In [START_REF] Bartosiewicz | Noether's theorem on time scales[END_REF], the authors consider the time scales

(2)

T = {2 n : n ∈ N ∪ {0}}.
In that case, σ(t) = 2t for all t ∈ T and ∆σ(t) = 2.

The shifted Euler-Lagrange equation associated with L is given by

(3) ∆ t∆x(t) = x σ t ,
and the shifted time scales Noether's theorem given in [START_REF] Bartosiewicz | Noether's theorem on time scales[END_REF] asserts that the following quantity (4)

C(t, x σ , v) = 2t (x σ ) 2 t -tv 2 ,
is a constant of motion.

In [START_REF] Bartosiewicz | The second Euler-Lagrange equation of variational calculus on time scales[END_REF], it is stated that the following equation ( 5) ∆ [H (t, x σ , ∆x)] + ∂ t L(t, x σ , ∆x) = 0, where

H (t, x, v) = -L(t, x, v) + ∂ v L(t, x, v)v + ∂ t L(t, x, v)µ(t), (6) 
is satisfied over the solutions of the shifted Euler-Lagrange equation for all t ∈ T κ and is called the second Euler-Lagrange equation.

We then test numerically if the function C is constant over the solutions of the Euler-Lagrange equation and at the same time if the right hand side of equation ( 5) is equal to zero.

The simulations give the following results: These simulations clearly show that the function C is not a constant of motion and that the second Euler-Lagrange equation is not satisfied. It must be noted that this invalidates many other results which use the former results (see for example [START_REF] Zhai | Lie symmetry analysis on time scales and its application on mechanical systems[END_REF], Theorem 3 p. [START_REF] Bohner | Calculus of variations on time scales[END_REF] where the second order Euler-Lagrange equation is used in the proof (see equation (33) in [START_REF] Zhai | Lie symmetry analysis on time scales and its application on mechanical systems[END_REF])).

In this article, we state and prove a time scales Noether's theorem in the shifted and nonshifted calculus of variations settings. We provide two different proofs:

• First, we follows the initial strategy used by Z. Bartosiewicz and D.F.M. Torres in [START_REF] Bartosiewicz | Noether's theorem on time scales[END_REF] which refers to a time scales analogue of a classical proof exposed by J. Jost and X. Li-Jost in [START_REF] Jost | Calculus of Variations[END_REF]. We point out several difficulties which are in fact inherent to the Jost's method (see [START_REF] Cresson | About the Noether's theorem for fractional Lagrangian systems and a generalization of the classical Jost's method of proof, 28[END_REF]). This first proof is not the simplest one but it explains where and why the initial proof given in [START_REF] Bartosiewicz | Noether's theorem on time scales[END_REF] is not correct.

• Second, a more classical one which can be called "direct", which consists in deriving the invariance relation with respect to the parameter of the transformation group and manipulating the obtained expression in order to provide a constant of motion.

Although less elegant than the previous one, it is the most easiest one.

The plan of the paper is as follows.

In Section 2, we remind some definitions and notations about time scales and give some particular statements about the chain rule formula and the substitution formula for ∆ and ∇ derivatives in the time scales setting, as well as the corresponding Leibniz formula.

In Section 3.1, we first define transformation groups in the context of time scales calculus. We introduce for a given time scales T the notion of (∆, T) (resp. (∇, T)) admissible projectable transformations groups which imposes some conditions on the time scales as well as the transformation in time which can be considered.

In Section 7 we state the Noether's theorem on time scales in the context of the ∆ shifted or nonshifted calculus of variations.

Section 4 gives the proof of our main result. The proof of several technical Lemmas are given in Section 9.

In Section 6.1, we discuss several examples and provide numerical simulations. We first study an example given by Bartosiewicz and Torres in [START_REF] Bartosiewicz | Noether's theorem on time scales[END_REF]. We then discuss results obtained in the same context by X.H. Zhai and L.Y. Zhang in [START_REF] Zhai | Lie symmetry analysis on time scales and its application on mechanical systems[END_REF] about a time scales version of the Kepler problem in the plane. Here again, we prove that the results presented in [START_REF] Zhai | Lie symmetry analysis on time scales and its application on mechanical systems[END_REF] are not correct.

In Section 7, we use the Caputo duality principle in time scales as presented in [START_REF] Caputo | Time Scales: From Nabla Calculus to Delta Calculus and Vice Versa via Duality[END_REF] to obtain the Noether's theorem on time scales for the ∇ shifted and nonshifted calculus of variations. Our result differs also from the one obtained by N. Martins and D.F. Torres in [START_REF] Martins | Noether's symmetry theorem for nabla problems of the calculus of variations[END_REF]. We discuss an example proposed by X.H. Zhai and L.Y. Zhang in [START_REF] Zhai | Lie symmetry analysis on time scales and its application on mechanical systems[END_REF] and prove that the result of [START_REF] Martins | Noether's symmetry theorem for nabla problems of the calculus of variations[END_REF] are indeed incorrect.

The final Section contains the proof of several technical results used in the paper.

Preliminaries on time scales

In this Section, we remind some results about the chain rule formula, the change of variable formula for ∆-antiderivative which will be used during the proof of the main result. We refer to [START_REF] Agarwal | Dynamic equations on time scales: a survey[END_REF][START_REF] Bohner | Dynamic equations on time scales: An introduction with applications[END_REF][START_REF] Bohner | Advances in dynamic equations on time scales[END_REF][START_REF] Bourdin | Contributions au calcul des variations et au principe du maximum de Pontryagin en calculs time scale et fractionnaire[END_REF] and references therein for more details on time scales calculus.

2.1. Time scales. In this Section, we denote by T a time scale, i.e. an arbitrary non-empty closed subset of R.

Two operators play a central role studying time scales: the backward and forward jump operators.

Definition 1. The backward and forward jump operators ρ, σ : T -→ T are respectively defined by: ∀t ∈ T, ρ(t) = sup{s ∈ T, s < t} and σ(t) = inf{s ∈ T, s > t}, where we put sup ∅ = sup T and inf ∅ = inf T. Definition 2. A point t ∈ T is said to be left-dense (resp. left-scattered, right-dense and right-scattered) if ρ(t) = t (resp. ρ(t) < t, σ(t) = t and σ(t) > t).

Let LD (resp. LS, RD and RS) denote the set of all left-dense (resp. left-scattered, rightdense and right-scattered) points of T. Definition 3. The graininess (resp. backward graininess) function µ :

T -→ R + (resp. ν : T -→ R + ) is defined by µ(t) = σ(t) -t (resp. ν(t) = t -ρ(t)) for any t ∈ T.

We denote by T

κ = T \ [inf T, σ(inf T)), T κ = T \ (sup T, ρ(sup T)] and T κ κ = T κ T κ . 2.2.
The ∆ and ∇ derivatives. Let us recall the usual definitions of ∆ and ∇-differentiability. Definition 4. A function u : T -→ R n , where n ∈ N, is said to be ∆-differentiable at t ∈ T κ (resp. ∇-differentiable at t ∈ T κ ) if the following limit exists in R n : [START_REF] Bohner | Advances in dynamic equations on time scales[END_REF] lim

s→t s =σ(t) u(σ(t)) -u(s) σ(t) -s   resp. lim s→t s =ρ(t) u(s) -u(ρ(t)) s -ρ(t)   .
In such a case, this limit is denoted by ∆u(t) (resp. ∇u(t)).

The characterization of constant of motion is related to the following fundamental result (see [START_REF] Bohner | Dynamic equations on time scales: An introduction with applications[END_REF], Corollary 1.68 p.25):

Proposition 1. Let u : T -→ R n .
Then, u is ∆-differentiable on T κ with ∆u = 0 if and only if there exists c ∈ R n such that u(t) = c for every t ∈ T.

The analogous results for ∇-differentiability are also valid.

2.3. Some functional spaces. Definition 5. A function u is said to be rd-continuous (resp. ld-continuous) on T if it is continuous at every t ∈ RD (resp. t ∈ LD) and if it admits a left-sided (resp. righ-sided) limit at every t ∈ LD (resp. t ∈ RD).

We respectively denote by C 0 rd (T) and C 1,∆ rd (T) the functional spaces of rd-continuous functions on T and of ∆-differentiable functions on T κ with rd-continuous ∆-derivative. Similarly, we denote by C 0 ld (T) and C 1,∇ ld (T), respectively, the functional spaces of ld-continuous functions on T and of ∇-differentiable functions on T κ with ld-continuous ∇-derivative.

Let us denote by ∆τ the Cauchy ∆-integral defined in [6, p.26] with the following result (see [START_REF] Bohner | Dynamic equations on time scales: An introduction with applications[END_REF]Theorem 1.74 

p.27]):

Theorem 1. For every u ∈ C 0 rd (T κ ), there exist a unique ∆-antiderivative U of u in sense of ∆U = u on T κ vanishing at t = a. In this case the ∆-integral is defined by

U (t) = t a u(τ )∆τ
for every t ∈ T.

2.4.

Algebraic properties of ∆ and ∇ derivatives.

