Supporting information

Table of contents

1.	Investigation of excimer formation by compounds 5 and 6	2
2.	Protonation studies of compounds 5, 6 and 10	3
	2.1. Spectrophotometric studies	3
	2.2. Fluorescence studies	.9
	2.3. NMR studies of the compound 6	
3.	Metal binding studies of compounds 5, 6 and 10	17
	3.1. Compound 10	17
	3.2. Compound 5	
	3.3. Compound 6	23
	3.4. Visual detection using paper stripes	
4.	Investigation of the structure of complexes	32
	4.1. NMR-studies of $[Zn(6)]^{2+}$ complex	
	4.2. DFT-studies of $[Zn(6)]^{2+}$ complex	42
	4.3. IR-studies	46
	4.4. ESI-spectra of $[Hg(6)]^{2+}$ complex	. 47
	4.5. NMR-studies of [Hg(6)] ²⁺ complex	
5.	Detection of sulfide anions	51
6.	Characterization of compounds 5, 6, 9a-f, 10	52

1. Investigation of excimer formation by compound 6

Figure S1. Dependence of emission spectra on dilution of the aqueous solutions of : A – ligand **5** (in the 1.7 μ M–26 μ M concentration range; 0.03M HEPES, pH = 7.4; λ_{ex} =356 nm); B – ligand **6** (in the 40 nM–4.3 μ M concentration range; 0.03M HEPES, pH = 7.4; λ_{ex} =365 nm).

2. Protonation studies of compounds 5, 6 and 10

2.1. Spectrophotometric studies

Spectrophotometric studies of protonation of compound 5

Figure S2. Spectrophotometric titration of **5** as a function of pH. $[5] = 133 \mu$ M, I = 0.1 M KCl, pH = 0.75–10.19.

Figure S3. Evolution of absorbance with pH at 306 nm.

Figure S4. Calculated with the Specfit/32 program UV–vis spectra of 5, $[5H]^+$ and $[5H_2]^{2+}$ in water.

Figure S5. Distribution diagram of the protonated species of 5 calculated with the Specfit/32 program.

Spectrophotometric studies of protonation of compound 6

Figure S6. Spectrophotometric titration of **6** as a function of pH. [**6**] = 133 μ M, *I* = 0.1 M KCl, pH = 2.30–9.70.

Figure S7. Evolution of absorbance with pH at 317 nm.

Figure S8. Calculated with the Specfit/32 program UV–vis spectra of 6, $[6H]^+$ and $[6H_2]^{2+}$ in water.

Figure S9. Calculated distribution diagram of the protonated species of **6** calculated with the Specfit/32 program.

Scheme S2. Protonation sequence for ligand 6.

Spectrophotometric studies of protonation of compound 10

Figure S10. Spectrophotometric titration of **10** as a function of pH. $[10] = 103 \mu$ M, 6% MeOH, I = 0.1 M KCl, pH = 1.84–11.63.

Figure S11. Changes of absorbance with pH at 417 nm.

Figure S12. Calculated with the Specfit/32 program UV–vis spectra of **10**, $[10H]^+$, $[10H_2]^{2+}$ and $[10H_3]^{3+}$ in water.

Figure S13. Distribution diagram of the protonated species of 10 caculated with the Specfit/32 program

Scheme S3. Protonation sequence for ligand 10.

2.2 Fluorescence studies

Fluorimetric studies of protonation of compound 5

Figure S14. Fluorimetric titration of 5 as a function of pH. $[5] = 27 \mu M$, I = 0.1 M KCl, $\lambda_{ex} = 375 \text{ nm}$, pH = 0.51–11.82.

Figure S15. Changes of fluorescence intensity with pH at 480 nm

Figure S16. Calculated with the Specfit/32 program fluorescence spectra of 5, $[5H]^+$ and $[5H_2]^{2+}$ in water.

Figure S17. Distribution diagram of the protonated species of 5 calculated with the Specfit/32 program.

Figure S18. Fluorimetric titration of **6** as a function of pH. [**6**] = 20 μ M, *I* = 0.1 M KCl, $\lambda_{ex} = 356$ nm, pH = 1.50–10.40

Figure S29. Evolution of fluorescence intensity with pH at 465 nm.

