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Introduction and definitions

A stochastic differential equation with a prescribed terminal condition is called a backward stochastic differential equation (BSDE). If a terminal condition can take the value +∞ it is said to be singular. BSDE with singular terminal conditions has received considerable attention at least since [START_REF] Popier | Backward stochastic differential equations with singular terminal condition[END_REF]. They generalize diffusion-reaction partial differential equations (PDE) where the singularity of the terminal condition of the BSDE corresponds to singularities in the final trace of the solution of the PDE (see [START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF][START_REF] Popier | Backward stochastic differential equations with singular terminal condition[END_REF][START_REF] Popier | Backward stochastic differential equations with random stopping time and singular final condition[END_REF][START_REF] Popier | Limit behaviour of bsde with jumps and with singular terminal condition[END_REF] and [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF]). Moreover BSDE with a singularity at time T are a key tool in the solution of optimal stochastic control problems with terminal constraints (see [START_REF] Ankirchner | BSDEs with Singular Terminal Condition and a Control Problem with Constraints[END_REF][START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF][START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] and the references therein). This type of control problem can be interpreted as an optimal liquidation problem in finance (see the preceding references and [START_REF] Guéant | The financial mathematics of market liquidity[END_REF] for an overview). Given a BSDE with a terminal condition ξ at T , a process Y satisfying the BSDE is said to be supersolution if

lim inf t→T Y t ≥ ξ (1) 
holds almost surely; Y is said to be minimal if every other supersolution dominates it. As explained below, minimal supersolutions and their properties play a key role our analysis. We say Y solves the BSDE with singular terminal condition ξ if

lim t→T Y t = ξ; (2) 
i.e., to go from a supersolution to a solution we need to replace the lim inf in [START_REF] Ankirchner | BSDEs with Singular Terminal Condition and a Control Problem with Constraints[END_REF] with lim and ≥ with =. In the rest of this paper whenever we refer to the "solution" of a BSDE with a singular terminal value, it will be in the sense of [START_REF] Apostol | Mathematical analysis[END_REF]. The condition [START_REF] Apostol | Mathematical analysis[END_REF] means that the process Y is continuous at time T ; for this reason we refer to the problem of establishing that a candidate solution satisfies (2) as the "continuity problem." We further comment on the distinction between solutions (in the sense of ( 2)) and minimal supersolutions below. While minimal supersolutions of BSDE with singular terminal conditions is available in a general setting (see [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] and subsection 1.2 below), solutions of BSDE with singular terminal conditions are mostly available for Markovian terminal conditions, i.e., terminal conditions which are deterministic functions of an underlying adapted Markov process; see subsection 1.2 for a summary of known results. The first work to solve a BSDE with a non-Markovian singular terminal condition was [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF] treating the following problem:

Y t = Y s - t s Y r |Y r | q-1 dr - t s Z r dW r , 0 < s < t < T, (3) 
Y T = ξ,
where q > 1 and W is a single dimensional Brownian motion,

ξ = ∞ • 1 {τ 0 ≤T } or ξ = ∞ • 1 {τ 0 >T } (4) 
and τ 0 is the first exit time of W from an interval [a, b]. The goal of the present work is to generalize these results in the following directions:

1. Work with a more general filtration supporting a d-dimensional Brownian motion and a Poisson random measure, 2. More general driver processes f that is allowed to be an F-adapted process, 3. For ξ 1 = ∞ • 1 {τ ≤T } we allow τ to be any stopping time whose distribution around T has a bounded density; we show that the exit time of a multidimensional continuous diffusion process from a time varying domain satisfies the density condition.

4. Extend ξ 2 = ∞ • 1 {τ >T } to the more general terminal condition ξ 2 = ∞ • 1 A T where A t , t ∈ [0, T ] is a decreasing sequence of events adapted to F T that is left continuous in probability at T .

Let (Ω, F, P, F = (F t ) t≥0 ) be a filtered probability space. The filtration F is assumed to be complete, right continuous, it supports a d dimensional Brownian motion W and a Poisson random measure π with intensity µ(de)dt on the space E ⊂ R m \ {0}. The measure µ is σ-finite on E and satisfies E (1 ∧ |e|2 )µ(de) < +∞.

The compensated Poisson random measure π(de, dt) = π(de, dt) -µ(de)dt is a martingale with respect to the filtration F. In this framework we will study the following generalization of (3):

Y t = Y s + s t f (r, Y r , Z r , ψ r )dr - s t Z r dW r - s t E
ψ r (e) π(de, dr) -

s t dM r , (5) 
Y T = ξ, (6) 
0 ≤ t < s < T. We call (Y, Z, ψ, M ) a solution to the BSDE [START_REF] Blanchet-Scalliet | Hitting time for correlated threedimensional Brownian motion[END_REF][START_REF] Burdzy | The heat equation in time dependent domains with insulated boundaries[END_REF] if (Y, Z, ψ, M ) satisfies [START_REF] Blanchet-Scalliet | Hitting time for correlated threedimensional Brownian motion[END_REF][START_REF] Burdzy | The heat equation in time dependent domains with insulated boundaries[END_REF] and Y is continuous at T , i.e., lim

t→T Y t = Y T = ξ;
The driver f , generalizing the deterministic -y|y| q-1 appearing in [START_REF] Bank | Linear quadratic stochastic control problems with stochastic terminal constraint[END_REF], is defined on 1 and for any fixed y, z, ψ, f (t, y, z, ψ) is assumed to be a progressively measurable process; thanks to apriori bounds and comparison results proved in [START_REF] Kruse | Bsdes with monotone generator driven by brownian and poisson noises in a general filtration[END_REF][START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF][START_REF] Kruse | L p -solution for BSDEs with jumps in the case p < 2: corrections to the paper 'BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF], we are able to work with a very general class of drivers; to be able to use their bounds and comparison results we will adopt the assumptions these works make on the filtration and on the driver, which are listed in subsection 1.2 as conditions (A) and (B).

Ω × [0, T ] × R × R k × (L 1 µ + L 2 µ )
In Section 2 we solve the BSDE [START_REF] Blanchet-Scalliet | Hitting time for correlated threedimensional Brownian motion[END_REF][START_REF] Burdzy | The heat equation in time dependent domains with insulated boundaries[END_REF] with

2 ξ = ξ 1 = ∞ • 1 {τ ≤T } ,
where τ is any stopping time whose distribution in a neighborhood of T has a bounded density. In Section 3 we treat terminal conditions of the form

ξ = ξ 2 = ∞ • 1 A T ,
where A t is a decreasing left continuous sequence of events adapted to our filtration that is left continuous in probability at time T :

P t<T A t \ A T = 0. ( 7 
)
Lemma 4 of Section 3 shows that the formulation of the terminal condition ξ 2 in terms of a decreasing sequence of events is equivalent to setting {τ > T } where τ is a stopping time with P(τ = T ) = 0.

We know from [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] that the BSDE (5) has a minimal supersolution Y min t with terminal condition ξ 1 . The goal of Section 2 is to prove that Y min t is continuous at T and has ξ 1 as its limit-this implies that the supersolution is indeed a solution. Let Y ∞ be the solution of [START_REF] Blanchet-Scalliet | Hitting time for correlated threedimensional Brownian motion[END_REF] with terminal condition ξ = ∞ identically. The main idea in establishing the continuity of the minimal supersolution is to use the solution of a linear BSDE with terminal condition Y ∞ τ • 1 {τ ≤T } as an upper bound on the time interval [0, τ ∧ T ] (see [START_REF] Flanders | Differentiation under the integral sign[END_REF] and ( 16)). The proof that the upperbound process is well defined involves two ingredients 1) the fact that τ has a density and 2) apriori upperbounds on Y ∞ derived in [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF]. Although the approach of [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF] is different from the one outlined above, it uses these ingredients as well, both of which are elementary in the setup treated in [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF]: there is an explicit formula for the density of the exit time τ 0 and the process t → y t in [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF] corresponding to Y ∞ is deterministic with an elementary formula so no apriori bounds were needed in [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF].

The treatment of ξ 2 given in Section 3 is a generalization of the argument given in [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF] dealing with ∞ • 1 {τ 0 >T } where τ 0 is the first time a one dimensional Brownian motion leaves a bounded interval; the argument in [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF] was based on a reduction to PDE whereas in the present work we will be working directly with the BSDE. To deal with the generality of the filtration, we impose a further technical assumption (see (C2), section 3): there exists a sequence t n T such that the filtration F is left continuous at all t n . See Remark 4 in Section 3 for comments on this assumption. To solve the BSDE with terminal condition ξ 2 , we construct two sequences of processes (all solutions of the BSDE ( 5), [START_REF] Burdzy | The heat equation in time dependent domains with insulated boundaries[END_REF] with different terminal conditions), one increasing and one decreasing such that the decreasing sequence dominates the increasing one. The limit of the increasing sequence is our candidate solution (in fact it is exactly the minimal supersolution of [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] with terminal condition ξ 2 ); the decreasing sequence is used to prove that the candidate solution satisfies the terminal condition. The terminal condition for the increasing sequence is Y T = n • 1 A T and for the decreasing sequence it is Y T = ∞ • 1 At n . That all these sequences are in the right order will be proved by the comparison principle for the BSDE (5) derived in [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF].