2.4.1. Leibniz property. The ∆ derivative satisfies a Leibniz formula given by (see [START_REF] Bohner | Dynamic equations on time scales: An introduction with applications[END_REF],Corollary 1.20 p.8):

Theorem 2 (Leibniz formula for the ∆-derivative). Let v, w : T -→ R n . If v and w are ∆differentiable at t ∈ T κ , then the scalar product v • w is ∆-differentiable at t and the following Leibniz formula holds:

(8) ∆ (v • w) (t) = v σ (t) • ∆w(t) + ∆v(t) • w(t), = v(t) • ∆w(t) + ∆v(t) • w σ (t).
We have a time scales Leibniz formula for the ∇-derivative (see [START_REF] Bourdin | Nonshifted calculus of variations on time scales with ∇-differentiable σ[END_REF]Proposition 7]).

Theorem 3 (Leibniz formula for ∇-derivative). Let v, w : T -→ R n and t ∈ T κ κ . If the following properties are satisfied:

• σ is ∇-differentiable at t, • v is ∆-differentiable at t,
• w is ∇-differentiable at t, then, v σ • w is ∇-differentiable at t and the following Leibniz formula holds:

(9) ∇ (v σ • w) (t) = v(t) • ∇w(t) + ∇σ(t) • ∆v(t) • w(t).
2.4.2. Chain rule formula and the substitution formula. We have a time scales chain rule formula (see [START_REF] Bohner | Dynamic equations on time scales: An introduction with applications[END_REF]Theorem 1.93]).

Theorem 4 (Time scales Chain Rule). Assume that v : T -→ R is strictly increasing and

T := v(T) is a time scales. Let w : T -→ R . If ∆v(t) and ∆ T w(v(t)) exist for t ∈ T κ , then (10) 
∆ (w • v) = ∆ T w • v ∆v With the time scales chain rule, we obtain a formula for the derivative of the inverse function (see [START_REF] Bohner | Dynamic equations on time scales: An introduction with applications[END_REF]Theorem 1.97]).

Theorem 5 (Derivative of the inverse). Assume that v : T -→ R is strictly increasing and

T := v(T) is a time scales. Then (11) 1 ∆v = ∆ T v -1 • v at points where ∆v is different from zero.
Another formula from the chain rule is the substitution rule for integrals (see [START_REF] Bohner | Dynamic equations on time scales: An introduction with applications[END_REF]Theorem 1.98]).

Theorem 6 (Substitution). Assume that v : T -→ R is strictly increasing and

T := v(T) is a time scales. If f : T -→ R is a rd-continuous function and v is differentiable with rd-continuous derivative, then for a, b ∈ T, (12) b 
a f (t)∆v(t)∆t = v(b) v(a) f • v -1 (s)∆ T s.

Main results

In this Section, T denotes a bounded time scales with a = min T and b = max T. We assume that card(T) ≥ 3 ensuring that T κ κ = ∅.

A function L defined by

(13) L : [a, b] × R n × R n -→ R (t, x, v) -→ L(t, x, v)
, is said to be a Lagrangian function if L is of class C 2 with respect to all its arguments.

3.1. Admissible transformations group. We refer to the classical book of P.J.Olver [START_REF] Olver | Applications of Lie groups to differential equations[END_REF] for more details in particular Chapter 4. In the following, we consider a special class of symmetry groups of differential equations called projectable or fiber-preserving (see [START_REF] Olver | Applications of Lie groups to differential equations[END_REF],p.93) and given by ( 14)

g s : [a, b] × R n -→ R × R n (t, x) -→ (g 0 s (t), g 1 s (x))
where {g s } s∈R is a one parameter group of diffeomorphisms satisfying g 0 = 1, where 1 is the identity function. The associated infinitesimal (or local) group action (see [START_REF] Olver | Applications of Lie groups to differential equations[END_REF],p.51) or transformations is obtained by making a Taylor expansion of g s around s = 0:

(15) g s (t, x) = g 0 (t, x) + s ∂g s (t, x) ∂s s=0 + o(s).
The transform (see [START_REF] Olver | Applications of Lie groups to differential equations[END_REF],p.90) of a given function x(t) identified with its graph Γ x = {(t, x(t)), t ∈ [a, b]} by g s is easily obtained introducing a new variable τ defined by τ = g 0 s (t). The transform of x denoted by x is then given by

τ -→ (τ, g 1 s • x • (g 0 s ) -1 (τ )).
Remark 1. In general, the transform of a given function is not so easy to determine explicitly (see [START_REF] Olver | Applications of Lie groups to differential equations[END_REF], Example 2.21, p.90-91) and one must use the implicit function theorem in order to recover the transform of x. This is precisely the reason why we restrict our attention to projectable or fiber-preserving symmetry groups.

Working with time scales imposes some restrictions on the transformation groups that one can consider. In the following, we need the notion of (∆, T)-admissible projectable group of transformations: Definition 6 ((∆, T)-admissible projectable group of transformations). A projectable group of transformations {g s } s∈R is called a (∆, T)-admissible projectable group of transformations if for all s ∈ R, the function g 0 s verifies: • g 0 s is strictly increasing, • ∆g 0 s = 0 and ∆g 0 s is rd-continuous and such that, • the set defined by T s = g 0 s (T) is a time scales. 

= [ã s , bs ] which is a subset of g 0 s ([a, b]) = [τ a , τ b ], then (17) 
L L,[ta,t b ],T (x) = L Ls,[ãs, bs], Ts (x).

It is interesting to give an explicit formulation of this definition. Indeed, according to definition [START_REF] Ge | LiePoisson integrators and LiePoisson HamiltonJacobi theory[END_REF] we can write [START_REF] Hilger | Ein Masskettenkalkl mit Anwendungen auf Zentrumsmannigfaltigkeiten[END_REF] as [START_REF] Hilger | Differential and difference calculus: unified ![END_REF] 

t b ta L (t, x(t), ∆x(t)) ∆t = bs ãs L s τ, g 1 s • x • (g 0 s ) -1 (τ ), ∆ Ts g 1 s • x • (g 0 s ) -1 (τ ) ∆ Ts τ
where ãs = g 0 s (t a ) and bs = g 0 s (t b ). 3.2.2. Noether's Theorem on time scales-nonshifted case. Our main result is the following nonshifted version of the Noether's theorem on time scales:

Theorem 7 (Noether's theorem -Nonshifted case). Let T be a time scales such that σ is ∇- differentiable on T κ and G = {g s (t, x) = (g 0 s (t), g 1 s (x))
} s∈R be a (∆, T)-admissible projectable group of transformations which is a variational symmetry of the nonshifted Lagrangian functional on time scales T given by

L L,[a,b],T (x) = b a L (t, x(t), ∆x(t)) ∆t and (19) X = ζ(t) ∂ ∂t + ξ(x) ∂ ∂x ,
be the infinitesimal generator of G. Then, the function

(20) I(t, x, v) = -ζ σ (t) • H( ) + ξ σ (x) • ∂ v L( ) + t a ζ ∇σ∂ t L( ) + ∇ H( ) ∇t,
where

H : R × R d × R d -→ R is defined by (21) H(t, x, v) = -L(t, x, v) + ∂ v L(t, x, v) • v,
and ( ) = (t, x(t), ∆x(t)), is a constant of motion over the solution of the time scales Euler-Lagrange equation

(EL ∇•∆ ), i.e., that (22) 
∇ [I (• , x(•))] (t) = 0,
for all solutions x of the time scales Euler-Lagrange equations and any t ∈ T κ κ . The proof is given in Section 4.

In the continuous case T = [a, b], one obtains the classical form of the integral of motion ( 23)

I(t, x) = -ζ(t) • H(t, x, ẋ) + ξ(x) • ∂ v L(t, x, ẋ). Indeed, if T = [a, b] then σ is ∇-differentiable on T κ with ∇[σ] = 1
and moreover, on the solutions of the Euler-Lagrange equation one has the identity

(24) -∂ t L(t, x, ẋ) = d dt H(t, x, ẋ)
which is called the second Euler-Lagrange equation [START_REF] Troutman | Variational Calculus and Optimal Control[END_REF].

In the discrete case, T = Z and transformations without changing time, one recovers the classical integral (see [START_REF] Bourdin | A continuous/discrete fractional Noether theorem[END_REF]Theorem 12,p.885] and also [START_REF] Hairer | Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations[END_REF]): ( 25)

I(x) = ξ σ (x) • ∂ v L(t, x, ẋ).
3.3. Noether's Theorem on time scales in the shifted calculus of variations. Let L be a Lagrangian function. We consider the functional L σ L,[a,b],T (x) defined for all x ∈ C 1,∆ rd (T) by ( 26)

L σ L,[a,b],T (x) = b a L (t, x σ (t), ∆x(t)) ∆t.
The critical points of L σ L,[a,b],T are solutions of the shifted time scales Euler-Lagrange equation given by (see [5, Theorem 4.2, p.344])

(EL ∆•∆ ) ∆ ∂L ∂v (t, x σ (t), ∆x(t)) = ∂L ∂x (t, x σ (t), ∆x(t)),
for every t ∈ T κ .

Remark 2 (A remark on the shifted calculus of variations). Although the shifted calculus of variations was introduced first in the literature, the definition of the functional (26) seems to be non-natural with respect to a discretisation procedure of the continuous Lagrangian functional and in fact leads to very bad numerical integrator of the continuous equation. This is due to the fact that in this case, the second order derivative d 2 /dt 2 is approximated by ∆ • ∆ which is an operator of order one with respect to the time step used as a discretization step, instead of order 2 for the ∇ • ∆ operator which appears in the non-shifted case.