Figure S20. Calculated with the Specfit/32 program fluorescence spectra of **6**, $[\mathbf{6H}]^+$ and $[\mathbf{6H}_2]^{2+}$ in water.

Figure S21. Distribution diagram of the protonated species of 6 calculated with the Specfit/32 program.

Figure S22. Fluorimetric titration of 10 as a function of pH. [10] = 26 μ M, 2% MeOH, I = 0.1 M KCl, $\lambda_{ex} = 345$ nm, pH = 1.50–11.30.

Figure S23. Changes of fluorescence intensity with pH at 454 nm.

Figure S24. Calculated with the Specfit/32 program fluorescence spectra of 10, $[10H]^+$, $[10H_2]^{2+}$ and $[10H_3]^{3+}$ in water.

Figure S25. Distribution diagram of the protonated species of 10 calculated with the Specfit/32 program.

Figure S26. Aromatic (A) and aliphatic (B) regions of ¹H NMR (400 MHz) spectra of **6** in D₂O-MeOD (5:1 v/v, [**6**] = 0.04 M) at 298 K before (a) and after addition (b) addition of gaseous HCl.

Figure S27. ³¹P{¹H} NMR (162.5 MHz) spectra (a) of **6** in D₂O-MeOD (5:1 v/v, [**6**] = 0.04 M) at 298 K before (a) and after addition (b) addition of gaseous HCl.

3. Metal binding studies of compounds 5, 6 and 10

3.1 Fluorimetric and spectrophotometric studies of metal binding by compound 10

Figure S28. UV–vis spectra of **10** ([**10**] = 20 μ M, 0.03M HEPES buffer, 2% MeOH, pH = 7.4) before and after addition of 5 equiv. of metal perchlorates.

Figure S29. Fluorescence spectra of **10** ([**10**] = 20 μ M, 0.03M HEPES buffer, 2% MeOH, pH = 7.4, λ_{ex} = 345 nm) before and after addition of 5 equiv. of metal perchlorates.

Figure S30. UV-vis spectra of **10** ([**10**] = 27 μ M, 0.03M acetate buffer, 2% MeOH pH = 5.0) before and after addition of 5 equiv. of metal perchlorates.

Figure S31. Fluorescence spectra of **10** ([**10**] = 27 μ M, 0.03M acetate buffer, 2% MeOH, pH = 5.0, $\lambda_{ex} = 385$ nm) before and after addition of 5 equiv. of metal perchlorates.

3.2 Fluorimetric and spectrophotometric studies of metal binding by compound 5

Figure S32. Normalized (to the ligand emission) fluorescence intensity ($\lambda = 551$ nm) of ligand **5** ([**5**] = 27 μ M in 0.03 M HEPES buffer at pH = 7.4 ($\lambda_{ex} = 355$ nm) and solutions obtained after addition of 1 equiv of metal perchlorates.

Figure S33. Cross-selectivity studies of metal ion binding by ligand 5 ([5] = 27 μ M, 0.03M HEPES buffer, pH =7.4, λ_{ex} = 355 nm) using fluorescence spectroscopy:

- (S1) emission spectrum of 5,
- (S2) emission spectrum of **5** after addition of Cu^{2+} (1 equiv),
- (S3) emission spectrum of **5** after addition of Li⁺, (Na⁺), K⁺, Mg²⁺, Ca²⁺, Ba²⁺, Al³⁺ (1 equiv of each metal ion),
- (S4) emission spectrum of **5** after addition of Li⁺, (Na⁺), K⁺, Mg²⁺, Ca²⁺, Ba²⁺, Al³⁺ (1 equiv of each metal ion) and Cu²⁺ (1 equiv)
- (S5) emission spectrum of 5 after addition of Mn^{2+} , Co^{2+} , Ni^{2+} , Zn^{2+} (1 equiv of each metal ion),
- (S6) emission spectrum of **5** after addition of Mn²⁺, Co²⁺, Ni²⁺, Zn²⁺ (1 equiv of each metal ion) and Cu²⁺ (1 equiv)
- (S7) emission spectrum of **5** after addition of Ag⁺, Hg²⁺, Cd²⁺, Pb²⁺ (1 equiv of each metal ion),
- (S8) emission spectrum of **5** after addition of Ag⁺, Hg²⁺, Cd²⁺, Pb²⁺ (1 equiv of each metal ion) and Cu²⁺ (1 equiv)