An advantage of the results obtained in [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF] is the following: they characterize precisely the minimal super-solution as the pasting of two process at a stopping time τ . We have a partial result in that direction for ξ 1 : Proposition 1 proves this character of the minimal supersolution of the BSDE (5), [START_REF] Burdzy | The heat equation in time dependent domains with insulated boundaries[END_REF] for the terminal condition ξ 1 when the filtration is assumed to be generated by W and π. The proof of an analogous result for the terminal condition ξ 2 remains for future work.

Both [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF] and the present work relax the assumption on q > 3 imposed in [START_REF] Popier | Backward stochastic differential equations with singular terminal condition[END_REF][START_REF] Popier | Limit behaviour of bsde with jumps and with singular terminal condition[END_REF][START_REF] Marushkevych | Limit behaviour of the minimal solution of a bsde with singular terminal condition in the non markovian setting[END_REF]] (see subsection 1.3 for further comments on these works). Parallel to the analysis in [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF], the treatment of terminal conditions ξ 1 and ξ 2 in the present work involve different assumptions on q: the proof of continuity of Y given in Section 2 for the terminal condition ξ 1 requires q > 2 whereas q > 1 suffices for ξ 2 (Section 3). The reason for the difference is essentially the same as in [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF]: for ξ 1 we construct an additional linear process for the upperbound; for ξ 2 the sequence of upperbounds are all solutions to the same BSDE with different terminal conditions. An additional difference in assumptions not present in [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF]: an assumption adapted from the general framework of [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] introduces a constant > 1 (see (B2) below). In [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF], this condition trivially holds and is not needed explicitly. In the treatment of ξ 1 we require > 2 (see Lemma 1); > 1 suffices for ξ 2 . The reason for the difference is the same as for q: in the treatment of ξ 1 we construct a linear BSDE as the upperbound and this requires more stringent integrability conditions on terminal values.

In Section 4 we identify a class of stopping times satisfying the assumptions made on the stopping times above. The class of these stopping times is defined in terms of a diffusion process X driven by the Brownian motion W :

X t = x 0 + t 0 b(s, X s )ds + t 0 σ(s, X s )dW s , (8) 
where a = σσ is assumed to be uniformly and strictly elliptic and a and b assumed uniformly Hölder continuous; these assumptions are adopted from [16, page 8]. The initial value x 0 takes values in a bounded open set D 0 . Define

D = T t=0 {t} × D t ⊂ R d+1 ;
D satisfies the assumptions in [START_REF] Friedman | Partial differential equations of parabolic type[END_REF], see Section 4 below. The class of stopping times identified in this section are exit times of X from the domain D:

τ . = inf{t ≥ 0 : X t ∈ D c t }. (9) 
To prove that τ satisfies the assumptions of Sections 2 and 3 it suffices to show that it has a continuous density. Despite the considerable literature on exit times of diffusions we are not aware of a result in the currently available literature establishing that the exit time τ of ( 9) has a density. Section 4 is devoted to the derivation of this density; the natural tool for this is the Green's function of the generator of X derived in [START_REF] Friedman | Partial differential equations of parabolic type[END_REF]. The rest of this introduction discusses the implications of our results to stochastic optimal control, lists the assumptions we adopt and the results we will be using from prior work and gives a summary of what is known in the prior literature about the continuity of the minimal supersolution of BSDE with singular terminal conditions. In Section 5 we comment on possible future work.

Implications of continuity results for stochastic optimal control

Minimal supersolutions of the BSDE (5) with singular terminal conditions can be used to represent the value function of a corresponding stochastic optimal control problem with constraints, see [START_REF] Ankirchner | BSDEs with Singular Terminal Condition and a Control Problem with Constraints[END_REF][START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] and [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF]Section 4] for the precise formulation of the optimal control problem and a detailed discussion. In this connection between the BSDE and its corresponding stochastic optimal control problem, changing the terminal condition of the BSDE corresponds to changing the terminal payoff and the constraints of the problem. A natural question: when these change, do the value function and the optimal control of the control problem change? Surprisingly, and to the best of our knowledge, for the control problems corresponding to the class of terminal conditions treated in the present work, the current BSDE theory can't answer this question. The continuity results we prove in the present article establishing that a minimal supersolution is a solution in the sense of ( 2) provides an answer as follows. Suppose Y (1) and Y (2) are minimal supersolutions of the BSDE for two distinct terminal conditions ξ (1) , ξ (2) . Suppose that Y (i) are solutions to the BSDE with these terminal conditions in the sense of (2), i.e., that Y (i) are both continuous at time T . This and ξ (1) = ξ (2) imply that Y (1) and Y (2) are distinct processes. To rephrase this in terms of the control interpretation: changing the constraint and terminal value of the control problem from ξ (1) to ξ (2) leads to distinct value functions (and hence optimal controls) for the control problem.

We explain a further implication of the continuity results to optimal control through the following example. Let X denote the state process of the corresponding optimal control problem. As explained in [START_REF] Ankirchner | BSDEs with Singular Terminal Condition and a Control Problem with Constraints[END_REF][START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] the terminal condition ξ (1) = ∞ corresponds to the constraint X T = 0. Let us relax this constraint to requiring X T = 0 only when {τ > T } where τ is a stopping time of the filtration. The corresponding terminal condition ξ = ∞ • 1 {τ >T } belongs to the class we treat in Section 3. Two questions: 1) does this relaxation lead to a lower value function? This question is a special case of the question discussed in the previous paragraph, i.e., whether the same BSDE with distinct terminal conditions have distinct solutions, and we know that continuity of the solution implies that the solutions will be distinct. A more delicate question: 2) is the optimal control tight, i.e., is it the case that, under the optimal control X T = 0 if and only if {τ < T }? The continuity of the minimal supersolution implies that the answer to this question is also affirmative. In finance applications a non-tight optimal control can be interpreted as a strictly super-hedging trading strategy. Continuity results overrule such strategies.

As a last point in connection with optimal control and optimal liquidation we note that the continuity of the minimal supersolution at terminal time appears in [START_REF] Bank | Linear quadratic stochastic control problems with stochastic terminal constraint[END_REF], as a condition for the solution of an optimal targeting problem.

Assumptions and results from prior works

Let us first define L p µ = L p (E, µ; R), the set of measurable functions ψ : E → R such that

ψ p L p µ = E
|ψ(e)| p µ(de) < +∞, and

B 2 µ = L 2 µ if p ≥ 2, L 1 µ + L 2 µ if p < 2.
For the definition of the sum of two Banach spaces, see for example [START_REF] Kreȋn | Interpolation of linear operators[END_REF]. The introduction of B 2 µ is motivated in [START_REF] Kruse | L p -solution for BSDEs with jumps in the case p < 2: corrections to the paper 'BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF]. We assume that f

: Ω × [0, T ] × R × R m × B 2 µ → R is a random measurable function, such that for any (y, z, ψ) ∈ R × R m × B 2
µ , the process f (t, y, z, ψ) is progressively measurable. For notational convenience we write f 0 t = f (t, 0, 0, 0). The precise assumptions on the driver f , adapted from [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] are as follows:

(A1) The function y → f (t, y, z, ψ) is continuous and monotone: there exists χ ∈ R such that a.s. and for any t ∈ [0, T ] and

z ∈ R m and ψ ∈ B 2 µ (f (t, y, z, ψ) -f (t, y , z, ψ))(y -y ) ≤ χ(y -y ) 2 . (A2) sup |y|≤n |f (t, y, 0, 0) -f 0 t | ∈ L 1 ((0, T ) × Ω) holds for every n > 0.
(A3) There exists a progressively measurable process κ = κ y,z,ψ,φ :

Ω × R + × R m × B 2 µ → R such that f (t, y, z, ψ) -f (t, y, z, φ) ≤ E (ψ(e) -φ(e))κ y,z,ψ,φ t (e)µ(de)
with P ⊗ Leb ⊗ µ-a.e. for any (y, z, ψ, φ), -1 ≤ κ y,z,ψ,φ t (e) and |κ y,ψ,φ t (e)| ≤ ϑ(e) where ϑ belongs to the dual space of B 2 µ , that is

L 2 µ or L ∞ µ ∩ L 2 µ .
(A4) There exists a constant L f such that a.s.

|f (t, y, z, ψ) -f (t, y, z , ψ)| ≤ L f |z -z |
for any (t, y, z, z , ψ).

The set of conditions (A) guarantees the existence and uniqueness of the solution of the BSDE ( 5) and ( 6) if for some p > 1

E |ξ| p + T 0 |f 0 t |dt p < +∞.
(see [START_REF] Kruse | Bsdes with monotone generator driven by brownian and poisson noises in a general filtration[END_REF][START_REF] Kruse | L p -solution for BSDEs with jumps in the case p < 2: corrections to the paper 'BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF] and the references therein).

