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Wetting phenomena are extensively studied from a experimental to a theoretical point of view (see Refs. [1, 2]
for reviews) and much attention has been drawn recently to the case of the dynamics of liquid droplet under
evaporation [3–9]. In this paper, we propose a model of a contact line under evaporation and total wetting con-
ditions taking into account van der Waals interactions and the divergent nature of evaporation near the border of
the liquid evidenced by Deegan et al. [3]. We apply this result to study the dynamics of an evaporating droplet
in complete wetting situation.

1. Low constant speed model

In this section, we study the shape of the free surface of an evaporating liquid corner moving at aconstant
velocity V along a totally wetting solid surface, both under the effectof a fluid motionU(x, z) linked to
pressure gradient, and of an evaporation fluxJ(x). The edge of the liquid is set atx = 0 (see Fig. 1(a) for
notations).
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Figure 1: (a) Notations for the model studied in Section 1 of aliquid moving at constant speedV on a totally
wetting substrate and undergoing evaporation. (b) Numerical calculation of the slope of the liquid interface
θ(x) = h′(x) for different capillary numbers. Inset: profile of the liquid height. We used dimensionless units
X = x/x0, H = h/h0 andΘ = (x0/h0)θ. (c) Notations used in Section 2:R is the droplet radius andθ the
apparent contact angle of the spherical cap.

Standard lubrication theory in the limit of low Reynolds numbers and small interface slope leads to a mean
local velocity of the liquid given by:〈U〉 = 1

h

∫ h
0 U(x, z) dz = −h2

3η
∂P
∂x whereh(x) is the liquid thickness,

η the liquid viscosity, and the pressure term readsP = Pa + Pc + Pd with Pa, the ambient pressure,Pc the
capillary pressure andPd, the disjoining pressure (we assume van der Waals interactions) playing a role at the
edge of the liquid. Both latter pressures read respectivelyPc = −γhxx andPd = + A

6πh3 ; γ is the surface
tension andA < 0 the Hamaker constant. For a liquid moving at velocityV , mass conservation imposes that
the local thicknessh(x − V t) satisfies∂th + ∂x(h〈U〉) + J(x) = 0, which leads to:

∂

∂x
[h (〈U〉 − V )] + J(x) = 0 (1)



to be combined with the previous expression of〈U〉.

One now needs an approximation of the local evaporation ratedistributionJ(x). For a sessile axisymmetric
drop, Deegan [4] assumed an analogy between vapor diffusionin air and an electrostatic problem, the vapor
concentration near the liquid surface being supposed to saturate at the mass concentration in aircsat. In analogy
with this work, we assume that very near the edge of the liquidJ(x) diverges asJ(x) = J0x

−(π/2−θ)/(π−θ)

wherex is the distance to the edge. This yields for very small valuesof angleθ: J(x) ≈ J0/
√

x in which
J0 is given byJ0 =

Dg√
λ

csat−c∞

ρ whereDg is the diffusion constant of evaporated liquid in air, andρ its mass
density. The length scaleλ can be either the thickness of a diffusive boundary layer, orthe typical curvature
of the contact line. For instance, for the sessile drops of in-plane radiusR with low contact angle considered
in Ref. [4] one has exactlyλ = 2R. For volatile alkanes or silicon oil drops of millimetric size evaporating
in ambient air one typically hasJ0 ≈ 10−9 m

3

2 · s−1. Note that we are here treating the limit of a liquid
evaporating in the presence of air. It is also important to note that the activity of a thin film of liquid is
approximately that of the bulk up to the last molecular layerof liquid. Thus the divergence of the evaporative
flux holds at the border of the precursor film. In our purely diffusive model, Marangoni and thermal gradients
will be neglected.

After integrating once Eq. (1) with respect tox, one gets:(< U > −V )h = −2J0
√

x that can be written as:

V =
2J0

h

√
x +

γ

3η
h2hxxx +

A
6πη

hx

h2
(2)

The local thickness of liquidh(x), is supposed to vanish or at least reach microscopic values at the tip of the
liquid placed for simplicity at the locationx = 0.

The physical meaning of this equation is that the displacement of a liquid at velocityV involves migration
under capillary and disjunction pressure gradient together with evaporation itself. This adds new terms to the
ordinary differential equation governingh(x), considered years ago by Voinov [10], that reads in this specific
case:

hxxx =
3Ca

h2
− 6ηJ0

γ

√
x

h3
− A

2πγ

hx

h4
(3)

whereCa = ηV /γ is the capillary number built upon the velocityV (Ca > 0 in the receding case andCa < 0
in the advancing case).

In the framework of this model, it is convenient to set a typical horizontal length scalex0 and a typical height
h0 that respectively read

x0 =

( |A|
12πJ0η

)
2

3

, h0 = x
1

2

0 ×
( |A|

2πγ

)
1

4

=
|A| 7

12

(2π)
7

12 (6ηJ0)
1

3 γ
1

4

(4)

SettingJ0 = 10−9 m3/2 · s−1, A = 10−19 kg · m2 · s−2, η = 10−3 kg · m−1 · s−1 yields typical lengths
x0 ≃ 2µm andh0 ≃ 30 nm. These values have the same order of magnitude as those foundexperimentally by
Kavehpour et al. [11] in the advancing regimewithoutevaporation forCa = 3 × 10−4. The horizontal length
x0 corresponds in our model to the typical length of the precursor film at zero velocity.