Figure S34. (a) Evolution of UV-vis spectrum of **5** ([**5**] = 27 μ M, 0.03M HEPES buffer, pH = 7.4) upon addition of Cu(ClO₄)₂ (0–1.4 equiv.). (b) Changes of absorbance against [Cu²⁺]_{tot}/[**5**]_{tot} ratio at 358 nm.

Figure S35. Calculated with the Specfit/32 program UV–vis spectra of **5** and $[Cu(5)]^{2+}$ in 0.03M HEPES buffer at pH = 7.4.

Figure S36. Distribution diagram of **5** complexes formed with Cu^{II} ([**5**] = 27 μ M, 0.03M HEPES buffer, pH = 7.4) calculated with the Specfit/32 program.

Fluorescence titration

Figure S37. (a) Evolution of fluorescence spectrum of 5 ([5] = 27 μ M, 0.03M HEPES buffer, pH=7.4, λ_{ex} = 355 nm) upon addition of Cu(ClO₄)₂ (0 – 4.87 equiv.). (b) Changes of fluorescence intensity against [Cu²⁺]_{tot}/[5]_{tot} ratio at 550 nm.

Stability constant for the model

 $L \leftrightarrow LH^{+} \leftrightarrow LH_{2}^{2+}, \ Cu^{2+} + L \leftrightarrow [CuL]^{2+}, \ Cu^{2+} \leftrightarrow Cu(OH)^{+} \leftrightarrow Cu_{2}(OH)_{2}^{2+} \leftrightarrow Cu(OH)_{2}$

Figure S38. Calculated with the Specfit/32 program fluorescence spectra of 5 and $[Cu(5)]^{2+}$ in water.

Figure S39. Species distribution diagram for the $5/Cu^{2+}$ system in water calculated with the Specfit/32 program.

3.3. Fluorimetric and spectrophotometric studies of metal binding by the compound 6

Figure S40. Fluorescence intensity of **6** ([**6**] = 20 μ M, 0.03M HEPES buffer, pH=7.4, λ_{ex} = 356 nm) before and after addition of 1 equiv. of metal perchlorates solutions at 548 nm.

Figure S41. UV-vis spectra of **6** ([**6**] = 20 μ M, 0.03M HEPES buffer, pH=7.4) before and after addition of 1 equiv. of metal perchlorates.

Figure S42. Cross-selectivity studies of metal ion binding by ligand **8** ([**8**] = 20 μ M, 0.03M HEPES buffer, pH=7.4, λ_{ex} = 356 nm) using fluorescence spectroscopy:

- (S1) emission spectrum of 6,
- (S2) emission spectrum of **6** after addition of Hg^{2+} (1 equiv.),
- (S3) emission spectrum of **6** after addition of Zn^{2+} (1 equiv.),
- (S4) emission spectrum of **6** after addition of Zn^{2+} (1 equiv.), and Hg^{2+} (1 equiv.)
- (S5) emission spectrum of **6** after addition of Cu^{2+} (1 equiv.),
- (S6) emission spectrum of **6** after addition of Cu^{2+} (1 equiv.), and Hg^{2+} (1 equiv.)
- (S7) emission spectrum of **6** after addition of Cd^{2+} (1 equiv.),
- (S8) emission spectrum of **6** after addition of Cd^{2+} (1 equiv.), and Hg^{2+} (1 equiv.)
- (S9) emission spectrum of **6** after addition of Pb^{2+} (1 equiv.),
- (S10) emission spectrum of **6** after addition of Pb^{2+} (1 equiv.), and Hg^{2+} (1 equiv.)
- (S11) emission spectrum of **6** after addition of Ni^{2+} (1 equiv.),
- (S12) emission spectrum of **6** after addition of Ni^{2+} (1 equiv.), and Hg^{2+} (1 equiv.)
- (S13) emission spectrum of **6** after addition of Co^{2+} (1 equiv.),
- (S14) emission spectrum of **6** after addition of Co^{2+} (1 equiv.), and Hg^{2+} (1 equiv.)
- (S15) emission spectrum of **6** after addition of Mn^{2+} (1 equiv.),
- (S16) emission spectrum of **6** after addition of Mn^{2+} (1 equiv.), and Hg^{2+} (1 equiv.)
- (S17) emission spectrum of $\mathbf{6}$ after addition of Ag^+ (1 equiv.),
- (S18) emission spectrum of **6** after addition of Ag^+ (1 equiv.), and Hg^{2+} (1 equiv.)
- (S19) emission spectrum of **6** after addition of Li⁺, (Na⁺), K⁺, Mg²⁺, Ca²⁺, Ba²⁺, Al³⁺ (1 equiv. of each metal ion),
- (S20) emission spectrum of **6** after addition of Li⁺, (Na⁺), K⁺, Mg²⁺, Ca²⁺, Ba²⁺, Al³⁺ (1 equiv. of each metal ion) and Hg²⁺ (1 equiv.)