A key tool for BSDEs is the comparison principle which ensures that if ξ 1 ≤ ξ 2 a.s., if we can compare the generators f 1 ≤ f 2 along one solution and if the drivers satisfy the conditions (A), then the solutions can be compared: a.s. Y 1 ≤ Y 2 . See, e.g., [12, Section 3.2], [START_REF] Kruse | Bsdes with monotone generator driven by brownian and poisson noises in a general filtration[END_REF]Proposition 4] or [START_REF] Pardoux | Stochastic Differential Equations, Backward SDEs, Partial Differential Equations[END_REF]Section 5.3.6].

A second set of assumptions are needed to control the growth of the process Y when the terminal condition can take the value +∞. These assumptions generalize the superlinearity of y → y|y| q-1 in (3) and are adapted from [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF]:

(B1) There exists a constant q > 1 and a positive process η such that for any y ≥ 0

f (t, y, z, ψ) ≤ - y η t |y| q-1 + f (t, 0, z, ψ).
(B2) There exists some > 1 such that

E T 0 (η s ) (p-1) ds < +∞
where p is the Hölder conjugate of q.

(B3) The parameter ϑ of (A3) satisfies: for any > 2

E

|ϑ(e)| µ(de) < +∞.

(B4) We suppose that f 0 satisfies

f 0 t ≥ 0, t ∈ [0, T ] a.s., E T 0 f 0 s ds < +∞.
where > 1 is the constant in assumption (B2).

We further suppose that the generator (t, y) → -y|y| q-1 /η t satisfies the (A) assumptions, which means that η satisfies:

E T 0 1 η t dt < +∞. ( 10 
)
Remark 1 (On Assumption (B3)). In fact it is sufficient to assume that ϑ belongs to some L ρ µ for ρ large enough. But this generality leads to cumbersome conditions on and q in Theorem 1.

Remark 2 (On Condition (B4)). The work [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] introduces an integrability assumption on (f 0 t ) -= max(-f 0 t , 0) and on (f 0 t ) + (see conditions A4 and A6 in [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF]). Hence (B4) is stronger. The sign hypothesis could be relaxed at the expense of more technical considerations and presentation.

The case T 0 (f 0 s ) + ds = +∞ (excluded by our assumption (B4)) is not an obstacle to the construction of minimal supersolutions, and [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF], which constructs minimal supersolutions allows T 0 (f 0 s ) + ds = +∞. The problem with T 0 (f 0 s ) + ds = +∞ is that in its presence it is known that Y min may be discontinuous at T : see, [START_REF] Popier | Limit behaviour of bsde with jumps and with singular terminal condition[END_REF]Section 3.1], for a BSDE that violates the integrability condition (B4) on f 0 , whose minimal supersolution Y min explodes almost surely at time T for all terminal values ξ. Therefore, the integrability condition (B4) is natural when one seeks continuity results for the class of BSDE treated in the present work.

From [23, Theorem 1], under the setting of conditions (A) and (B), and if the filtration is left-continuous at time T , we know that there exists a process (Y, Z, ψ, M ) which is a minimal supersolution to the BSDE [START_REF] Blanchet-Scalliet | Hitting time for correlated threedimensional Brownian motion[END_REF] with singular terminal condition Y T = ξ ≥ 0 in the sense that:

1. for all t < T :

E sup s∈[0,t] |Y s | + t 0 |Z s | 2 ds /2 + t 0 E |ψ s (e)| 2 π(de, ds) /2 + [M ] /2 t < +∞; 2. Y is non negative; 3. for all 0 ≤ s ≤ t < T : Y s = Y t + t s f (u, Y u , Z u , ψ u )du - t s Z s dW s - t s E ψ u (e) π(de, du) - t s dM u .
4. The terminal condition ( 6) becomes ( 1), namely: a.s. lim inf t→T Y s ≥ ξ.

5.

For any other supersolution (Y , Z , ψ , M ) satisfying the first four properties, we have Y t ≤ Y t a.s. for any t ∈ [0, T ).

As in [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF], we denote this minimal supersolution by (Y min , Z min , ψ min , M min ). Let us recall that the construction is done by approximation ([23, Theorem 1]). We consider (Y (k) , Z (k) , ψ (k) , M (k) ) the unique solution of the BSDE:

Y (k) t = ξ ∧ k + T t f k (s, Y (k) s , Z (k) s , ψ (k) s )ds - T t Z (k) s dW s - T t E ψ (k) s (e) π(de, ds) - T t dM (k) s , (11) 
with truncated parameters, namely the terminal condition ξ ∧ k and the driver

f k (t, y, z, ψ) = f (t, y, z, ψ) -f 0 t + (f 0 t ∧ k). (12) 
Under (A) and (B4), existence and uniqueness of the solution is guaranteed by [START_REF] Kruse | Bsdes with monotone generator driven by brownian and poisson noises in a general filtration[END_REF]Theorem 3]. From the comparison principle ([22, Proposition 4]), the sequence Y (k) is non decreasing and converges to a limit Y min : a.s. for any

t ∈ [0, T ] lim k→+∞ Y (k) t = Y min t .
The sequence (Z (k) , ψ (k) , M (k) ) converges to (Z min , ψ min , M min ): for any 0 ≤ t < T

lim k→+∞ E t 0 |Z (k) u -Z min u | 2 du /2 + t 0 E |ψ (k) u (e) -ψ min u (e)| 2 π(de, du) /2 + [M (k) -M min ] t /2 = 0.
See the proof of [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF]Proposition 3].

Finally following the arguments of [23, Propositions 2 and 3], we can prove the following a priori upper estimate on the supersolution: for any 1 < ≤ ,

Y min t ≤ K ϑ,L f , (T -t) p--E T t ((p -1)η s ) p-1 + (T -s) p (f 0 s ) + ds F t 1/ (13) 
where K ϑ,L f , is a constant depending only on ϑ, L f and . This estimate is valid for any terminal value ξ. The proof of this estimate is given in Appendix A.

Continuity results in the prior literature

The present article addresses the following questions on the minimal supersolution Y min of the BSDE ( 5) and the terminal conditions ξ 1 and ξ 2 :

1. Does the limit lim t→T Y min t exist?

2. Can the inequality (1) be an equality (if the filtration is left-continuous at time T ), i.e., is the supersolution Y min t in fact a solution?

Let us summarize the known results about these questions in the currently available literature. The existence of a limit at time T is proved under a structural condition on the generator f ([35, Theorem 3.1]) where the main idea is to show that Y is a nonlinear continuous transform of a nonnegative supermartingale.

The second question is addressed in [START_REF] Popier | Backward stochastic differential equations with singular terminal condition[END_REF][START_REF] Popier | Limit behaviour of bsde with jumps and with singular terminal condition[END_REF][START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF][START_REF] Marushkevych | Limit behaviour of the minimal solution of a bsde with singular terminal condition in the non markovian setting[END_REF]. In the first two papers [START_REF] Popier | Backward stochastic differential equations with singular terminal condition[END_REF][START_REF] Popier | Limit behaviour of bsde with jumps and with singular terminal condition[END_REF], the terminal condition ξ is supposed to be Markovian3 , that is ξ = g(X T ), where X is given by (8) 4 . In [START_REF] Marushkevych | Limit behaviour of the minimal solution of a bsde with singular terminal condition in the non markovian setting[END_REF], ξ is given by a smooth functional (in the sense of Dupire [START_REF] Dupire | Functional itô calculus[END_REF][START_REF] Cont | A functional extension of the Ito formula[END_REF][START_REF] Cont | Functional Itô calculus and functional Kolmogorov equations[END_REF]) on the paths of X. In these three papers, the proof is based on the Itô formula and on a suitable control on Z and ψ, and requires that the q in (B1) is greater than 3.

The work [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF] treating the BSDE (3) and the terminal conditions (4) was a first attempt to obtain a positive answer to these questions with non-Markovian terminal conditions. This work obtains the continuity of Y at time T under the assumption q > 2 for ξ = ∞ • 1 {τ 0 ≤T } and q > 1 for ξ = ∞ • 1 {τ >T } . As we have already noted, the aim of the present work is to extend [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF] in the directions indicated in the list following (3).

Terminal condition ξ 1

The goal of this section is to solve the BSDE (5) with terminal condition ξ 1 = ∞ • 1 {τ ≤T } where τ is any stopping time whose distribution in a neighborhood of T has a bounded density. We will see in Section 4 below that first exit times from time varying domains of multidimensional diffusions driven by W satisfy this condition. Another simple example is provided by jump times of compound Poisson processes, which are Erlang distributed and they evidently have densities.