However, leaving this aspect, one can justify the use of the shifted calculus of variations as follows: Going back to I. Newton's seminal work Philosophiae Naturalis Principia Mathematica published first in 1866 (a reprint can be found in [START_REF] Hawking | Sur les épaules des géants[END_REF] with other texts of interest), we can take a look at the first place were he derived the now famous law of motions for a body under the gravitational force. We refer to the discussion given by R. Feynman in [START_REF] Goodstein | Feynman's lost lecture -the motion of the planets around the sun[END_REF] for more details.

He explains that the motion of a body around a massive body with an initial speed v 0 evolves during a short amount of time t 1 -t 0 = h following the inertia principle introduced by Galileo. The particle then follows a straight line between the initial position x 0 and x1 whose length is given by v 0 h. However, at time t 1 , the effect of the force F during the time h is taken into account and assumed to be of magnitude F (x 0 )h 2 . This reasoning is illustrated by I. Newton in his book by the following picture (see [START_REF] Hawking | Sur les épaules des géants[END_REF],p.431 and also [START_REF] Goodstein | Feynman's lost lecture -the motion of the planets around the sun[END_REF],p.84): As the force is assumed to be directed toward the massive body, I. Newton deduces that the position of the particle at time t 1 satisfies x 1 -x1 = F (x 0 )h 2 , which leads to x 1 -x 0 = v 0 h + F (x 0 )h 2 and finally, denoting ∆x(t 1 ) = (x 1 -x 0 )/h and ∆x(t 0 ) = v 0 , to the equation

(27) ∆x(t 1 ) -∆x(t 0 ) = F (x 0 )h,
and to the classical writing of Newton's fundamental law of motion

(28) ∆(∆x)(t 0 ) = F (x 0 ).
As a consequence, I. Newton's first derivation of the law of motion leads to an equation where only the ∆ derivative appears. This equation can only be recovered using the shifted calculus of variations.

The notion of invariance is adapted to the shifted case as follows:

Definition 8 (Shifted invariance). A time scales Lagrangian functional L σ L,[a,b],T is said to be invariant under a (∆, T)-admissible projectable group of transformations G = {g s (t, x) = (g 0 s (t), g 1 s (x))} s∈R if and only if for any subinterval [t a , t b ] ⊂ [a, b] with t a , t b ∈ T, for any s ∈ R and x ∈ C 1,∆ rd (T) (29) 
t b ta L (t, x σ (t), ∆x(t)) ∆t = bs ãs L s τ, g 1 s • x • (g 0 s ) -1 σs (τ ), ∆ Ts g 1 s • x • (g 0 s ) -1 (τ ) ∆ Ts τ
where ãs = g 0 s (t a ) and bs = g 0 s (t b ), T s = g 0 s (T) and σs is the forward jump operator over

T s . Theorem 8 (Noether's theorem -σ-shifted case). Let G = {g s (t, x) = (g 0 s (t), g 1 s (x))} s∈R be a (∆, T)-variational symmetry of L σ L,[a,b],
T with the corresponding infinitesimal generator given by

(30) X = ζ(t) ∂ ∂t + ξ(x) ∂ ∂x .
Then, the quantity

(31) I(t, x σ , v) = -H ( σ )ζ(t) + ∂ v L( σ )ξ(x) + t a ζ σ (t) ∆ H ( σ ) + ∂ t L( σ ) ∆t where (32) H (t, u, v) = H(t, u, v) + ∂ t L(t, u, v)µ(t)
and H is given by [START_REF] Hairer | Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations[END_REF], with ( σ ) = (t, x σ (t), ∆x(t)), is a constant of motion over the solution of the time scales Euler-Lagrange equation (EL ∆•∆ ), i.e., that

(33) ∆ [I (• , x σ (•), ∆x(•))] (t) = 0,
for all solutions x of (EL ∆•∆ ) and any t ∈ T κ .

In the continuous case T = [a, b], we have σ(t) = t and µ(t) = 0, so that one obtains the classical form of the integral of motion [START_REF] Jost | Calculus of Variations[END_REF].

3.4.

Comparison with the Noether's theorem on time scales obtained by Z. Bartosiewicz and D.F.M Torres. In [START_REF] Bartosiewicz | Noether's theorem on time scales[END_REF], Z. Bartosiewicz and D.F.M. Torres prove a Noether's theorem on time scale which leads to the statement that the quantity (34)

C (t, x σ , v) = -H ( σ ) • ζ(t, x) + ∂ v L( σ ) • ξ(t, x)
is a constant of motion over the solution of (EL ∆•∆ ).

As we can see, we have an extra term in our result given by

t a ζ σ (t) ∆ H ( σ ) + ∂ t L( σ ) ∆t.
The difference comes from the fact that Z. Bartosiewicz and D.F.M. Torres [START_REF] Bartosiewicz | Noether's theorem on time scales[END_REF] assume that the following equation

(EL 2 nd σ ) ∆ H (t, x σ , ∆x) = - ∂L ∂t (t, x σ (t), ∆x(t)),
called the second order Euler-Lagrange equation is satisfied over the solutions of the shifted Euler-Lagrange equation. As already showed in the introduction simulations on an explicit example, this is not true. In the following, we give a counter-example to the second order Euler-Lagrange equation where all computations can be made explicitly.

3.4.1. Explicit counter-example to the second order Euler-Lagrange equation on time scales. Let us consider the Lagrangian

(35) L(x σ , ∆x) = (∆x) 2 + 4x σ .
The shifted Euler-Lagrange equation is given by

(36) ∆ [∆x] = 2.
As ∂ t L = 0, the quantity H reduces to (37)

H (x σ , ∆x) = (∆x) 2 -4x σ .
We have the following Lemma:

Lemma 1. The function ∆H is equal to (38) ∆H = 4 [-µ -2µ∆µ -∆x∆µ] ,
over the solutions of the shifted Euler-Lagrange equation.

Proof. We have (see [START_REF] Bohner | Dynamic equations on time scales: An introduction with applications[END_REF],1.36 p.337) that for any function u ∈ C 1,∆ rd such that ∆(u σ ) exists, the relation

(39) ∆(u σ ) = (1 + ∆µ) (∆u) σ .
Moreover, using the Leibniz formula we have

(40) ∆ (∆x) 2 = ∆(∆x)∆x + (∆x) σ ∆(∆x), = ∆(∆x) (∆x + (∆x) σ ) .
As a consequence, we obtain

(41) ∆H = ∆ (∆x) 2 -4∆(x σ ), = ∆(∆x) (∆x + (∆x) σ ) -4(1 + ∆µ) (∆x) σ .
Using the shifted Euler-Lagrange equation, one obtain

(42) ∆H = 2 (∆x + (∆x) σ ) -4(1 + ∆µ) (∆x) σ .
Moreover, we have the classical relation for u ∈ C 1,∆ rd (see [START_REF] Bohner | Dynamic equations on time scales: An introduction with applications[END_REF],(iv),p.6): (43)

u σ = u + µ∆u, which gives (44) (∆x) σ = ∆x + µ∆(∆x) = ∆x + 2µ,
thanks to the shifted Euler-Lagrange equation.

As a consequence, replacing in the expression of ∆H , one obtain

(45) ∆H = 2 (2∆x + 2µ) -4(1 + ∆µ)(∆x + 2µ), = 4 [-µ -2µ∆µ -∆x∆µ] ,
which concludes the proof.

As a consequence, any time scales such that µ is a non zero constant lead to a counter example to the second order Euler-Lagrange equation. In particular, we have Lemma 2. Let T = Z, then ∆H = -4.

Proof. For T = Z, we have µ = 1 for all t ∈ T. As a consequence, we have ∆µ = 0. Replacing in the formula (38), we obtain ∆H = -4.

Connexion with energy preserving variational integrators.

We can go further relying on the fact that for uniform time scales, the shifted Euler-Lagrange equation can be interpreted as a variational integrator (see [START_REF] Marsden | Discrete mechanics and variational integrators[END_REF] and [START_REF] Hairer | Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations[END_REF]):

Assuming that T is the uniform time scale over [a, b], i.e. that T = {t i = a + ih, i = 0, . . . , N } with h = (b -a)/N . Then µ(t) = h for all t ∈ T κ . If the Lagrangian L is independent of the time variable, then ∂ t L = 0 and the quantity (EL 2 nd σ ) reduced to (46) ∆ [H (•, x σ (•), ∆x(•))] (t) = 0, ∀ t ∈ T κ .
The quantity H corresponds to the Hamiltonian associated to the Lagrangian systems and its value to the energy of the system. However, it is well known since the work of Z. Ge and J.E. Marsden [START_REF] Ge | LiePoisson integrators and LiePoisson HamiltonJacobi theory[END_REF] that "fixed time step variational integrators derived from the discrete variational principle cannot preserve the energy of the system exactly". This implies precisely that the time scales second Euler-Lagrange equation is not valid in full generality.

