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Wetting phenomena are extensively studied from a expetahéma theoretical point of view (see Refs. [1, 2]
for reviews) and much attention has been drawn recentlyga#ise of the dynamics of liquid droplet under
evaporation [3-9]. In this paper, we propose a model of aambiine under evaporation and total wetting con-
ditions taking into account van der Waals interactions &edlivergent nature of evaporation near the border of
the liquid evidenced by Deegan et al. [3]. We apply this tesustudy the dynamics of an evaporating droplet
in complete wetting situation.

1. Low constant speed model

In this section, we study the shape of the free surface of apaating liquid corner moving at @onstant
velocity V' along a totally wetting solid surface, both under the effeic fluid motionU (z, z) linked to
pressure gradient, and of an evaporation fiifx). The edge of the liquid is set at= 0 (see Fig. 1(a) for
notations).
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Figure 1: (a) Notations for the model studied in Section 1 tfjaid moving at constant spedd on a totally
wetting substrate and undergoing evaporation. (b) Nurakdalculation of the slope of the liquid interface
6(x) = h'(z) for different capillary numbers. Inset: profile of the liguaeight. We used dimensionless units
X =z/z9, H= h/hy and® = (zy/ho)6. (c) Notations used in Section Z is the droplet radius anéthe
apparent contact angle of the spherical cap.

Standard lubrication theory in the Iimit of Iow Reynolds roens and small interface slope leads to a mean
local velocity of the liquid given by(U) = + fo (x,2)dz = —"—na—P whereh(z) is the liquid thickness,
7 the liquid viscosity, and the pressure term reddss P, + P. + Py with P,, the ambient pressuré’. the
capillary pressure anfty, the disjoining pressure (we assume van der Waals intermotplaying arole at the
edge of the liquid. Both latter pressures read respectifly= —vh,, and Py = +555 h3’ v is the surface
tension and4 < 0 the Hamaker constant. For a liquid moving at veloditymass conservation imposes that
the local thicknes#(x — V't) satisfiesd;h + 0, (h(U)) + J(x) = 0, which leads to:

0

57 P QU) = V)] + J(2) =0 (1)



to be combined with the previous expression@}.

One now needs an approximation of the local evaporationdiatebution J(z). For a sessile axisymmetric
drop, Deegan [4] assumed an analogy between vapor diffiisiair and an electrostatic problem, the vapor
concentration near the liquid surface being supposed twatatat the mass concentration indif. In analogy
with this work, we assume that very near the edge of the ligifid) diverges as/(z) = Jyz—(7/2-0)/(7=9)
wherez is the distance to the edge. This yields for very small vahfesngled: J(z) ~ Jy/+/z in which

Jo is given byJy = Dy et —e where D, is the diffusion constant of evaporated liquid in air, gniis mass
density. The length scalk can be either the thickness of a diffusive boundary layethertypical curvature
of the contact line. For instance, for the sessile drops -piame radiusk with low contact angle considered
in Ref. [4] one has exactlyx = 2R. For volatile alkanes or silicon oil drops of millimetriczsi evaporating
in ambient air one typically hag, ~ 10~ m? -s~1. Note that we are here treating the limit of a liquid
evaporating in the presence of air. It is also important ttertbat the activity of a thin film of liquid is
approximately that of the bulk up to the last molecular layliquid. Thus the divergence of the evaporative
flux holds at the border of the precursor film. In our purelfudiive model, Marangoni and thermal gradients
will be neglected.

After integrating once Eq. (1) with respectiopone gets{< U > —V)h = —2Jy/ that can be written as:
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The local thickness of liquid(x), is supposed to vanish or at least reach microscopic valuiee @p of the
liquid placed for simplicity at the location = 0.

The physical meaning of this equation is that the displacgroga liquid at velocityV involves migration
under capillary and disjunction pressure gradient togetlith evaporation itself. This adds new terms to the
ordinary differential equation governirigx), considered years ago by Voinov [10], that reads in thisifipec

case:
3Ca  6nJovz A hy

hmmm = 3
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whereCa = nV /v is the capillary number built upon the velocity (Ca > 0 in the receding case arth < 0
in the advancing case).

In the framework of this model, it is convenient to set a tgpicorizontal length scale, and a typical height
ho that respectively read

Ty = < A >3 ho = 22 <|A|> |A|ll2 (4)
12nJon) 0 27y (2m)12 (677J0)% T

SettingJy = 1079m%?2 .51, A = 107%kg-m?-s2,n = 10 3kg - m~! - s~ yields typical lengths
o ~ 2 uym andhy ~ 30nm. These values have the same order of magnitude as thosedgpadmentally by
Kavehpour et al. [11] in the advancing regiméhout evaporation foilCa = 3 x 10~%. The horizontal length
x( corresponds in our model to the typical length of the premufitm at zero velocity.