Figure S43. (a) Evolution of fluorescence spectrum of 6 ([6] = 13 μ M, 0.03M HEPES buffer, pH=7.4, λ_{ex} = 356 nm) upon addition of Cu(ClO₄)₂ (0 – 2.5 equiv.). (b) Changes of fluorescence intensity against [Cu²⁺]_{tot} /[6]_{tot} ratio at 529 nm. (c) Job's plot derived from the titration curve {P. MacCarthy, *Anal. Chem.*, 1978, 50(14), 2165}.

Formation of CuL complex is observed. The stability constant of the complex $\log\beta \ge 9$ can't be calculated from the direct titration.

Figure S44. (a) Evolution of UV-vis spectrum of **6** ([**6**] = 15 μ M, 0.03M HEPES buffer, pH=7.4) upon addition of Cu(ClO₄)₂ (0 – 2.5 equiv.). (b) Changes of absorbance against [Hg²⁺]_{tot} /[**6**]_{tot} ratio at 377 nm. (c) Job's plot derived from the titration curve {P. MacCarthy, *Anal. Chem.*, 1978, 50(14), 2165}.

Figure S45. (a) Evolution of fluorescence spectrum of **6** ([**6**] = 20 μ M, 0.03M HEPES buffer, pH=7.4, λ_{ex} = 356 nm) upon addition of Hg(ClO₄)₂ (0 – 2.5 equiv.); (b) Changes of fluorescence intensity against [Hg²⁺]_{tot} /[**6**]_{tot} ratio at 530 nm. (c) Job's plot derived from the titration curve {P. MacCarthy, *Anal. Chem.*, 1978, 50(14), 2165}.

Figure S46. (a) Evolution of UV-vis spectrum of **6** ([**6**] = 196 μ M, 0.03M HEPES buffer, pH=7.4) upon addition of Hg(ClO₄)₂ (0 – 1.5 equiv.); (b) Changes of absorbance against [Hg²⁺]_{tot} /[**6**]_{tot} ratio at 349 nm. (c) Job's plot derived from the titration curve {P. MacCarthy, *Anal. Chem.*, 1978, 50(14), 2165}.

Formation of HgL complex is observed. The stability constant of the complex $\log\beta \ge 9$ can't be calculated from the direct titration.

Figure S47. (a) Evolution of fluorescence spectrum of **6** ([**6**] = 20 μ M, 0.03M HEPES buffer, pH=7.4, λ_{ex} = 356 nm) upon addition of Zn(ClO₄)₂ (0 – 2.5 equiv.); (b)Changes of fluorescence intensity against [Zn²⁺]_{tot}/[**6**]_{tot} ratio at 550 nm.

Stability constant for the model $L \leftrightarrow LH^+ \leftrightarrow LH_2^{2+}$, $Zn^{2+} \leftrightarrow Zn(OH)^+$, $Zn^{2+} + L \leftrightarrow [ZnL]^{2+}$, log $\beta = 4.78(8)$

Detection limit $(Zn^{2+}) = 1.0 \ \mu M$

Figure S48. Calculated with the Specfit/32 program normalized fluorescence spectra of **6** and $[Zn(6)]^{2+}$ in water.