Let Y (k) be the solution of the BSDE [START_REF] Delarue | First hitting times for general nonhomogeneous 1d diffusion processes: density estimates in small time[END_REF] with terminal condition

Y (k) T = ξ ∧ k = k • 1 {τ ≤T } .
The minimal supersolution of (5), by definition, is

Y min t = lim k→∞ Y (k) t .
We will construct our solution by showing that Y min is in fact a solution, i.e., it satisfies lim t→T

Y min t = ξ 1 . (14) 
The results in [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] imply that ( 14) holds for ξ 1 = ∞. Therefore, it suffices to show ( 14) over the event {τ > T } where the right side of ( 14) is 0. We will do so by constructing a positive upperbound process Y ∞,u on Y min that converges to 0 over the same event. Recall that we suppose that the set of conditions (A) and (B) hold. Let Y ∞ be the minimal supersolution of ( 5) with terminal condition

Y T = ∞ (if f (y) = -y|y| q-1 , then Y ∞ t = ((q -1)(T -t)) -1 q-1 ). Define ξ (τ ) 1 . = 1 {τ <T } Y ∞ τ .
The upperbound process Y ∞,u is defined as the solution of the BSDE with the terminal value ξ

(τ ) 1 = Y ∞
τ 1 τ ≤T at the random time τ ∧ T and the (linear in y) generator

g(t, y, z, ψ) = χ • y + f (t, 0, z, ψ), ( 15 
)
where χ is the constant in (A1). For this to be well defined we need the following lemma:

Lemma 1. If the distribution of τ in a neighborhood of T has a bounded density and if > 2 of (B2) and q > 2 + 2 -2 , then there exists some > 1

E (x,t) [(ξ (τ ) 1 ) ] < ∞.
Proof. The assumptions (B2) and (B4) imply that

M t . = E T 0 ((p -1)η s ) p-1 + (T -s) p (f 0 s ) + ds F t
is a well defined nonnegative martingale. The hypotheses η t > 0 and

f 0 t ≥ 0 imply T 0 ((p -1)η s ) p-1 + (T -s) p (f 0 s ) + ds ≥ T t ((p -1)η s ) p-1 + (T -s) p (f 0 s ) + ds.
This and the a priori bound (13) on Y ∞ imply for any 1 < <

E (x,t) [1 {τ <T } (Y ∞ τ ) ] ≤ E (x,t) 1 {τ <T } K ϑ,L f , (T ∧ τ -t) p M τ ∧T ≤ K ϑ,L f , E (x,t) 1 {τ <T } 1 (T ∧ τ -t) κ - E (x,t) M τ ∧T where κ = p - , p = p - -,
and where we used the Hölder inequality since < . Note that to show our result, from ( 13) it suffices to show E (x,t) 1 {T -δ<τ <T } 1 (T ∧τ -t) κ < ∞ for some δ > 0. We have assumed that the distribution of τ in a neighborhood of T has a bounded density, which we will denote by f τ (t, u). Then:

E (x,t) 1 {T -δ<τ <T } 1 (T ∧ τ -t) κ = T T -δ 1 (u -t) κ f τ (t, u)du,
for some δ > 0. The boundedness of f τ implies that we obtain the desired result if κ < 1, that is if

p < -+ -.
The right side is maximal for = = 1. Recall that p > 1. Hence we need that > 2 and if q > 2 + 2 -2 , then p < 2 -1 . We can find > 1 and > 1 such that the desired inequality holds.

Remark 3. In [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF], the coefficients are bounded, that is, we can take = +∞ and we get back the condition q > 2.

The driver g satisfies all conditions (A). Moreover the terminal time τ ∧ T is bounded. Hence we apply [22, 24, Theorem 3] and ensure the existence and the uniqueness of the solution (Y ∞,u , Z ∞,u , ψ ∞,u , M ∞,u ) such that for any t ∈ [0, T ]

E |Y ∞,u t∧τ | + τ ∧T 0 |Y ∞,u s | ds + τ ∧T 0 |Z ∞,u s | 2 ds /2 (16) 
+ τ ∧T 0 E |ψ ∞,u s (e)| 2 π(de, ds) /2 + [M ∞,u ] /2 τ ∧T < +∞. ( 17 
)
Note that if f 0 ≡ 0 and f does not depend on z and ψ, then

Y ∞,u t = E[e χ(τ -t) Y ∞ τ 1 {τ <T } |F t ].
We next prove that Y ∞,u does serve as an upper bound on Y (k) :

Lemma 2. Y (k) admits the upper bound

Y (k) t ≤ Y ∞,u t a.s. on the random interval [[0, τ ∧ T ]].
Proof. The minimal solution Y ∞ is constructed by approximation and for any n ≥ k, we have: k • 1 {τ ≤T } ≤ n a.s. By the comparison principle for BSDEs, a.s. for any t ∈ [0, T ]:

Y (k) t ≤ Y ∞ t . Hence a.s. Y (k) τ ∧T = Y (k) τ 1 τ ≤T ≤ Y ∞ τ 1 τ ≤T .
Since Y (k) solves the BSDE (5) on the whole interval [0, T ], the stopped process

Y (k),τ = Y (k) •∧τ solves the same BSDE on the random interval [[0, τ ∧ T ]]. Now Y ∞,u
is the solution of the BSDE with the terminal value ξ

(1) τ = Y ∞ τ 1 τ ≤T at the random time τ ∧ T and the generator g(t, y, z, ψ) = χy + f (t, 0, z, ψ).

From the assumptions (A) on f , for any y ≥ 0, we have

f (t, y, z, ψ) ≤ f (t, y, z, ψ) -f (t, 0, z, ψ) + f (t, 0, z, ψ) ≤ χy + f (t, 0, z, ψ) = g(t, y, z, ψ).
Note that Y (k) and Y ∞ are non negative. Hence we can compare the drivers and deduce the claimed result by the comparison principle.

We now prove that the upper bound process has the continuity property we need at terminal time T : Lemma 3. The upper bound process Y ∞,u satisfies:

lim t→T Y ∞,u t = 0. a.s. on {τ > T } Proof. Indeed for any 0 ≤ t ≤ s: Y ∞,u t∧τ ∧T = Y ∞,u s∧τ ∧T + s∧τ ∧T t∧τ ∧T g(r, Y ∞,u r , Z ∞,u r , ψ ∞,u r )dr - s∧τ ∧T t∧τ ∧T Z ∞,u r dW r - s∧τ ∧T t∧τ ∧T E ψ ∞,u
r (e) π(de, dr) -

s∧τ ∧T t∧τ ∧T dM ∞,u r = Y ∞,u s∧τ ∧T + s∧τ ∧T t∧τ ∧T χY ∞,u r dr + s∧τ ∧T t∧τ ∧T f 0 r dr - s∧τ ∧T t∧τ ∧T dM ∞,u r + s∧τ ∧T t∧τ ∧T [f (r, 0, Z ∞,u r , ψ ∞,u r ) -f (r, 0, 0, ψ ∞,u r )] dr - s∧τ ∧T t∧τ ∧T Z ∞,u r dW r + s∧τ ∧T t∧τ ∧T f (r, 0, 0, ψ ∞,u r ) -f 0 r dr - s∧τ ∧T t∧τ ∧T E ψ ∞,u
r (e) π(de, dr)

Using (A4), we can write

f (r, 0, Z ∞,u r , ψ ∞,u r ) -f (r, 0, 0, ψ ∞,u r ) = κ ∞,u r Z ∞,u r
where the process κ ∞,u is bounded by L f uniformly in r and ω. Using (A3) we have

f (r, 0, 0, ψ ∞,u r ) -f 0 r ≤ E ψ ∞,u
r (e)κ 0,0,ψ ∞,u ,0 r (e)µ(de).

From the comparison principle for BSDE and the explicit formula for the solution of a linear BSDE, we have an explicit upper bound on Y ∞,u :

Y ∞,u t ≤ E E t,τ ∧T Y ∞ τ 1 τ ≤T + τ ∧T t E t,s f 0 s ds F t = Γ t ,
where for t ≤ s

E t,s = exp χ(s -t) + s t κ ∞,u r dW r - 1 2 s t |κ ∞,u r | 2 dr V ∞ t,s
and V ∞ is the Doléans-Dade exponential:

V ∞ t,s = 1 + s t E V ∞ t,u-κ 0,0,ψ ∞,u ,0
u (e) π(de, du).

From assumptions (B3) and (B4), together with the integrability property proved in Lemma 1, we obtain that if

τ > T , 0 ≤ lim t→T Y ∞,u t ≤ lim t→T Γ t = 0,
which achieves the proof of the lemma.

Combining the lemmas above we have the main result of this section:

Theorem 1. Under conditions (A) and (B), if the distribution of the stopping time τ is given by a bounded density in a neighborhood of T , > 2 and q > 2 + 2 -2 , then the minimal supersolution with terminal condition ξ 1 satisfies

lim t→T Y min t = ξ 1 (18) 
almost surely.

Proof. As stated in the beginning of this section it suffices to prove (18) over the event {τ > T } where ξ 1 = 0. By our assumptions on the driver f , Y (k) is nonnegative; this and Lemma 2 gives 0 ≤ Y

(k) t ≤ Y ∞,u t .
On the other hand, by Lemma 3, the limit as t → T of the right side is 0 over the event {τ > T }. These imply [START_REF] Guéant | The financial mathematics of market liquidity[END_REF].

This result generalizes the continuity result [39, Theorem 2.1]. If the setting of this former result was less general, we were able to describe precisely the minimal supersolution, namely that it is obtained by pasting two processes at time τ . The presence of the orthogonal martingale M complicates this approach in the present setting, but if the filtration is assumed to be generated by W and π alone then the same technique can be used here as well. The details are as follows.