We can analytically solve Eq. (3) and find the expression of profile of the liquid interface, confirmed by
numerical simulations (See Fig. 1(b)) [8]. From the latter expression, one can deduce the following expression
of the apparent contact angleθ

θ3 = θ3
m − 9Ca

(

log
Lmacro

ℓmicro
+ 1

)

+
24J0η

γθm

1√
ℓmicro

(5)

or in a more straightforward way

θ3 = (1 +
4√
3.4

) θ3
m − 9Ca

(

log
Lmacro

ℓmicro
+ 1

)

. (6)



whereℓmicro ≃ 3.4x0 is a microscopic length corresponding to the length of the precursor film,Lmacro a
macroscopic length and

θ3
m =

(

h0

x0

)3

=

(

2π

γ3|A|

)
1

4

6ηJ0 (7)

corresponding the apparent contact angle at zero velocity [9].

2. Case of an evaporating sessile droplet

We will now apply the previous model to the study of an evaporating sessile droplet in total wetting condition.
As already stated, the expression of the evaporative flux of aspherical cap of liquid of radiusR, in the limit
of small contact angleθ (see Fig. 1(c)), readsJ(r) = j0/

√
R2 − r2 with the following correspondence with

previous section:x = R − r, J0 = j0/
√

2R and Ca = −ηṘ/γ. Substituting directly these expressions
into Eqs. (6) and (7) yields the following wetting law without any adjustable parameters (but a logarithmic
contribution)

θ3 =
A√
R

+ BṘ (8)

with

A = 6 (
π

2
)

1

4

(

1 +
4√
3.4

)

ηj0

γ
3

4 |A| 14
and B = 9

η

γ

(

log
Lmacro

ℓmicro
+ 1

)

. (9)

This is the same kind of expression as that found by Poulard etal. in a previous work using other arguments [5].

The volume of a spherical cap at small contact angleθ readsV = π
4 R3θ. Moreover mass conservation reads

dV
dt = −

∫ 2π
0

∫ R
0 J(r)r dr dϕ = −2πj0R. Combining these two results yields the following relation

3RθṘ + R2θ̇ = −8j0. (10)

With Eqs. (8) and (10) we then obtain a closed set of ordinary differential equations of variablesR andθ that
we will now study.

Given the initial conditionsRi = R|t=0 andθi = θ|t=0, we can see using Eq. (8) that, whether(θi)
3
√

Ri is
larger or smaller than constantA, the droplet starts spreading then retracts, or directly starts with retraction.
Experiments show that, iftf is the time at which the droplet vanishes, the radius of a droplet of completely
wetting alkane on mica follows the scalingR(t) ∼ (tf − t)α with exponentα close to1/2 [5, 6]. During
the retraction sequence, the contact angleθ has little variations up to late times before total evaporation [5].
Suppose thatR(t) scales like(tf − t)β , Eq. (8) implies thatβ = 2/3 if θ is to remain bounded, which is not the
case as we will see in the following.

We have performed numerical simulations of Eqs. (8) and (10). Results are shown in Fig. 2. The dynamics
of spreading followed by the retraction sequence of the droplet is recovered with correct orders of magnitude
compared with experiments. As in the experiments [5], we recover the steep decrease of the contact angle during
the spreading and the beginning of the retraction. Radius vanishes at a given final timetf . In contrast, contact
angleθ vanishes at timet′f < tf (the spherical cap then becomes flat) and eventually becomesnegative which
is physically incorrect. This vanishing angle singularityis intrinsic to our wetting law model but experiments
by Cazabat at al. also show sharp decrease of the contact angle at late times.

If we look carefully at the decay of the radiusR(τ) with time τ = tf − t (see Fig. 2 (Right)), one can see that
the radius follows two regimes with distinct exponents. At the beginning of the retraction,R(τ) ∼ τα with
α ≃ 0.33, then, once the values ofθ becomes negative, we haveR(τ) ∼ τβ with β ≃ 0.11. These scalings are
in disagreement with the experiments where exponents are close to1/2. Nevertheless, by choosing a shifted
reference final timeTf (see inset of Fig. 2 (Right)), one can recover an exponentα′ ≃ 0.45 in agreement with
experiments, as did Poulard et al. in their numerical simulations as well [5].

Note that our wetting law (8) contains a logarithmic term depending on a macroscopic scaleLmacro, at which
contact angle is defined. Replacing the latter length scale by a fraction of radiusR modifies the wetting law
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Figure 2: (Left) Plot versus timetf − t of the radiusR of an evaporating totally wetting droplet together with
the angleθ. Time tf corresponds to the time of vanishing radius whereas timet′f if the time at which angleθ
gets to zero. (Right) Plot of the dynamics of radiusR in log-log scale. Depending on the choice of reference
final timeTf , one obtains a different scaling and recovers that found in experiments.

and shall delay the singularity (the smallerLmacro ≡ R, the smaller constantB). We performed numerical
simulation of the dynamics using this modified wetting law and find no major changes in the dynamics: the
final time of singularity is slightly shifted but the scalingexponents remain the same.

3. Conclusions

In this paper, we have proposed a model for completely wetting liquid under evaporation. A wetting law
relating the apparent contact angle to the speed of the contact line was proposed and used to numerically study
the dynamics of an evaporating droplet in total wetting conditions. This model correctly describes the early
stages of spreading and retraction of a droplet. However, atlate times, the contact angle vanishes before the
radius itself vanishes, yielding non-physical scalings. Usual dynamical scalings found in experiments can only
be recovered by extrapolating a final reference time.
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