We can analytically solve Eqg. (3) and find the expression ofiler of the liquid interface, confirmed by
numerical simulations (See Fig. 1(b)) [8]. From the lattgsression, one can deduce the following expression
of the apparent contact angle
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or in a more straightforward way
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where (o >~ 3.4z is @ microscopic length corresponding to the length of trecyrsor film, £ .00 @

macroscopic length and
1
ho 3 2\ ¢4

corresponding the apparent contact angle at zero veld]ity [

2. Case of an evapor ating sessile droplet

We will now apply the previous model to the study of an evafiogasessile droplet in total wetting condition.
As already stated, the expression of the evaporative fluxsgherical cap of liquid of radiug, in the limit

of small contact anglé (see Fig. 1(c)), readg(r) = jo/v R? — r? with the following correspondence with
previous sectionz = R — r, Jy = jo/V2R andCa = —nR/~. Substituting directly these expressions
into Egs. (6) and (7) yields the following wetting law withtoany adjustable parameters (but a logarithmic
contribution)
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This is the same kind of expression as that found by Poulaatl &t a previous work using other arguments [5].

The volume of a spherical cap at small contact amfigleadsl = %R?’H. Moreover mass conservation reads
% =— 02” fOR J(r)rdrdy = —2m1joR. Combining these two results yields the following relation

3ROR + R0 = —8jp. (10)

With Egs. (8) and (10) we then obtain a closed set of ordin#fgrdntial equations of variableB andd that
we will now study.

Given the initial conditions??; = R;—, and6; = 60);_,, we can see using Eqg. (8) that, whetlién3/R; is
larger or smaller than constadt, the droplet starts spreading then retracts, or directytsith retraction.
Experiments show that, if; is the time at which the droplet vanishes, the radius of aldta@ completely
wetting alkane on mica follows the scalifg(t) ~ (¢ — ¢)* with exponenta close tol/2 [5, 6]. During
the retraction sequence, the contact amghes little variations up to late times before total evaporaf5].
Suppose thaR(t) scales likgt; —t)?, Eq. (8) implies thaB3 = 2/3 if 6 is to remain bounded, which is not the
case as we will see in the following.

We have performed numerical simulations of Egs. (8) and. (R®sults are shown in Fig. 2. The dynamics
of spreading followed by the retraction sequence of theldtap recovered with correct orders of magnitude
compared with experiments. Asinthe experiments [5], weverthe steep decrease of the contact angle during
the spreading and the beginning of the retraction. Radinishas at a given final timg. In contrast, contact
angled vanishes at time¢; < ¢; (the spherical cap then becomes flat) and eventually becoegsgive which

is physically incorrect. This vanishing angle singulaigyintrinsic to our wetting law model but experiments
by Cazabat at al. also show sharp decrease of the contaetargte times.

If we look carefully at the decay of the radidg ) with time 7 = t; — ¢ (see Fig. 2 (Right)), one can see that
the radius follows two regimes with distinct exponents. ¢ beginning of the retractio?(7) ~ 7 with

o ~ 0.33, then, once the values 6fbecomes negative, we hair) ~ 77 with 3 ~ 0.11. These scalings are
in disagreement with the experiments where exponents ase ¢b1/2. Nevertheless, by choosing a shifted
reference final tim&} (see inset of Fig. 2 (Right)), one can recover an exponént 0.45 in agreement with
experiments, as did Poulard et al. in their numerical sitiaria as well [5].

Note that our wetting law (8) contains a logarithmic termelging on a macroscopic scalg, .o, at which
contact angle is defined. Replacing the latter length scalke foaction of radiusk? modifies the wetting law
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Figure 2: (Left) Plot versus timg — ¢ of the radiusR of an evaporating totally wetting droplet together with
the angled. Timet; corresponds to the time of vanishing radius whereas tjnifethe time at which anglé®
gets to zero. (Right) Plot of the dynamics of radidsn log-log scale. Depending on the choice of reference
final timeTt, one obtains a different scaling and recovers that founctpegments.

and shall delay the singularity (the smalléf,...o = R, the smaller constanB). We performed numerical
simulation of the dynamics using this modified wetting lavd dimd no major changes in the dynamics: the
final time of singularity is slightly shifted but the scaliegponents remain the same.

3. Conclusions

In this paper, we have proposed a model for completely weetiouid under evaporation. A wetting law
relating the apparent contact angle to the speed of theatdimta was proposed and used to numerically study
the dynamics of an evaporating droplet in total wetting ¢mas. This model correctly describes the early
stages of spreading and retraction of a droplet. Howevéatatimes, the contact angle vanishes before the
radius itself vanishes, yielding non-physical scalingsu&l dynamical scalings found in experiments can only
be recovered by extrapolating a final reference time.
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