We refer to the book of E. Hairer, C. Lubich and G. Wanner Geometric numerical integration [START_REF] Hairer | Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations[END_REF] for more details, in particular Chapter VI.6 about variational integrators and Chapter IX.8 for a a discussion of long-term energy conservation of symplectic numerical schemes.

Remark 3. In [START_REF] Malinowska | The second Noether Theorem on Time scales[END_REF], A.B. Malinowska and N. Martins discuss in full generality the derivation of a second Noether Theorem on time scales. In ( [START_REF] Malinowska | The second Noether Theorem on Time scales[END_REF], Remark 23,p.8) they recover the second Euler-Lagrange equation derived in [START_REF] Bartosiewicz | The second Euler-Lagrange equation of variational calculus on time scales[END_REF] as a special case. As a consequence, the previous discussion invalidate also the results proved in [START_REF] Malinowska | The second Noether Theorem on Time scales[END_REF].

Proof of the main results using the Jost's method

The terminology of Jost's method was introduced in [START_REF] Cresson | About the Noether's theorem for fractional Lagrangian systems and a generalization of the classical Jost's method of proof, 28[END_REF] to designate a particular way of proving the classical Noether's theorem which can be found in [START_REF] Jost | Calculus of Variations[END_REF]. The idea is very simple and elegant. One extend the set of variables, incorporating the time variable, in order to see the invariance of the functional under a symmetry group with transformation in time as an invariance of a new functional but for a symmetry group without transformation in the new "time" variable. The idea being then to apply the well known Noether's theorem in this case to obtain the desired constant of motion. In [START_REF] Cresson | About the Noether's theorem for fractional Lagrangian systems and a generalization of the classical Jost's method of proof, 28[END_REF], we have identified several steps in the method:

• First, rewrite the invariance condition in order to have an equality between two integrals over the same domain.

• The first step leads to the introduction of an extended Lagrangian and a new set of paths. • Rewrite the initial invariance condition with transformation in time as an invariance condition for the extended Lagrangian for a transformation without transforming "time". • Look for the correspondence between the solution of the initial Euler-Lagrange equation and the Euler-Lagrange equation associated to the extended Lagrangian. • Apply the invariance characterization and derive a constant of motion.

The first three steps impose some specific constraints in the time scales framework due to the fact that the chain rule formula and the substitution formula are not always valid. However, the main problem comes from the Euler-Lagrange equation satisfied by the extended Lagrangian. Although this equation is always satisfied by solution of the initial Euler-Lagrange equation in the continuous case, this implication is no longer valid in general for an arbitrary time scales. This is precisely where some arguments given in [START_REF] Bartosiewicz | Noether's theorem on time scales[END_REF] are incomplete. The end of the computations are only technical. 

L (t, x(t), ∆x(t)) ∆t = b a L s g 0 s (t), (g 1 s • x)(t), ∆ g 1 s • x (t) 1 ∆g 0 s (t) ∆g 0 s (t)∆t.
The proof is given in Section 9.

As for the classical case, we construct an extended Lagrangian functional which enables us to rewrite the invariance condition for a transformation group changing time as the invariance of a new functional under a transformation group without changing time.

Let us denote by

L : R × R d × R * × R d -→ R the Lagrangian function defined by (48) L(t, x, w, v) = L t, x, v w w.
which is the same as the classical case and called the extended Lagrangian.

We denote by L L (t, x) the nonshifted Lagrangian functional associated to L defined for all t ∈ C 1,∆ rd (T) strictly increasing and

x ∈ C 1,∆ rd (T) such that ∆ T (x • t) exists where T = t(T) by (49) L L (t, x) = b a L (t(τ ), (x • t)(τ )), ∆[t](τ ), ∆[x • t](τ ))) ∆τ,
is called the nonshifted extended Lagrangian functional.

We define the time scales bundle path class denoted by F and defined by (50)

F = {(t, x) ∈ C 1,∆ rd (T) × C 1,∆ rd (T) ; τ -→ (t(τ ), (x • t)(τ ))) = (τ, x(τ ))}.
We have the following proposition: Proposition 2. The restriction of the Lagrangian function L L to a path γ = (t, x) ∈ F satisfies

(51) L L (t, x) = L L,[a,b],T (x).
Proof. Let γ = (t, x) ∈ F. By definition, we have

(52) L (t(τ ), x(τ ), ∆[t](τ ), ∆[x • t](τ )) = L t(τ ), (x • t)(τ )), ∆[x • t](τ )) 1 ∆[t](τ ) ∆[t](τ ).
As γ is a bundle path, we have t(τ ) = τ and ∆[t](τ ) = 1. As t is strictly increasing, t ∈ C 1,∆ rd (T) and x • t = x belongs to C 1,∆ rd (T), the functional (49) is well defined and we obtain (53)

L L (t, x) = b a L (t(τ ), (x • t)(τ ), ∆[t](τ ), ∆[x • t](τ ))) ∆τ, = b a L (τ, x(τ ), ∆x(τ )) ∆τ = L L,[a,b],T (x),
which concludes the proof. The proof is given in Section 9.

In order to apply the Noether's theorem for transformations without changing time, one needs to check that the solutions of the time scales Euler-Lagrange equation produce solutions of the extended Lagrangian systems.

Lemma 5. A path γ = (t, x) ∈ F is a critical point of L L if, and only if, x is a critical point of L L,[a,b],
T and for all t ∈ T κ κ we have

( ) ∇σ(t) ∂L ∂t (t, x(t), ∆x(t)) + ∇ ∆x(t) ∂L ∂v (t, x(t), ∆x(t)) -L(t, x(t), ∆x(t)) = 0.
The proof is given in Section 9.

Contrary to the continuous case, Lemma 5 implies that extended solutions of the initial Lagrangian are not automatically solutions of the extended Euler-Lagrange equation. This implies that one can not use the Noether's theorem but only the infinitesimal invariance criterion as formulated in ([3],Theorem 2 p.1223). 

∂ t L( ) • ζ + ∂ x L( ) • ξ + ∂ v L( ) • ∆ξ + L( ) -∂ v L( ) • ∆x • ∆ζ = 0.
Multiplying equation (54) by ∇σ and using the Time scales Euler-Lagrange equation (EL ∇•∆ ), we obtain

(55) ∂ t L( ) • ∇σ • ζ + ∇σ • ∂ v L( ) • ∆[ξ] + ∇ ∂ v L( ) • ξ + L( ) -∂ v L( ) • ∆x • ∇σ • ∆ζ = 0.
Using the Leibniz formula (9), we have

(56) ∂ t L( ) • ∇σ • ζ + ∇ ∂ v L( ) • ξ σ + L( ) -∂ v L( ) • ∆x • ∇σ • ∆ζ = 0.
Trying to be as close as possible to the continuous case, we can use again the formula (9) on the last term, we obtain

(57) ∂ t L( )•∇σ•ζ+∇ ∂ v L( )•ξ σ +∇ ζ σ •(L( ) -∂ v L( ) • ∆x) -ζ•∇ L( )-∂ v L( )•∆x = 0.
Taking the ∇-antiderivative of this expression, we deduce the conservation law [START_REF] Hawking | Sur les épaules des géants[END_REF]. This concludes the proof.

4.2.

The σ-shifted case. The shifted case follows essentially the same line as the non shifted case. However, due to the the shift, after the initial change of variables, one needs another rewriting of the invariance condition in order to identify the corresponding extended Lagrangian.

4.2.1.

Rewriting the invariance condition and the extended Lagrangian. Following Section, we have: Lemma 6. Let the functional L σ L,[a,b],T satisfying condition (29), then we have

(58) t b ta L (t, x σ (t), ∆x(t)) ∆t = t b ta L s g 0 s (t), g 1 s • x σ (t), ∆ g 1 s • x (t) • 1 ∆g 0 s (t) ∆g 0 s (t)∆t.
However, in order to consider the time as a new variable, one must rewrite the left-hand side of the invariance condition taking into account that ([3, Theorem 4, p.1224]) (59) g 0 s (t) = (g 0 s ) σ (t) -µ(t)∆g 0 s (t). One then obtain: Lemma 7. The invariance condition (58) can be written as

(60) t b ta L (t, x σ (t), ∆x(t)) ∆t = t b ta L s (g 0 s ) σ (t) -µ(t)∆g 0 s (t), g 1 s • x σ (t), ∆ g 1 s • x (t) • 1 ∆g 0 s (t) ∆g 0 s (t)∆t
We are now ready to introduce the extended Lagrangian. 