Let Y 1,τ be the solution of the BSDE (5) in the time interval [[0, τ ∧ T ]] with terminal condition ξ (τ ) 1

(again we can apply [START_REF] Kruse | Bsdes with monotone generator driven by brownian and poisson noises in a general filtration[END_REF][START_REF] Kruse | L p -solution for BSDEs with jumps in the case p < 2: corrections to the paper 'BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF]Theorem 3] as for Y ∞,u ). Following the idea of [39, Theorem 2.1], let us define

Y t . = Y 1,τ t , t ≤ τ ∧ T Y ∞ t , τ < t ≤ T
where we assume that τ is an F W stopping time, that is it just depends on the paths of W , and is predictable (exit times of Section 4 are a particular case). The jump times of Y ) implies that the jump times of π are totally inaccessible, hence a.s. cannot be equal to τ . However we cannot exclude that the orthogonal martingale may have a jump at time τ . The second issue is the definition of the martingale part (Z, ψ, M ). For the first two components, we can easily paste them together

Z t . = Z 1,τ t , t ≤ τ ∧ T Z ∞ t , τ < t ≤ T , ψ t (e) . = ψ 1,τ t (e), t ≤ τ ∧ T ψ ∞ t (e), τ < t ≤ T .
Since τ is predictable, these two processes are also predictable and the stochastic integrals

• 0 Z t dW t , • 0 E ψ t (e) π(de, dt)
are well-defined and are local martingales on [0, T ). Nonetheless if we define M similarly, we cannot ensure that this process is still a local martingale. For the parts with Z and ψ, the local martingale property is due to the representation as a stochastic integral. Based on these observations we provide the following result on the pasting method under the assumption that the filtration is generated by W and π alone; the approach in the proof of this proposition is the generalization of the approach used in [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF]. 

Y s = Y t + t s f (r, Y r , Z ∞ r , ψ ∞ r )dr - t s Z ∞ r dW r - t s E ψ ∞ r (e) π(de, dr).
The dynamics of Y 1,τ is given by:

Y 1,τ s∧τ ∧T = Y 1,τ t∧τ ∧T + t∧τ ∧T s∧τ ∧T f (r, Y 1,τ r , Z 1,τ r , ψ 1,τ r )dr - t∧τ ∧T s∧τ ∧T Z 1,τ r dW r - t∧τ ∧T s∧τ ∧T E ψ 1,τ
r (e) π(de, dr).

It implies that for {τ ≥ t}, Y has the required dynamics. Finally for {τ ∈ (s, t)}, we have

Y 1,τ s = Y 1,τ τ + τ s f (r, Y 1,τ r , Z 1,τ r , ψ 1,τ r )dr - τ s Z 1,τ r dW r - τ s E ψ 1,τ r (e) π(de, dr)
and

Y ∞ τ = Y ∞ t + t τ f (r, Y ∞ r , Z ∞ r , ψ ∞ r )dr - t τ Z ∞ r dW r - t τ E
ψ ∞ r (e) π(de, dr).

By the continuity of Y at time τ , we get the desired dynamics also in this case. Finally let us show that Y is continuous at time T . On the set {τ < T }, we have

lim t→T Y t = lim inf t→T Y t = lim inf t→T Y ∞ t = +∞.
And on {τ ≥ T }, lim

t→T Y t = lim t→T Y 1,τ t = ξ (τ ) 1 = 0.
We can conclude that Y satisfies the BSDE [START_REF] Blanchet-Scalliet | Hitting time for correlated threedimensional Brownian motion[END_REF] 

Terminal condition ξ 2

The goal of this section is to prove the continuity of the minimal supersolution for the terminal condition

ξ = ξ 2 = ∞ • 1 A T ,
where A t is a decreasing sequence of events adapted to our filtration: for any s ≤ t, A t ⊂ A s and A t ∈ F t . If τ 0 is a stopping time, the set A t = {τ 0 > t} provides an example. We also assume that:

(C1) Equality ( 7) holds, that is the sequence is left continuous at time T in probability:

P t<T A t \ A T = 0.
(C2) There exists an increasing sequence (t n , n ∈ N), t n < T for all n, lim n→+∞ t n = T , and the filtration F is left continuous at time t n for any n. Recall that we already assume left continuity of F at time T .

If A t is defined as A t = {τ 0 > t} through a stopping time τ 0 , assumption (C1) is equivalent to: P(τ 0 = T ) = 0. In particular if τ 0 has a density this condition is satisfied. Therefore, as in the previous section, if τ 0 is the jump time of an F-adapted compound Poisson process, then it generates a sequence A t satisfying (C1). The same comment applies to the exit times whose densities are derived in the next section.

Remark 4 (On Condition (C2)). If the filtration F is quasi left-continuous, then (C2) holds for any sequence t n . In particular our hypothesis is valid if F is generated by W and π.

The notion of jumps for a filtration has been studied in [START_REF] Jacod | Jumping filtrations and martingales with finite variation[END_REF] (see also [START_REF] Protter | Strict local martingales with jumps[END_REF]Section 2]). Let us note that we are not able to construct a counter example, that is a filtration such that (C2) does not hold.

If τ is a stopping time satisfying P(τ = T ) = 0, A t = {τ ≥ t} defines a sequence satisfying the conditions above. Conversely, any decreasing sequence A t can be associated with a stopping time via the following definition: Proof. The definition of τ and the fact that A c s is decreasing imply

τ . = inf{t : ω ∈ A c t }.
{τ ≤ t} = ∞ n=1 A c t+1/n ∈ ∞ n=1 F t+1/n . ( 19 
)
The right continuity of the filtration F implies {τ ≤ t} ∈ F t i.e., τ is a stopping time.

Again the definition of τ and A c s

A c T as s T imply {τ < T } = ∞ n=1 A c T -1/n and {τ < T } ⊂ A c T .
The continuity in probability at time T of (A t , t ≥ 0) implies

P(A c T \ {τ < T }) = 0,
which completes the proof of the lemma.

Let us denote again by Y ∞ the minimal solution of the BSDE ( 5) with terminal condition +∞ and set

χ n . = 1 At n .
Let us define Y n as the solution of the BSDE over the interval [t n , T ] with generator

f (s, y, z, u) = (f (s, (1 -χ n )y, z, u) -f 0 s + (1 -χ n )f 0 s
and terminal condition Y n T = 0:

Y n t = T t (f (s, (1 -χ n )Y n s , Z n s , U n s ) -f 0 s ds + T t (1 -χ n )f 0 r dr - T t Z n s dW s - T t E U n s π(de, ds) - T t dM n s .
The driver f satisfies all assumptions (A) and (B4) holds. From [22, 24, Theorem 2], there exists a unique solution to this BSDE satisfying

E sup t∈[tn,T ] |Y n t | ≤ E T tn |f 0 r | dr.
Moreover by the comparison principle ([22, Proposition 4]), a.s. for all t ∈ [t n , T ], Y n t ≥ 0. Let us also remark that if f 0 ≡ 0, then Y n ≡ 0.

Define Y ∞,u,n as the solution of the BSDE (5) on [0, t n ] with terminal condition

Y ∞,u,n tn = χ n Y ∞ tn + (1 -χ n )Y n tn .
Note that from [START_REF] Doob | Classical potential theory and its probabilistic counterpart[END_REF], this terminal condition is in L (Ω), hence the solution is well-defined on [0, t n ]. We extend Y ∞,u,n on the whole interval [0, T ]: for all t n ≤ t ≤ T :

Y ∞,u,n t = χ n Y ∞ t + (1 -χ n )Y n t .
Lemma 5. The process Y ∞,u,n satisfies the dynamics of the BSDE (5) on the whole interval

[0, T ]. Moreover a.s. lim t→T Y ∞,u,n t = ∞ • 1 A T -1/n .
Proof. By the definition of Y ∞ , for any t n ≤ t < s < T , we have

Y ∞ t = Y ∞ s + s t f (r, Y ∞ r , Z ∞ r , ψ ∞ r )dr - s t Z ∞ r dW r - s t E ψ ∞ r (e) π(de, dr) - s t dM ∞ r ,
hence multiplying both sides by χ n , which is F tn -measurable, we obtain

χ n Y ∞ t = χ n Y ∞ s + s t χ n f (r, Y ∞ r , Z ∞ r , ψ ∞ r )dr - s t χ n Z ∞ r dW r - s t E χ n ψ ∞ r (e) π(de, dr) - s t dχ n M ∞ r = χ n Y ∞ s + s t f (r, χ n Y ∞ r , χ n Z ∞ r , χ n ψ ∞ r ) -f 0 r dr + s t χ n f 0 r dr - s t χ n Z ∞ r dW r - s t E χ n ψ ∞ r (e) π(de, dr) - s t χ n dM ∞ r .
And from the definition of Y n , we have

(1 -χ n )Y n t = T t (1 -χ n ) (f (s, (1 -χ n )Y n s , Z n s , U n s ) -f 0 s ds + T t (1 -χ n )f 0 r dr - T t (1 -χ n )Z n s dW s - T t E (1 -χ n )U n s π(de, ds) - T t (1 -χ n )dM n s = T t (f (s, (1 -χ n )Y n s , (1 -χ n )Z n s , (1 -χ n )U n s ) -f 0 s ds + T t (1 -χ n )f 0 r dr - T t (1 -χ n )Z n s dW s - T t E (1 -χ n )U n s π(de, ds) - T t (1 -χ n )dM n s
Thereby Y ∞,u,n satisfies the dynamics of the BSDE ( 5) on [t n , T ). Recall that the solution of a BSDE may have a jump at some given time t if and only if the martingale parts π or M have a jump at time t. Hence from our assumption (C2), Y ∞,u,n is continuous at time t n and we can define