Figure S49. Species distribution diagram for the $6/Zn^{2+}$ system in water calculated with the Specfit/32 program.

Figure S50. (a) Evolution of UV-vis spectrum of **6** ([**6**] = 160 μ M, 0.03M HEPES buffer, pH=7.4) upon addition of Cu(ClO₄)₂ (0 – 1.4 equiv.); (b) Changes of absorbance against [Zn²⁺]_{tot}/[**6**]_{tot} ratio at 358 nm. Stability constant for the model L \leftrightarrow LH⁺ \leftrightarrow LH₂²⁺, Zn²⁺ \leftrightarrow Zn(OH)⁺, Zn²⁺+L \leftrightarrow [ZnL]²⁺,

 $\log\beta = 5.1(1)$

Detection limit $(Zn^{2+}) = 3.0 \ \mu M$

Figure S51. UV–vis spectra of **6** and $[Zn(6)]^{2+}$ in water calculated with the Specfit/32 program.

Figure S52. Species distribution diagram for the $6/Zn^{2+}$ system in water calculated with the Specfit/32 program.

Figure S53. (a) Visual detection of Cu^{2+} and H⁺ using paper stripes with **5**. (b) Visual detection of Cu^{2+} , Zn^{2+} , Hg^{2+} and H⁺ using paper stripes with **6**.

4. Investigation of the structure of complexes of the compound 6

4.1. NMR-studies of $[Zn(6)]^{2+}$ complex

NMR-titration of ligand 6 with Zn(II) perclorate

Figure S54. 400 MHz ¹H NMR spectra (aromatic) of **6** in D₂O-MeOD (5:1 v/v, [**6**] = 0.04 M) at 298 K before (a) and after addition of 0.2 (b), 0.4 (c), 0.6 (d), 0.8 (e), 1.0 (f) and 2.0 (g) equiv. of zinc(II) perchlorate.

Figure S55. 400 MHz ¹H NMR spectra (aliphatic) of **6** in D₂O-MeOD (5:1 v/v, [**6**] = 0.04 M) at 298 K before (a) and after addition of 0.2 (b), 0.4 (c), 0.6 (d), 0.8 (e), 1.0 (f) and 2.0 (g) equiv. of zinc(II) perchlorate.

Figure S56. 162.5 MHz ³¹P NMR spectra of **6** in D₂O-MeOD (5:1 v/v, [**6**] = 0.04 M) at 298 K before (a) and after addition of 0.2 (b), 0.4 (c), 0.6 (d), 0.8 (e), 1.0 (f), and 2.0 (g) equiv. of zinc(II) perchlorate.

COSY NMR spectra of $[Zn(6)]^{2+}$ complex

Figure S57. 400 MHz COSY- NMR spectra of $[Zn(6)]^{2+}$ complex in D₂O-MeOD (5:1 v/v) at 298 K (aromatic).

Figure S58. 400 MHz COSY-NMR spectra of $[Zn(6)]^{2+}$ complex in D₂O-MeOD (5:1 v/v) at 298 K (aliphatic).

Figure S59. 400 MHz COSY- NMR spectra of $[Zn(6)]^{2+}$ complex in D₂O-MeOD (5:1 v/v) at 298 K (aliphatic - zoomed).

Figure S60. 400 MHz TOCSY-NMR spectra of $[Zn(6)]^{2+}$ complex in D₂O-MeOD (5:1 v/v) at 298 K (aliphatic).

Figure S61. gHMBCAD-{ ${}^{1}H-{}^{31}P$ } NMR spectra of $[Zn(6)]^{2+}$ complex in D₂O-MeOD (5:1 v/v) at 298 K.

Figure S62. LR-HMBCAD-{ 1 H- 31 P} NMR spectra of $[Zn(6)]^{2+}$ complex in D₂O-MeOD (5:1 v/v) at 298 K. {R.T. Williamson, A.V. Buevich, G.E. Martin and T. Parella, *J. Org. Chem.*, 2014, 79, 3887-3894}.