× R d × R * × R d -→ R (61) L σ (τ ; t, x, w, v) = L t -µ(τ )w, x, v w w.
Introducing the functional denoted by L Lσ and defined by

(62) L Lσ (t, x) = t b ta L σ (τ ; t σ (τ ), (x σ • t)(τ )), ∆t(τ ), ∆x(τ )) ∆τ.
Taking into account the bundle path F defined in (50), we obtain that ∆[t] = 1, so that the restriction of L σ to F satisfies

(63) L σ (τ ; t σ (τ ) = τ σ , x σ (τ ), ∆τ, ∆x(τ )) = L (τ, x σ (τ ), ∆x(τ )) .
As a consequence, one can rewrite the invariance condition (60) as follows Lemma 8. The invariance condition (60) over F can be written as (64)

L Lσ (t, x) = t b ta L σ τ ; g 0 s σ (t(τ )), g 1 s • x σ (t(τ )), ∆ Ts g 0 s (t(τ )), ∆ Ts g 1 s • x (t(τ )) ∆ Ts τ.
One can obtain the necessary invariance condition of the functional L Lσ over F by differentiating both sides of (64) around s = 0, that is 

(65) ∂ t L σ (•) • ζ σ (τ ) + ∂ x L σ (•) • ξ σ (x) + ∂ w L σ (•) • ∆ζ(τ ) + ∂ v L σ (•) • ∆ξ(x) = 0 where (•) := τ ; τ σ , x σ (τ ), ∆ T τ, ∆ T x(τ ) .
                           ∂ t L σ (τ ; t σ , x, w, v) = ∂ t L t σ -µ(τ )w, x, v w • w ∂ x L σ (τ ; t σ , x, w, v) = ∂ x L t σ -µ(τ )w, x, v w • w ∂ w L σ (τ ; t σ , x, w, v) = L t σ -µ(τ )w, x, v w -∂ v L t σ -µ(τ )w, x, v w • v w -∂ t L t σ -µ(τ )w, x, v w • µ(τ ) • w ∂ v L σ (τ ; t σ , x, w, v) = ∂ v L t σ -µ(τ )w, x, v w
On the other hand, we reduce the equations (66) over F as follows (67)

               ∂ t L σ (τ ; τ σ , x(τ ), 1, ∆x(τ )) = ∂ t L (τ, x σ (τ ), ∆x(τ )) ∂ x L σ (τ ; τ σ , x(τ ), 1, ∆x(τ )) = ∂ x L (τ, x σ (τ ), ∆x(τ )) ∂ w L σ (τ ; τ σ , x(τ ), 1, ∆x(τ )) = L (τ, x σ (τ ), ∆x(τ )) -∂ v L (τ, x σ (τ ), ∆x(τ )) • ∆x(τ ) -∂ t L (τ, x σ (τ ), ∆x(τ )) • µ(τ ) ∂ v L σ (τ ; τ σ , x(τ ), 1, ∆x(τ )) = ∂ v L (τ, x σ (τ ), ∆x(τ ))
Substituting ( 67) into (65) gives

(68) ∂ t L ( σ ) • ζ σ (τ ) + ∂ x L ( σ ) • ξ σ (x) + L ( σ ) -∂ v L ( σ ) ∆x(τ ) -∂ t L ( σ ) • µ(τ ) • ∆ζ(τ ) + ∂ v L ( σ ) • ∆ξ(x) = 0.
Using the Euler-Lagrange equation (EL ∆•∆ ) and the time scales Leibniz rule, we obtain

(69) ∂ t L ( σ ) • ζ σ (τ ) + L ( σ ) -∂ v L ( σ ) ∆x(τ ) -∂ t L ( σ ) • µ(τ ) • ∆ζ(τ ) + ∆ ∂ v L ( σ ) • ξ(x) = 0.
Observe that the term between brackets in (69) is the function -H defined in (32). Using the time scales Leibniz rule, we obtain

(70) -H ( σ ) • ∆ζ(τ ) = ∆ -H ( σ ) • ζ(τ ) + ∆ H ( σ ) • ζ σ (τ ).
Substituting the formula (70) into (69) gives (71)

∂ t L ( σ ) + ∆ H ( σ ) • ζ σ (τ ) + ∆ -H ( σ ) • ζ(τ ) + ∂ v L ( σ ) • ξ(x) = 0.
We complete the proof by taking the ∆-antiderivative of this latter equation.

Direct proof of the main results

We follow in this Section the usual proof of the Noether's theorem consisting in deriving the invariance condition with respect to the parameter of the symmetry group and deducing a constant of motion. 5.1. The nonshifted case. Since the invariance condition (47) holds for any subinterval of [a, b] and x ∈ C 1,∆ rd (T), then we have:

L (t, x(t), ∆x(t)) = L s g 0 s (t), (g 1 s • x)(t), ∆ g 1 s • x (t) 1 ∆g 0 s (t) ∆g 0 s (t).
Differentiating both sides of the latter equation with respect to s, it gives for s = 0 that (72)

ζ∂ t L + ξ∂ x L + (∆ξ -∆ζ • ∆x) ∂ v L + ∆ζ • L = 0.
Since this equation and the equation ( 54) are the same, one can follow the proof in subsection 4.1.3.

Remark 4 (Prolongation of vector fields in a time-scales setting). The operator appearing in (72) can be rewritten using the vector field denoted by X (1) and defined by

(73) X (1) = ζ∂ t + ξ∂ x + (∆ξ -∆ζ • ∆x) ∂ v
By analogy with the definition of the prolongation of vector fields given by P.J. Olver (see [START_REF] Olver | Applications of Lie groups to differential equations[END_REF], Definition 2.28 p.101), we call this vector field the first prolongation of the vector field X = ζ∂ t + ξ∂ x . Consequently, one can replace the condition (47) by the following invariance criterion

(74) X (1) L + ∆ζ • L = 0.
In the case when T = R, one recover the usual formula for the first prolongation (see [START_REF] Olver | Applications of Lie groups to differential equations[END_REF]Theorem 2.36, p.110]) of the vector field X, i.e.

(75)

X (1) = ζ∂ t + ξ∂ x + ( ξ -ζ ẋ)∂ v .
In order to develop a full analogue of the theory of symmetries as presented in the book of P.J. Olver [START_REF] Olver | Applications of Lie groups to differential equations[END_REF], one needs first to defined correctly the discrete analogue of vector fields which is still missing at that time.

5.2.

The σ-shifted case. Since the invariance condition (58) holds for any subinterval of [a, b] and x ∈ C 1,∆ rd (T), then we have:

L (t, x σ (t), ∆x(t)) = L s (g 0 s ) σ (t) -µ(t)∆g 0 s (t), g 1 s • x σ (t), ∆ g 1 s • x (t) • 1 ∆g 0 s (t) ∆g 0 s (t)
In the same way as done in the nonshifted case, by differentiating both sides of the above equation with respect to s, it gives for s = 0 that

0 = (ζ σ -µ(t)∆ζ)∂ t L + ξ σ ∂ x L + (∆ξ -∆x∆ζ)∂ v L + ∆ζ • L = ζ∂ t L + ξ σ ∂ x L + (∆ξ -∆x∆ζ)∂ v L + ∆ζ • L.
Since the latter equation and the equation (68) are the same, one can follow the same proof as in subsection 4.2.3.

Remark 5. One can replace the condition (58) by an alternative condition that is

(76) ζ∂ t L + ξ σ ∂ x L + (∆ξ -∆x∆ζ)∂ v L + ∆ζ • L = 0.
6. Examples and simulations 6.1. The σ-shifted and nonshifted version of the Bartosiewicz and Torres example.

We consider the Lagrangian introduced in [START_REF] Bartosiewicz | Noether's theorem on time scales[END_REF] and given by ( 77)

L(t, x, v) = x 2 t + tv 2 for x, v ∈ R.
We discuss both the shifted and nonshifted Lagrangian functional associated to L and the corresponding conservation laws as obtained using the Noether's theorem on time scales proved in the previous Section.

One can prove that the nonshifted Lagrangian functional possesses a variational symmetry given by: Lemma 9. The Lagrangian functional associated to (77) is invariant under the family of transformation G = {g s (t, x) = (te s , x)} s∈R where its infinitesimals are given by (78)

ζ(t) = t and ξ(x) = 0.

Proof. Indeed, we have L te s , x, ∆x e s e s = x 2 te s + te s (∆x) 2 e 2s e s = L(t, x, ∆x) so that condition (47) is satisfied.

The same result is valid in the shifted case.

In the following, we consider two time scales given by ( 79)

T 1 = {a + nh, n ∈ N} , h = (b -a)/N, N ∈ N * and T 2 = {2 n , n ∈ N ∪ {0}} ,
which will be used to make simulations. 

I(t, x, v) = σ(t) x 2 t -tv 2 + t a -∇σ(t) x 2 t -tv 2 -t∇ x 2 t -tv 2 ∇t.
6.1.2. The shifted case. We consider the following shifted Lagrangian (82)

L (t, x σ , v) = (x σ ) 2 t + tv 2
and the family of transformation G = {φ s (t, x) = (te s , x)} s∈R which is a variational symmetry of L. Indeed, using the invariance criterion (76) we have that t -

x σ t 2 + v 2 -2tv 2 + (x σ ) 2 t + tv 2 = 0.
The (shifted) Euler-Lagrange equation (EL ∆•∆ ) associated to L is given by

(83) ∆ t∆x(t) = x σ t .
According to Noether's theorem, we conclude the following first integral

I(t, x σ , v) = σ(t) (x σ ) 2 t -tv 2 + t a σ(t) - (x σ ) 2 t 2 + v 2 + ∆ σ(t) - (x σ ) 2 t 2 + v 2 ∆t.
Remark 6. In [START_REF] Bartosiewicz | Noether's theorem on time scales[END_REF], the authors consider T = {2 n : n ∈ N ∪ {0}}. In that case, σ(t) = 2t for all t ∈ T, which gives the expression of

C(t, x σ , v) in [3, Example 3], that is (84) C(t, x σ , v) = σ(t) (x σ ) 2 t -tv 2 .
6.1.3. Simulations. With the time scales T 1 and T 2 as given before, we present simulations of both the Euler-Lagrange equations ( 80) and ( 83) which are called "approximate" on the picture as well as computations of the quantities I(t, x, ∆x) and I(t, x σ , ∆x) on T 1 and T 2 .