Z ∞,u,n t . = Z ∞,u,n t , t ≤ t n , χ n Z ∞ t + (1 -χ n )Z n t t n < t ≤ T, ψ ∞,u,n t (e) . = ψ ∞,u,n t (e), t ≤ t n χ n ψ ∞ t (e) + (1 -χ n )U n t (e) t n < t ≤ T, and 
M ∞,u,n t . = M ∞,u,n t , t < t n χ n M ∞ t + (1 -χ n )M n t t n ≤ t ≤ T.
Then we have that the process (Y ∞,u,n , Z ∞,u,n , ψ ∞,u,n , M ∞,u,n ) satisfies the dynamics of the BSDE (5) on the whole interval [0, T ) and with the singular terminal value ∞ • 1 At n : a.s.

lim t→T Y ∞,u,n t = ∞ • 1 At n .
The only remaining issue concerns M ∞,u,n : it is not clear a priori that it is a martingale on [0, T ). However (Y ∞,u,n , Z ∞,u,n , ψ ∞,u,n , M ∞,u,n ) has the dynamics of the BSDE (5) on the interval [0, t n+1 ], with terminal condition ζ = Y ∞,u,n

t n+1 = χ n Y ∞ t n+1 + (1 -χ n )Y n t n+1
. This terminal value belongs to L (Ω). Hence there exists a unique solution (y, z, v, m) to the BSDE (5) with terminal condition ζ. From uniqueness on [t n , t n+1 ],

y = χ n Y ∞ + (1 -χ n )Y n and m = χ n M ∞ + (1 -χ n )M n
on this interval. And by uniqueness on [0, t n ] for the BSDE with driver f and terminal condition y tn , y = Y ∞,u,n and m = M ∞,u,n on [0, t n ]. Since the martingale m has no jump at time t n (Hypothesis (C2)), we obtain that M ∞,u,n is a martingale on [0, t n+1 ] and thus on [0, T ).

Fix k > 0 and let (Y (k) , Z (k) , U (k) , M (k) ) denote the solution of the BSDE with the truncated terminal condition

Y (k) T = ξ ∧ k = k1 A T .
We have the following bound on Y (k) : Lemma 6. A.s. for all t ∈ [0, T ], k and n

0 ≤ Y (k) t ≤ Y u,∞,n t . Proof. Set ∂Y s = Y u,∞,n s -Y (k) s , ∂Z s = Z u,∞,n s -Z (k) s , ∂U s (e) = U u,∞,n s (e) -U (k) s (e), ∂M s = M u,∞,n s -M (k) s .
We have

f (t, Y u,∞,n t , Z u,∞,n t , U u,∞,n t ) -f (t, Y (k) t , Z (k) 
t , U

t ) = -c t Y t + b t Z t + (f (t, Y (k) t , Z (k) t , U u,∞,n t ) -f (t, Y (k) t , Z (k) t , U (k) t )) with -c t = f (t, Y u,∞,n t , Z u,∞,n t , U u,∞,n t ) -f (t, Y (k) t , Z u,∞,n t , U u,∞,n t ) ∂Y t 1 ∂Yt =0 and b t = f (t, Y (k) t , Z u,∞,n t , U u,∞,n t ) -f (t, Y (k) t , Z (k) t , U u,∞,n t ) ∂Z t 1 ∂Zt =0 . (k) 
By assumption (A1) -c t ≤ χ and by (A4), |b t | ≤ L f . For every t < T the process (∂Y, ∂Z, ∂U, ∂M ) solves the BSDE

d∂Y s = c s ∂Y s -b s ∂Z s -(f 0 s -L) + -(f (s, Y L s , Z L s , ψ u,∞,n s ) -f (s, Y L s , Z L s , ψ L s )) ds + ∂Z s dW s + E ∂ψ s (e) π(de, ds) + d∂M s on [0, t] with terminal condition ∂Y t = Y u,∞,n t -Y (k) 
t . Moreover, by Assumption (A3)

f (s, Y (k) s , Z (k) s , ψ u,∞,n s ) -f (s, Y (k) s , Z (k) s , ψ (k) s ) ≥ E κ k,u,∞,n s (e)∂ψ s (e)µ(de)
where κ k,u,∞,n = κ Y (k) ,Z (k) ,ψ (k) ,ψ u,∞,n . From [22, Lemma 10], we have

∂Y s ≥ E ∂Y t Γ s,t + t s Γ s,u (f 0 u -k) + du F s where Γ s,t = exp - t s c u du + 1 2 t s (b u ) 2 du - t s b u dW u ζ s,t and ζ s,t solves ζ s,t = 1 + t s ζ s,u- E κ L,u,∞,n
u (e) π(de, du).

Our assumption (A3) ensures that ζ is non negative and together with (A1), (A4) and (B3), Γ verifies for any k ≥ 1

E (Γ s,T ) k < +∞.
See the appendix in [START_REF] Quenez | BSDEs with jumps, optimization and applications to dynamic risk measures[END_REF]. We have

Y (k) t ≤ (1 + T )L and hence ∂Y t ≥ -(1 + T )k. Thus ∂Y Γ s,.
is bounded from below by a process in S m (0, T ) for some m > 1. We can apply Fatou's lemma to obtain

∂Y s = lim inf t T E ∂Y t Γ s,t + t s Γ s,u (f 0 u -k) + du F s ≥ E lim inf t T (∂Y t Γ s,t ) F s .
The process (Γ s,t , s ≤ t ≤ T ) is càdlàg and non negative. Hence a.s.

lim inf t T (∂Y t Γ s,t ) = (lim inf t T ∂Y t )Γ s,T -. But lim inf t T ∂Y t = ∞1 At n -k1 A T ≥ 0 since A T ⊂ A tn . This implies Y u,∞,n s ≥ Y (k) s
for any s ∈ [0, T ] and k ≥ 0.

We now finish the proof of continuity of Y at time T :

Theorem 2. Under conditions (A), (B) and (C), the minimal supersolution with terminal condition ξ 2 satisfies lim t→T

Y min t = ξ 2 (20) almost surely. 
Proof. We know now that a.s.

0 ≤ Y (k) t ≤ Y min t ≤ Y u,∞,n t
and we want to prove that for a.e.

ω ∈ A c T , lim t→T Y min t = 0.

Recall that

P t<T A t \ A T = 0. Let us fix ω ∈ A c
T . We can assume (with probability 1) that ω belongs to t<T A c t , that is there exists n such that ω ∈ A c tn . This implies: lim sup t→T

Y min t (ω) ≤ Y u,∞,n T (ω) = 0.

Density formula in terms of Green's function

As noted in the introduction, one of the key ingredients in [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF] in the analysis of the terminal condition 1 {τ 0 <T } was the explicit formula available for the density of τ 0 , the first exit time of the Brownian motion from an interval (a, b). The natural framework for the generalization of this formula to higher dimensions is the duality between Potential theory, elliptic / parabolic PDE and Diffusion processes [START_REF] Doob | Classical potential theory and its probabilistic counterpart[END_REF]. Within this duality the exit times and the distribution of the path of the process up to the exit time corresponds to Green's functions [START_REF]Stochastic differential equations[END_REF]. The paper [START_REF] Delarue | First hitting times for general nonhomogeneous 1d diffusion processes: density estimates in small time[END_REF] uses the connection between hitting times and Green's functions to prove that the exit time of a one dimensional diffusion from a region has a density. A similar one dimensional computation is also given in [START_REF] Peskir | Optimal stopping and free-boundary problems[END_REF]. Although the term "Green's function" doesn't appear in them, the works [START_REF] Iyengar | Hitting lines with two-dimensional brownian motion[END_REF][START_REF] Metzler | On the first passage problem for correlated brownian motion[END_REF] compute the Green's function for the Brownian motion in rectangular domains using the method of images; the work [START_REF] Blanchet-Scalliet | Hitting time for correlated threedimensional Brownian motion[END_REF] extends this to three dimensions. The work [START_REF] Patie | First exit time probability for multidimensional diffusions: a pde-based approach[END_REF], represents the distribution of the exit time of a d-dimensional diffusion from a fixed domain as the solution of a parabolic PDE. It identifies a smooth solution to the PDE whose derivative gives the density of the stopping time. The solution of the same PDE can be expressed in terms of the Green's function derived in the classical PDE book [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] by Friedman for the underlying parabolic PDE. The same Green's function can be used to prove that exit times of diffusions from domains that vary over time have densities. Given the duality between Green's functions and exit times, this is a natural result. But we have not been able to identify a reference in the current literature stating and proving it and therefore give its details in the present work.

The time variable in [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] corresponds to the time to maturity in the present setup. We state all definitions and results from [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] in terms of the time variable adopted in the present work (which is the one commonly used in the the stochastic processes framework); therefore, for example, the initial condition of [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] becomes the terminal condition and t derivatives are multiplied by -.