In order to check the validity of our numerical scheme, we give also the exact solution of the Euler-Lagrange equation in the continuous case for the corresponding initial conditions.

As we can see in Figures 3 and5,over the time scales T 1 when h is sufficiently small, the solution of the nonshifted or shifted Euler-Lagrange equation provide very good approximations of the exact solution.

We can not expect such a result for the time scales T 2 as in this case, the time increment is very big at the beginning of the simulation.

As expected, all the computations given in Figures 3 and5 over T 1 and 4, and 6 over T 2 show that the quantities obtained in the Noether's theorem on time scales are constant over the solutions of the time scales Euler-Lagrange equation ( 80) and ( 83)) respectively. Comparison between Torres's result and our result. As we have seen, the quantity I(t, x σ , ∆x) is a constant of motion over the solution of the time scales Euler-Lagrange equation (83). It is clearly not the case for the quantity C(t, x σ , ∆x) provided by the Noether's theorem in [START_REF] Bartosiewicz | Noether's theorem on time scales[END_REF].

Approximate solution 

I(t,x σ ,Δx) C(t,x σ ,Δx) (a) On T 1 , x 0 = 1, ∆x 0 = 0.1, h = 0.
(b) On T 1 , x 0 = 1, ∆x 0 = 0.1, h = 0.001 0 0.5 1 1.5 2 2.5 1 2 3 4 5 6 7 8 
Time

I(t,x σ ,Δx) C(t,x σ ,Δx) (c) On T 2 , x 0 = 0, ∆x 0 = 0.1, n = 3 Figure 7.
The trace of I(t, x σ , v) and C(t, x σ , v) on time scales T 1 and T 2 6.1.5. Simulation of the second Euler-Lagrange equation. In [START_REF] Bartosiewicz | Noether's theorem on time scales[END_REF], the authors require for the quantity C(t, x σ , v) to be a constant of motion over the solution of (83) that the second Euler-Lagrange equation must be satisfied. We then test the equality to zero of the left-hand side of the equatio. We obtain the following green lines for the time-scales T 1 and T 2 proving that the second Euler-Lagrange equation is not satisfied. We consider the Lagrangian defined on

R 2 \ {0} × R 2 by (85) L(x 1 , x 2 , v 1 , v 2 ) = 1 2 (v 2 1 + v 2 2 ) + 1 x 2 1 + x 2 2
, which corresponds to the Lagrangian of the Kepler problem of two interacting particle with one of mass one under the gravitational field in the plane where one of the particle is positioned at the origin.

A time scales analogue of the Kepler problem in the shifted calculus of variation setting is then associated to the functional

(86) L L,[a,b],T (x) = b a 1 2 (∆[x 1 ]) 2 + (∆[x 2 ]) 2 ) + 1 (x σ 1 ) 2 + (x σ 2 ) 2 ∆t.
The Euler-Lagrange equations are given by (87)

       ∆ • ∆[x 1 ] = - x σ 1 ((x σ 1 ) 2 + (x σ 2 ) 2 ) 3/2 , ∆ • ∆[x 2 ] = - x σ 2 ((x σ 1 ) 2 + (x σ 2 ) 2 ) 3/2
. Moreover the Hamiltonian function associated to (87) is given by (88)

H(x 1 , x 2 , p 1 , p 2 ) = 1 2 p 2 1 + p 2 2 - 1 (x σ 1 ) 2 + (x σ 2 ) 2 .
One easily shows that the group of rotations (89)

g s (x 1 , x 2 ) = (x 1 cos(s) -x 2 sin(s), x 1 sin(s) + x 2 cos(s)) ,
for s ∈ R, (x 1 , x 2 ) ∈ R 2 is a variational symmetry of the functional on any time scales T. Indeed, we have for all s ∈ R,

x = (x 1 , x 2 ) ∈ C 1,∆ rd (T) and t ∈ T κ (90) L(x, ∆x) = L(g s (x), ∆ [g s (x)]), as ∆ [g s (x)]) = g s (∆[x]
) by linearity and continuity of g s with respect to x, and the fact that g s is an isometry. The invariance of the functional then follows.

As ∂g s ∂s (x 1 , x 2 )| s=0 = (-x 2 , x 1 ), the Noether theorem on time scales then ensure that the function

(91) I 1 (•, x(•)) = -x 2 ∆[x 1 ] + x 1 ∆[x 2 ],
is a first integral of the time scales equation ( 87). This result coincide with the one given by X.H. Zhai and L.Y. Zhang in ( [START_REF] Zhai | Lie symmetry analysis on time scales and its application on mechanical systems[END_REF],equation ( 45)).

It is clear that the group of time translations is a variational symmetry of (86), since this functional does not depend on the time. Then, our Noether theorem on time scales produces the following first integral (92)

I 2 (•, x(•)) = -H(x σ 1 , x σ 2 , ∆x 1 , ∆x 2 ) + t a ∆H(x σ 1 , x σ 2 , ∆x 1 , ∆x 2 )∆t
Indeed, if we consider the uniform time scales T = {t k = a + kh, k ∈ N} on the interval [0; 3.5] with h = 0.1 and the initial conditions are However, as for the Z. Bartosiewicsz and D.F.M. Torres example [START_REF] Bartosiewicz | Noether's theorem on time scales[END_REF], a problem occurs with time dependent group of transformations. Namely, X.H. Zhai and L.Y. Zhang asserts that the Hamiltonian is a constant of motion on the solutions of (87), i.e. that the quantity (93) In this section, some properties, basic definitions about Caputo's duality principle are presented and such principle was also applied to the calculus of variations on time scales. We refer to [START_REF] Caputo | Time Scales: From Nabla Calculus to Delta Calculus and Vice Versa via Duality[END_REF] which contain more details and proofs on Caputo's duality principle. Let T be a time scale. If σ, ρ : T → T denote, respectively, the forward and backward jump operators on T, then we denote to the forward and backward jump operators on T * , respectively, by σ, ρ : T * → T * .

x 1 = 1, x 2 = 0, v 1 = v 2 = 1,
H(t, x σ 1 , x σ 2 , ∆x 1 , ∆x 2 ) = 1 2 (∆[x 1 ]) 2 + (∆[x 2 ]) 2 - 1 (x σ 1 ) 2 + (x σ 2 ) 2
Let µ (resp. ν) the forward (resp. the backward) graininess on T, we denote by μ (resp. ν), the forward (resp. the backward) graininess on T * . Let ∆ (resp. ∇) the delta (resp. the nabla) derivative on T, we denote by ∆ (resp. ∇) the delta (resp. the nabla) derivative on T * . Proposition 3. Let T be a time scales with a, b ∈ T, a < b and let f : T → R a function. We have the following:

• (T κ ) * = (T * ) κ and (T κ ) * = (T * ) κ • ([a, b]) * = [-b, -a] and ([a, b] κ ) * = [-b, -a] κ ⊆ T * . • For all τ ∈ T * , σ(τ ) = -ρ(-τ ) = -ρ * (τ ) and ρ(τ ) = -σ(-τ ) = -σ * (τ ).
• For all τ ∈ T * , μ(τ ) = ν * (τ ) and ν(τ ) = µ * (τ ).

• Given a function f : T → R and its dual f * :

T * → R . Then, f ∈ C 0 rd (T) (resp. f ∈ C 0 ld (T)) if and only if f * ∈ C 0 ld (T) (resp. f * ∈ C 0 rd (T)). • If f is ∆ (resp. ∇) differentiable at t ∈ T κ (resp. at t ∈ T κ ), then f * : T * → R is ∇ (resp. ∆) differentiable at -t ∈ (T * ) κ (resp.
-t ∈ (T * ) κ ), and ∆f (t) = -∇f * (-t), (resp.∇f (t) = -∆f * (-t)), ∆f (t) = -∇f * * (t), (resp.∇f (t) = -∆f * * (t)), (∆f ) * (-t) = -∇f * (-t), (resp. (∇f ) * (-t) = -∆f * (-t)).

• If f : [a, b] → R is rd-continuous, then b a f (t)∆t = -a -b f * (τ ) ∇τ. • If f : [a, b] → R is ld-continuous, then b a f (t)∇t = -a -b f * (τ ) ∆τ.
Definition 11. Let L : T × R n × R n → R be a Lagrangian. Then, the corresponding dual lagrangian L * :

T * × R n × R n → R is defined by L * (τ, x, v) = L(-τ, x, -v) for all (τ, x, v) ∈ T * × R n × R n .
One can notice that, where L : T × R n × R n → R is a Lagrangian on the time scales T.