Let L denote the parabolic operator associated with X:

Lu . = σ(x, t), σ(x, t)Hu + b(x, t), ∇ x u + ∂u ∂t ,
where Hu is the Hessian matrix of second derivatives of u. if we define a = σσ the first term can also be written as a, Hu . To be able to use the results in [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] we adopt all of the assumptions it makes on a and b, these are listed on [16, The main result claiming the existence of Green's functions associated with X is [START_REF] Friedman | Partial differential equations of parabolic type[END_REF]Theorem 16,page 82]. This result is based on the following assumptions on the domain D (listed as conditions E and E on [16, pages 64,65]): Assumption 1. For every point (x, t) ∈ S there exists an (n + 1)-dimensional neighborhood V such that V ∩ S can be represented in the form

x i = h(x 1 , ..., x i-1 , x i+1 , ..., x n , t)
for some i ∈ {1, 2, 3, ..., n}, h, D x h, D 2

x h and D t h exist and are Hölder continuous (exponent α); D x D t h, D 2 t h exist and are continuous. The Green's function G allows one to compute not just the distribution of the exit time of X from a fixed domain but from a domain varying in time such as D; in fact it allows one to compute expectations of the form E (x,t) [g(X s )1 {τ >s} ], s > t.

Proposition 2. Suppose G is the Green's function of the operator L. Then

E (x,t) [g(X s )1 {τ >s} ] = Ds g(y)G(x, t, y, s)dy, (21) 
for any bounded continuous function g.

Proof. If g has compact support in D s , we know by the definition of G that u(x, t) = Ds g(y)G(x, t, y, s)dy, is a smooth solution of Lu = 0 that is continuous in D| [0,s] with u = 0 on S and u = g on D s . Itô's formula applied to u(X t , t) gives [START_REF] Kreȋn | Interpolation of linear operators[END_REF]. Thus it only remains to treat the case when g doesn't have compact support in D s . Let g n be a sequence of continuous functions with compact support in D s converging up to g. Then

E[g(X s )1 {τ >s} ] = lim n→∞ E[g n (X s )1 {τ >s} ] + E[g(X s )1 {τ >s} 1 ∂Ds (X s )].
The assumptions made on a and b imply that X s has a density in R n and in particular the second expectation above is 0. Therefore: where the last equality follows from the bounded convergence theorem.

E[g(X s )1 {τ >s} ] = lim n→∞ E[g n (X s )1 {τ >s} ] = lim
Setting g = 1 in (21) we get the following formula for P (x,t) (τ > s):

P (x,t) (τ > s) = B T
G(x, t, y, s)dy;

The density of the exit time τ is then

- ∂ ∂s Ds G(x, t, y, s)dy, (22) 
whenever this derivative exists. When the domain D t is constant, i.e., when D t = D 0 for all t, the above derivative is simply

- ∂ ∂s D 0 G(x, t, y, s)dy, = - Ds G s (x, t, y, s)dy = - D 0 G s (x, t, y, s)dy, (23) 
whenever G s exists and is continuous (by differentiation under the integral sign, see, e.g. [START_REF] Apostol | Mathematical analysis[END_REF]). Its computation in the presence of a time dependent domain D t is known as the Leibniz formula or the "Reynolds Transport Theorem" [START_REF] Flanders | Differentiation under the integral sign[END_REF][START_REF] Cortéz | Pdes in moving time dependent domains[END_REF]. All of the statements of this formula we have come across in the literature assume that the domain D t is given as the image of a smooth flow x( 

where N is the unit vector field on ∂D s . A comparison of this with [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] shows that the second term in ( 24) is the additional term arising from the fact that D t varies in time. But by its construction the Green's function G is 0 on ∂D ([16, Corollary 1, page 83]), therefore this additional term is in fact 0! Then in the computation of the density of τ , allowing the domain to vary in time doesn't have a direct impact on the density formula, (i.e, the formula [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] works both for time dependent domains as well as those that are independent of time). Second observation about [START_REF] Kruse | L p -solution for BSDEs with jumps in the case p < 2: corrections to the paper 'BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF]: for the derivative ( 22) to exist we need the partial derivative of G with respect to s. We know by [START_REF] Friedman | Partial differential equations of parabolic type[END_REF]Theorem 16, page 82] that G is differentiable in its t and x variables. But this result does not directly address the smoothness of G in the s variable. One way to get smoothness of G in the s variable is to work with the Green's function G * of the adjoint operator L * defined as follows:

L * u . = a, Hu + b * , ∇ x u + c * u - ∂u ∂t = 0, where b * i = -b i + 2 n j=1 ∂a i,j ∂x j , c * = - n i=1 ∂b i ∂x i + n i,j=1 ∂ 2 a i,j ∂x i ∂x j . (25) 
For G * to exist and be smooth in its x and t variables it suffices that b * and c * be uniformly Hölder continuous (the uniform ellipticity of a is already assumed).

Lemma 7. Let b * i and c * of (25) be uniformly Hölder continuous. Then G is differentiable in s with a continuous derivative G s .

Proof. The assumptions on b * i and c * imply that the adjoint operator L * satisfies the conditions of [START_REF] Friedman | Partial differential equations of parabolic type[END_REF]Theorem 16, Even though in the end it has no influence on the final expression of the density, we need the existence of a continuously differentiable flow x that generates the domain D to 1) invoke Leibniz rule and 2) to show that the resulting density is continuous. Many papers working on PDE with time dependent domains use this assumption [START_REF] Cannarsa | The damped wave equation in a moving domain[END_REF][START_REF] Burdzy | The heat equation in time dependent domains with insulated boundaries[END_REF][START_REF] Cortéz | Pdes in moving time dependent domains[END_REF]]. Friedman's classical book [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] on parabolic PDE, on which most of the arguments above are based, does not contain this assumption directly. However, the assumptions already made on D do indeed imply that D t can be represented as the forward image of D 0 under a smooth flow x. To find such a flow one can proceed as follows: first use the local graph representation of ∂D given in Assumption 1 to define a flow on ∂D as follows:

x(x, t) = (h(x 2 , x 3 , ..., x d , t), x 2 , x 3 , ..., x d , t), where this definition is made in a neighborhood of (x 0 , t 0 ) ∈ ∂D where the graph of h represents a portion of ∂D. That h is C 1 implies that x defined as above is a smooth flow on ∂D. One can now extend this flow to all of R d using classical results on the possibility of such an extension (see e.g., [6, page 584] or [25, page 201, Extension lemma for vector fields on submanifolds]). That D t is the forward image of D 0 now follows from the fact that x, by its definition, leaves ∂D invariant and the existence uniqueness theorem for ODE.

We can now make a precise statement about the density of τ : Proof. The existence and continuity of G s follows from Lemma 7; the density formula follows from Leibniz's rule and G = 0 on ∂D t , as discussed above. The continuity of the density follows from the continuity of G s and the fact that D t is the smooth image of D 0 under the flow x.

Conclusion

The present work finds solutions to BSDE (5) with a superlinear driver with singular terminal values of the form 1 A , A ∈ F T . In studying this question it generalizes the class of events A, the assumptions on the driver f as well as the filtration F T as compared to the previous work [START_REF] Sezer | Backward stochastic differential equations with non-Markovian singular terminal values[END_REF], which focused on a deterministic f , the filtration generated by a Brownian motion and A of the form {τ 0 ≤ T } and {τ 0 > T } where τ 0 is the first exit time of the Brownian motion from a fixed interval. With the results of Section 3 we see that under general conditions on the driver and the filtration, the BSDE (5) with terminal condition 1 A • ∞ can be solved for any A ∈ F T that can be written as the limit of a decreasing sequence of adapted events. The arguments in Section2 imply that for events the form {τ ≤ T }, where τ is a stopping time to obtain continuous solutions to the BSDE we only need that τ has a bounded density.

In Section 4 we show that exit times of multidimensional Markovian diffusions from time dependent smooth domains satisfy this condition. The identification of all events A in F T for which the BSDE (5) with terminal condition ∞ • 1 A has a continuous solution remains an open problem. As already noted we rely on the density of τ in dealing with the event A = {τ ≤ T }; this reliance brings with it the assumption q > 2 when dealing with the terminal condition 1 A • ∞. To remove this assumption is an open problem for future research. Another natural direction for future research is the derivation of density formulas for exit times for more general multidimensional processes, including those with jumps. Once such formulas are available the arguments in Section 2 would imply the existence of solution to BSDE [START_REF] Blanchet-Scalliet | Hitting time for correlated threedimensional Brownian motion[END_REF] with terminal conditions defined by these exit times.

All results obtained in this paper can be generalized to the case where the compensator of π is random and equivalent to the measure µ ⊗ dt with a bounded density for example (see the introduction of [START_REF] Becherer | Bounded solutions to backward SDE's with jumps for utility optimization and indifference hedging[END_REF] for example). Nevertheless since we refer to [START_REF] Kruse | L p -solution for BSDEs with jumps in the case p < 2: corrections to the paper 'BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF][START_REF] Kruse | Bsdes with monotone generator driven by brownian and poisson noises in a general filtration[END_REF] for the existence and uniqueness of the solution of BSDE, we keep this setting for π.