∂ t L * (τ, x, v) = -∂ t L(-τ, x, -v), (94) 
∂ x L * (τ, x, v) = ∂ x L(-τ, x, -v), (95) 
∂ v L * (τ, x, v) = -∂ v (-τ, x, -v). ( 96 
Theorem 9 (Euler-Lagrange equation [START_REF] Bourdin | Nonshifted calculus of variations on time scales with ∇-differentiable σ[END_REF]). Assume that ρ is ∆-differentiable on T κ . Then, the critical points of the functionl (97) are solutions of the following Euler-Lagrange equation

(EL ∆•∇ ) ∆ ∂L ∂v (t, x(t), ∇x(τ )) = ∆ρ(t) ∂L ∂x (t, x(t), ∇x(t)),
for every t ∈ T κ κ . Theorem 10 (Noether's Theorem -Nonshifted case). Let T be a time scales such that ρ is ∆-differentiable on T κ . Let G = {g s (t, x) = (g 0 s (t), g 1 s (x))} s∈R a (∇, T)-variational symmetry of the functional (97) with the corresponding infinitesimal generator given by

(98) X = ζ(t) ∂ ∂t + ξ(x) ∂ ∂x .
Then, the function

(99) Ī(t, x, v) = -ζ ρ (t) • H(A) + ξ ρ (x) • ∂ v L(A) + t a ζ(t) ∆ρ(t)∂ t L(A) + ∆ H(A) ∆t,
where H is defined in [START_REF] Hairer | Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations[END_REF] and (A) = (t, x(t), ∇x(t)), is a constant of motion over the solution of the time scales Euler-Lagrange equation (EL ∆•∇ ), i.e., that

(100) ∆ [I (• , x(•), ∇x(•))] (t) = 0,
for all solutions x of (EL ∆•∇ ) and any t ∈ T κ κ . . 

(EL ∇•∇ ) ∇ ∂L ∂v (t, x ρ (t), ∇x(t)) = ∂L ∂x (t, x ρ (t), ∇x(t)),
for every t ∈ T κ .

Theorem 12 (Noether's Theorem -ρ-shifted case). Let T be a time scales and let G = {g s (t, x) = (g 0 s (t), g 1 s (x))} s∈R a (∇, T)-admissible projectable group of transformations be a variational symmetry of L ρ L,[a,b],T and let the corresponding infinitesimal generator given by

(102) X = ζ(t) ∂ ∂t + ξ(x) ∂ ∂x .
Then, the function

(103) Ī(t, x ρ , v) = -ζ(t) • H (A ρ ) + ξ(x) • ∂ v L(A ρ ) + t a ζ ρ (t) ∂ t L(A ρ ) + ∇ H (A ρ ) ∇t,
where

H : R × R n × R n → R is defined by H (t, x, v) = H(t, x, v) -∂ t L(t, x, v)ν(t) and (A ρ ) = (t, x ρ (t), ∇x(t))
, is a constant of motion over the solution of the time scales Euler-Lagrange equation, i.e., that

∇ [I (• , x(•), ∇x(•))] (t) = 0, (104) 
for all solutions x of (EL ∇•∇ ) and any t ∈ T κ . 

L(t, x, v) = L(t, x, v) = t 2 v 2 -2e x ,
then the corresponding Euler-Lagrange equation is given by ∆(t∇x) = -te x .

The family of transformation G = {g s (t, x) = (te s , x-2s)} s∈R where its infinitesimal generator is given by Therefore, Noether's theorem gives the following conservation law

X = t ∂ ∂t - 2 
(105) Ī(t, x, v) = -ρ(t) • t 2 v 2 + 2e x -2tv + t a t 2 v 2 -2e x + ∆ t v 2 + 2e x ∆t.
In a shifted case, consider the following Lagrangian (106)

L(t, x ρ , v) = t 2 v 2 -2e x ρ ,
with the (shifted) Euler-Lagrange equation is given by ( 107)

∇(∇x) = -te x ρ .
Using the invariance criterion of the functional L ρ L,[a,b],T given by [START_REF] Martins | Noether's symmetry theorem for nabla problems of the calculus of variations[END_REF] (108)

ζ ∂L ∂t + ξ ρ ∂L ∂x + (∇ξ -∇x∇ζ) ∂L ∂v + ∇ζ • L = 0,
one check that the family of transformation G = {g s (t, x) = (te s , x -2s)} s∈R is also a variational symmetry of (106). The Noether's theorem gives the following conservation law:

(109) Ī(t, x ρ , v) = -t • H (t, x ρ , v) -2tv + t a ρ(t) 1 2 v 2 -2e x + ∇ H (t, x ρ , v) ∇t, where H (t, x ρ , v) = ρ(t) 2 v 2 -2e x ρ + 2te x ρ .
Simulations of the quantities Ī(t, x, v) and Ī(t, x ρ , v) over T with x 0 = 1, v 0 = 0.1 and h = 10 give: 

M (t, x ρ , v) = -t • ρ(t) 2 v 2 -2e x ρ + 2te x ρ -2tv
is constant of motion over the solutions of (107). The simulations then gives the following results: for all τ ∈ (T κ κ ) * . According to the relations (94) and (96), we have that:

∂ x L * τ, x * (τ ), ∆x * (τ ) = ∂ x L (-τ, x(-τ ), ∇x(-τ )) (114) ∂ v L * τ, x * (τ ), ∆x * (τ ) = -∂ v L (-τ, x(-τ ), ∇x(-τ )) . (115) 
Now, let us take P (τ ) = ∂ v L * τ, x * (τ ), ∆x * (τ ) and Q(τ ) = ∂ v L (τ, x(τ ), ∇x(τ )), then the equation (115) can be written as P (τ ) = -Q * (τ ), so that, ∇P (τ ) = -∇Q * (τ ) = ∆Q(-τ ).

Since τ ∈ (T κ κ ) * , then we get by taking t = -τ that t ∈ T κ κ and with the help of Proposition 3 we deduce that ρ is ∆-differentiable at t. Finally, using the relation ∇σ(τ ) = ∆ρ(-τ ) and ( 113 We complete the proof by taking the ∆-antiderivative of the latter expression.

Proof of the technical Lemma

Proof of Lemma 3. Using the time scales chain rule, we obtain

∆ Ts g 1 s • x • (g 0 s ) -1 (τ ) = ∆ g 1 s • x (t)∆ Ts g 0 s -1 (τ ).
Then, using the time scales derivative formula for inverse function, we obtain

(119) ∆ Ts g 1 s • x • (g 0 s ) -1 (τ ) = ∆ g 1 s • x (t) 1 ∆g 0 s (t)
.

Using the change of variable formula for time scales integrals, we obtain

τ b τa L s τ, g 1 s • x • (g 0 s ) -1 (τ ), ∆ Ts g 1 s • x • (g 0 s ) -1 (τ ) ∆ Ts τ = b a
L s g 0 s (t), (g 1 s • x)(t), ∆ g 1 s • x (t) 1 ∆g 0 s (t) ∆g 0 s (t)∆t.

Finally, using the invariance condition in Equation [START_REF] Hilger | Differential and difference calculus: unified ![END_REF], we obtain the result.

Proof of Lemma 5. For the necessary condition, let γ = (t, x) ∈ F be a critical point of L L . Then, from Equation (EL Proof of Lemma 6. Let s ∈ R. Using the formula g 0 s • σ = σs • g 0 s , we have that

g 1 s • x • (g 0 s ) -1 σs (τ ) = g 1 s • x • (g 0 s ) -1 • σs • g 0 s (t) = g 1 s • x • σ (t)
Using the formula (119) and the change of variable formula for time scales integrals, we obtain

τ b τa L s τ, g 1 s • x • (g 0 s ) -1 σs (τ ), ∆ Ts g 1 s • x • (g 0 s ) -1 (τ ) ∆ Ts τ = t b ta L s g 0 s (t), g 1 s • x σ (t), ∆ g 1 s • x (t) • 1 ∆g 0 s (t)
∆g 0 s (t)∆t.
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 1 Figure 1. x 0 = 0, ∆x 0 = 0.1, n = 5

Figure 2 .

 2 Figure 2. Newton's illustration for the motion of a planet around a star
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 1 The nonshifted case.4.1.1.Rewriting the invariance condition and the extended Lagrangian. We first rewrite the invariance relation[START_REF] Hilger | Differential and difference calculus: unified ![END_REF] in order to have the same domain of integration. Lemma 3. Let G be a (∆, T)-variational symmetry of the nonshifted time scales Lagrangian functional L L,[a,b],T , then, we have (47) b a

4. 1 . 2 .Lemma 4 .

 124 Invariance of the extended Lagrangian. We now reformulate the initial existence of a variational symmetry for L L,[a,b],T under the group G as an invariance of the extended Lagrangian: Let L L,[a,b],T be a time scales Lagrangian functional invariant under the (∆, T)admissible projectable group of transformations {g s } s∈R . Then, the time scales Lagrangian functional L L is invariant over F under the (∆, T)-admissible projectable group of transformations {g s } s∈R .
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 13 Proof of the nonshifted time scales Noether's Theorem. We deduce from Lemma 4 and the necessary condition of invariance given in ([3],Theorem 2 p.1223) that (54)
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 22 Invariance of the extended Lagrangian. Introducing the shifted extended Lagrangian denoted by L : R × [a, b]
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 23 Proof of the shifted time scales Noether's Theorem. Using the relation (61), we have (66)
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 3142 Figure 3. Numerical solution of (80) and the quantity (81) on time scales T 1

(b) x 0 = 1 , 1 Figure 5 . 6 Figure 6 .