A Proof of the upper bound [START_REF] Doob | Classical potential theory and its probabilistic counterpart[END_REF] Let us recall the arguments of the proof of [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF]Proposition 2]. For any k ≥ 0 we consider the BSDE ( 11)

dY (k) t = -f k (t, Y (k) t , Z (k) t , ψ (k) t )dt + Z (k) t dW t + E ψ (k)
t (e) π(de, dt) + dM 

f k (t, y, z, ψ) = (f (t, y, z, ψ) -f 0 t ) + f 0 t ∧ k.
The solution Y (k) is non negative in our setting. We also consider the driver T -ε ≥ 0. Recall that from (A3) and (A4) f (t, 0, z, ψ) -f 0 t ≤ β z,ψ t z + E ψ(e)κ 0,0,ψ,0 t (e)µ(de), where β z,ψ t = f (t, 0, z, ψ) -f (t, 0, 0, ψ) z1 z =0 .

From (A4), β z,ψ is a bounded process by L f . Hence by a comparison argument with the solution for linear BSDE (see [START_REF] Quenez | BSDEs with jumps, optimization and applications to dynamic risk measures[END_REF]Lemma 4.1]) we have V ε,k t,u -κ 0,φ ε,k ,0 u (z) π(dz, du).

Y ε,k t ≤ E Γ t,T -ε Y (k) T -ε + T -ε t Γ t,
Hence

Y ε,k t ≤ 1 (T -t) p E ε ρ V ε,k t,T -ε Y (k) T -ε + T -ε t V ε,k t,s (T -s) p b k s ds F t .
Since b k ≥ 0 it holds that Y ε,k t ≥ 0 a.s. for every t ∈ [0, T ]. Hence from Condition (B1)

f k (t, Y ε,k t , Z ε,k t , φ ε,k t ) ≤ - 1 η t (Y ε,k t ) q + f k (t, 0, Z ε,k t , φ ε,k t ).
It follows that

f k (t, Y ε,k t , Z ε,k t , φ ε,k t ) ≤ h(t, Y ε,k t , Z ε,k t , φ ε,k t ) - 1 η t (Y ε,k t ) q - ((p -1)η t ) p (T -t) p + p T -t Y ε,k t ≤ h(t, Y ε,k t , Z ε,k t , φ ε,k t ),
where we used the Young inequality: c p + (p -1)y q -pcy ≥ 0 which holds for all c, y ≥ 0.

The comparison theorem implies Y ≤ k(T + 1) and from the integrability property of V ε,k t,. , with dominated convergence, by letting ε ↓ 0 we obtain a.s.

E ε p V ε,k t,T -ε Y (k) 
T -ε F t -→ 0.

From Assumption (B3), by the proof of Proposition A.1 in [START_REF] Quenez | BSDEs with jumps, optimization and applications to dynamic risk measures[END_REF], there exists a constant K ϑ,K f , such that a.s.

E

T -ε t (V ε,k t,s ) -1 ds F t ≤ (K ϑ,L f , ) ( -1)/ .

From Conditions (B2) and (B4), it follows that the process ((T -t) p b k t , 0 ≤ t ≤ T ) belongs to H (0, T ) for any 1 < ≤ . Therefore by Hölder's inequality we obtain

E T -ε t V ε,k t,s (T -s) p b k s ds F t ≤ K ϑ,L f , E T t ((T -s) p b k s ) ds F t 1/
.

Hence we can pass to the limit as ε ↓ 0 < +∞ Using again Hölder's inequality for the conditional expectation, we obtain the upper bound in [START_REF] Doob | Classical potential theory and its probabilistic counterpart[END_REF].

Y (k) t ≤ K ϑ,

Proposition 1 .

 1 Assume that the filtration is generated by W and π. Then Y t solves the BSDE (5) on [0, T ] with terminal condition Y T = ξ 1 and satisfies the continuity property at time T . Moreover Y = Y min . Proof. Since there is no additional martingale M in the definition of Y 1,τ and Y ∞ , the resulting process Y is continuous at time τ . Now let us fix s < t < T . On the set {τ ≤ s}, Y r = Y ∞ r for any r ∈ [s, t]. Therefore we have

Lemma 4 .

 4 τ is a stopping time of the filtration F. If (7) holds, then A T = {τ ≥ T }.

  page 8]: a is uniformly elliptic; a and b are Hölder continuous. The formal definition of Green's function is as follows ([16, page 82]): Definition 1. A function G(x, t, y, s) defined and continuous for (x, t, y, s) ∈ D × (D ∪ B), t < s is called a Green's function of Lu = 0 in D if for any 0 ≤ s ≤ T and for any continuous function f on D s having a compact support the function u(x, t) = Ds G(x, t, y, s)f (y)dy is a solution of Lu = 0 in D ∩ {0 ≤ t < s} and it satisfies the terminal and boundary conditions lim t→s u(x, t) = f (x), x ∈ D s u(x, t) = 0, (x, t) ∈ S ∩ {0 ≤ t < s}.

  n→∞ Ds g n (y)G(x, t, y, s)dy = Ds g(y)G(x, t, y, s)dy,

Proposition 3 .

 3 Suppose a is uniformly elliptic and a, b, b * and c * are uniformly Hölder continuous. and let D satisfy the assumptions 1. Then the Green's function G is continuously differentiable in s and the exit time τ has continuous density f τ (x, t, s) = -Ds G s (x, t, y, s)dy, s ∈ (t, T ].

=

  ξ ∧ k and where f k is given by (12):

h

  (t, y, z, ψ) = b k t -p 1 T -t y + [f (t, 0, z, ψ) -f 0 t ]. with b k t = ((p-1)ηt) p (T -t) p + (f 0 t ∧ k). Let ε > 0 and denote by (Y ε,k , Z ε,k , φ ε,k , N ε,k ) thesolution process of the BSDE on [0, T -ε] with driver h and terminal condition Y ε,k T -ε = Y (k)

  t ∈ [0, T -ε] and ε > 0.Recall once again from Condition (B3), then V ε,L t,.

  belongs to H (0, T -ε) for some ≥ 2. From the upper bound Y (k) t

  1,τ t and of Y ∞ coincide with the jump times of the Poisson random measure or of the orthogonal martingale component. A consequence of the Meyer theorem (see[START_REF] Protter | Stochastic integration and differential equations[END_REF] Chapter 3, Theorem 4]

  on [0, T ] with terminal condition Y T = ξ 1 and is continuous at time T .From the minimality of Y min , we have immediately that Y min min . By construction of Y ∞ , Y n converges to Y . Therefore we conclude that Y = Y min and this achieves the proof of the Proposition.

				t	≤ Y t , a.s. for any t ∈ [0, T ].
	To obtain the converse inequality, let us define
	Y n t	. =	Y 1,τ,n t Y n t ,	, t ≤ τ ∧ T τ < t ≤ T
	where Y			

n (resp. Y 1,τ,n ) is the solution of the BSDE (

5

) on [0, T ] (resp. on [0, τ ∧ T ]) with terminal condition n (resp. Y n τ 1 τ ≤T ). Then we have that for any k ≥ n, Y n ≤ Y (k) ≤ Y

  •, t) : D 0 → D t . Assume for now D t can be represented as the image of D 0 under a smooth flow x and let v denote the vector field defined by the flow (see the paragraph following Lemma 7 below for comments on the flow representation of D t ).

			Leibniz formula
	given in [15, 10] implies:
	-	∂ ∂s Ds	G(x, t, y, s)dy, =

Ds

G s (x, t, y, s)dy + ∂Ds G(x, t, y, s) v, N dS,

  page 82] which says that L * has associated with it a Green's function G * that is differentiable in t with a continuous derivative G * t . By [16, Theorem 17, page 84] G and G * are dual, i.e.,

G(x, t, y, s) = G * (y, s, x, t); this and the G s = G * t imply the statement of the lemma.

  s b k s ds F

	and	t,s = 1 + V ε,k	s
					t	Z
		t	s	p T -u	du +
					t,s

t where for t ≤ s ≤ T -ε Γ t,s = exp -s t β Z ε,k ,φ ε,k u dW u -1 2 s t (β Z ε,k ,φ ε,k u ) 2 du V ε,k t,s = T -s T -t p exp s t β Z ε,k ,φ ε,k u dW u -1 2 s t (β Z ε,k ,φ ε,k u ) 2 du V ε,k

  L f , (T -t) p E

							T	1/
							((T -s) p b k s ) ds F t	.
							t	
	Assumptions (B2) and (B4) imply by monotone convergence for k → ∞
	Y	(k) t	≤	(T -t) p E K ϑ,L f ,	t	T	((p -1)η s ) p + (T -s) p (f 0 s ) ds F t	1/

For the precise definition of the sum of two Banach spaces, see[START_REF] Kreȋn | Interpolation of linear operators[END_REF] or the introduction of[START_REF] Kruse | L p -solution for BSDEs with jumps in the case p < 2: corrections to the paper 'BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF].

We define 0 • ∞ := 0.

No additional assumption is supposed on f , that is the setting is only half-Markovian.

A jump component driven by the Poisson random measure could be added in the case.
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