 11566 Figure 5. Numerical solution of (83) and the quantity I(t, x σ , v) on T 1

( a )Figure 8 .

 a8 Figure 8. Behavior of the second Euler-Lagrange, I(t, x σ , v) and C(t, x σ , v).
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 2 The Kepler problem in the plane and a result of X.H. Zhai and L.Y. Zhang. We consider the time scales analogue of the Kepler problem in the plane already studied by X.H. Zhai and L.Y. Zhang in ([29],Example 1).

Figure 9 .

 9 Figure 9. Simulation of the quantities I 1 (t, x) and I 2 (t, x).

, 1 Figure 10 . 7 .

 1107 Figure 10. Simulation of the Hamiltonian function (93) on a uniform time scales over the solutions (87).
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 1 Reminder about Caputo duality principle. Definition 9. Let T be a time scale. The dual time scales of T is a new time scales defined by T * := {τ ∈ R : -τ ∈ T}. Definition 10. Let f : T → R be a function defined on a time scales T. The dual function f : T * → R is defined by f * (τ ) = f (-τ ) for all τ ∈ T * . The dual time scales of T is a new time scales defined by T * := {τ ∈ R : -τ ∈ T}.
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 72 A time scales Noether's theorem for the nabla nonshifted calculus of variations. Consider the functional L L,[a,b],T : C 1,∇ ld (T) -→ R defined by (97) L L,[a,b],T (x) = b a L (t, x(t), ∇x(t)) ∇t
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 73 A time scales Noether's theorem for the nabla shifted calculus of variations. Consider the following functionalL ρ L,[a,b],T , T : C 1,∇ ld (T) -→ R defined by (101) L ρ L,[a,b],T (x) = b a L (t, x ρ (t), ∇x(t)) ∇twhereL : T × R n × R n → Ris a Lagrangian on the time scales T. Theorem 11 (Euler-Lagrange equation). The critical points of L ρ L,[a,b],T are solutions of the following Euler-Lagrange equation

7. 4 .

 4 Example and simulations. Consider the time scales T = {t k = a + kh, k ∈ N} and the following Lagrangian[START_REF] Hydon | Symmetry methods for differential equations: A beginner's guide[END_REF] 

Figure 11 .

 11 Figure 11. The simulation of Ī(t, x, v) and Ī(t, x ρ , v).
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 5 Comparison with the work of N. Martins and D.F.M. Torres. Applying the result of N. Martins and D.F.M. Torres in [27, Theorem 3.4] on our example, they assert that the quantity (110)
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 12881811 Figure 12. x 0 = 1, v = 0.1, h = 0.1

  ) 0 s (τ ) = τ -sζ * (τ ), (g * ) 1 s (x) = y + sξ * (y), where, ζ * (τ ) = ζ(-τ ) and ξ * (y) = ξ(y) is a variational symmetry of the functional (112).Then, applying Theorem 7 to the functional (112), we have from (20) that the function (117)I * (τ, x * ) = (ζ * ) σ (τ ) H * [x * ](τ )+ξ σ(x * )•∂ v L * [x * ](τ )-

ζ

  * ∇σ∂ t L * [x * ](τ )+ ∇ H * [x * ](τ ) ∇τ, is constant over the solution of (113), i.e., (118)∇ (ζ * ) σ (τ ) H * [x * ](τ ) + ξ σ(x * ) • ∂ v L * [x * ](τ ) -ζ * ∇σ∂ t L * [x * ](τ ) -ζ * ∇ H * [x * ](τ ) = 0, where [x * ](τ ) = τ, x * (τ ), ∆x * (τ ) and H * [x * ](τ ) = L * [x * ](τ ) -∂ v L * [x * ](τ ) • ∆x * (τ ). For simplicity, let [x](τ ) = (τ, x(τ ), ∇x(τ )), Q(τ ) = ∂ v L[x](τ ), T (τ ) = ∂ t L[x](τ ) and Z(τ ) = Q(τ ) • ∇x(τ ) -L[x](τ ).Taking in your maid the relations:(ζ * ) σ (τ ) = (ζ ρ ) * (τ ), ξ σ(x * (τ )) = (ξ ρ • x) * (τ ), ∆x * (τ ) = -∇x(-τ ), ∇σ(τ ) = (∆ρ) * (τ ) = ∆ρ(-τ ) ∂ v L * [x * ](τ ) = -∂ v L (-τ, x(-τ ), ∇x(-τ )) = -∂ v L[x](-τ ) = -Q * (τ ) ∂ t L * [x * ](τ ) = -∂ t L (-τ, x(-τ ), ∇x(-τ )) = -∂ t L[x](-τ ) = -T * (τ ) H * [x * ](τ ) = Q(-τ ) • ∇x(-τ ) -L[x](-τ ) = Z * (τ ).we have the term ∇[• • • ] in (118) becomes ∇ (ζ * ) σ (τ )Z * (τ ) + ξ σ(x * ) • ∂ v L * [x * ](τ ) = ∇ (ζ ρ • Z) * (τ ) -∇ (ξ ρ • x) * • Q * (τ ) = -∆ (ζ ρ • Z) (-τ ) + ∆ (ξ ρ (x) • Q) (-τ ),and the rest terms, we haveζ * (τ ) ∇σ(τ )∂ t L * [x * ](τ ) = -(ζ • ∆ρ • T ) * (τ ), ζ * (τ ) ∇ H * [x * ](τ ) = -(ζ • ∆Z) * (τ ).Substituting all of these formulas into (118) and replacing -τ by t ∈ T κ κ gives ∆ -ζ ρ (t) • Z(t) + ξ ρ (x(t)) • Q(t) + ζ(t) ∆ρ(t) • T (t) + ∆Z(t) = 0.

  for all τ ∈ T κ κ and the second Euler-Lagrange equation is equivalent to(124) ∇σ(τ ) ∂L ∂t ( τ ) + ∇ ∆x(τ ) ∂L ∂v ( τ ) -L( τ ) = 0,for all τ ∈ T κ κ , which corresponds to the condition ( ). As Equation (123) is the Euler-Lagrange equation associated with the Lagrangian functional L L,[a,b],T , we obtain that x is a critical point of L L,[a,b],T and ( ) is satisfied.For the sufficient condition, let us assume that ( ) is satisfied and let x be a critical point of L L,[a,b],T and let γ be the path such that (t, x) ∈ F. The previous computations show that γ satisfies equation (123) by assumption on x and equation (124) by hypothesis. As a consequence, γ is a critical point of L L . This concludes the proof.Proof of Lemma 4. Let γ = (t, x) ∈ F. By definition, we have(125) L L (g s (γ)) = b a L g 0 s (t(τ )), (g 1 s • x)(t(τ )), ∆ Ts g 0 s (t(τ )), ∆ Ts g 1 s • x (t(τ )) ∆ Ts τ.Using the definition of L and the fact that t(τ ) = τ and ∆g 0 s (τ ) = 0 for all τ ∈ T κ , we obtain(126) L L (g s (γ)) = b a L s g 0 s (τ ), (g 1 s • x)(τ ), ∆ g 1 s • x (τ ) of L L,[a,b],T with the Lemma 3, we obtain (127) L L (g s (γ)) = b a L (τ, x(τ ), ∆x(τ )) ∆τ. In consequence, as ∆t(τ ) = 1, we obtain L L (g s (γ)) = b a L (τ, x(τ ), 1, ∆x(τ )) dτ = L L (γ). (128) This concludes the proof.
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  Proof of Noether's theorem. It follows from[START_REF] Martins | Noether's symmetry theorem for nabla problems of the calculus of variations[END_REF] that, if G is a variational symmetry of the functional (97) with the corresponding infinitesimal generator X = ζ∂ t + ξ∂ x , then the group G * defined by

	) we obtain		
	∆Q(t) = ∆ρ(t)	∂L ∂x	(t, x(t), ∇x(t)).
	This complete the proof.		
	8.1.2.		

  ∇•∆ ), it satisfies the following Euler-Lagrange equations As γ ∈ F, we have ( τ ) = (τ, x(τ ), ∆x(τ )). As a consequence, the first Euler-Lagrange equation is equivalent to

	(120)				(EL ∇•∆ ) L	    ∇    ∇	∂L ∂v ∂L ∂w	(¯ τ ) = ∇σ(τ ) (¯ τ ) = ∇σ(τ )	∂L ∂x ∂L ∂t	(¯ τ ), (¯ τ ),
	for all τ ∈ T κ κ , where By definition, we have					
	(121)	∂L ∂t	( τ ) =	∂L ∂t	( τ )∆[t](τ ),		∂L ∂w	( τ ) = L ( τ ) -∆[x • t](τ )	1 ∆[t](τ )	∂L ∂v	( τ ),
	(122)	∂L ∂x	( τ ) =	∂L ∂x	( τ )∆[t](τ ),		∂L ∂v	( τ ) =	∂L ∂v	( τ ).
	(123)				∇	∂L ∂v	(		

τ = (t(τ ), (x • t)(τ ), ∆[t](τ ), ∆[x • t](τ )). τ ) = ∇σ(τ ) ∂L ∂x ( τ ) .