Figure S63. LR-HMBCAD-{ ${}^{1}H{}^{-31}P$ } NMR spectra of $[Zn(6)]^{2+}$ complex in D₂O-MeOD (5:1 v/v) at 298 K: correlations of ${}^{31}P$ spectra with Sections of 2D-spectra at ${}^{31}P$ shift 22.2 (a), 22.6 (b) and 22.8 (c) ppm.

Figure S64. gHMBCAD-{ $^{1}H-{}^{13}C$ } NMR spectra of [Zn(6)] $^{2+}$ complex in D₂O-MeOD (5:1 v/v) at 298 K.

Figure S65. gHMQCAD-{ $^{1}H-{}^{13}C$ } NMR spectra of $[Zn(6)]^{2+}$ complex in D₂O-MeOD (5:1 v/v) at 298 K (aliphatic - zoomed).

Figure S66. NOESY- NMR spectra of $[Zn(6)]^{2+}$ complex in D₂O-MeOD (5:1 v/v) at 298 K (aliphatic - zoomed).

Figure S67. NOESY- NMR spectra of $[Zn(6)]^{2+}$ complex in D₂O-MeOD (5:1 v/v) at 298 K (aliphatic - zoomed).

Table S1. Assignment of signals in 1H NMR spectrum of $[Zn(6)]^{2+}$

$\begin{array}{c} 3 & 4 & & & & & & & & & & & & & & & & &$							
		51	H ₃ C 38				
Assignment*	1	Chemical	shift (ppm)		J (Hz)		
	1	H	¹⁵ C	⁵¹ P	H-H	H-P	C-P
2	8.	38	146.32		-		
3	7.	27	121.89		-		
4	7.	99	136.51		-		
5			129.61				
6	6.94		107.49		-		
7			145.18				
8	7.18		123.43		-		
9	7.65		127.68		-		
10			141.5				
12	3.32	3.32	40.924		< 0.1		
13	2.98	2.98	56.138		< 0.1		
15	2.84	2.54	54.833		14.8		
16	2.96	2.59	55.205		12.8		
18	3.62	3.42	57.47		17.2		
19			173.67				
21	3.79	3.54	55.57		17.4		
22			174.31				4.14
24	3.64	3.40	59.39		16.8		
25			172.21				
	3.44	3.30	34.85		14.4	12.2	157
28					1	12.2	157
29				22.22			
31,46	3.	77	63.89				
32,47	0.	99	15.5				
34	3.69	3.64	35.15		15.6	12.4	157
35				22.57			
37,50	3.	94	64.03				6.95
38,51	1.	08	15.5				
40	3.7	3.58	34.55		16	11.6	157
41				22.85			
43,54	3.	90	63.92				
44,55	44,55 1.03		15.5				

* Chemical shifts of the proton and carbon atoms were obtained from gHSQCAD (at = 0.5s) and LR-HSQMBC (at=0.3s). The assignment was provided using gHMBCAD, NOESY and gCOSY-spectra (Figs. S59-67).

4.2. DFT-calculation studies of $[Zn(6)]^{2+}$ **complex.**

The structure of model 1 (hydrogen atoms and phosphonate pendant arms are omitted) Zn complex of ligand **6** obtained by full geometry optimization at B3LYP/6-31G(d,p) level.

Figure S68.

COORD	1

VIB 1

NUCLEAR COORDINATES

	ATOM	Х	Y	Z
1	CARBON	28.567741	5.070436	15.070565
2	ZINC	23.810598	7.899411	14.818165
3	OXYGEN	24.209790	4.068907	14.128771
4	CARBON	26.445092	3.307599	14.175834
5	NITROGEN	27.486915	7.091643	16.662026
6	HYDROGEN	29.397535	5.902003	13.371504
7	HYDROGEN	30.057261	4.002057	16.042027
8	CARBON	28.993470	9.462507	16.631239
9	HYDROGEN	30.421591	9.470384	18.134982
10	HYDROGEN	30.024969	9.534807	14.842254
11	CARBON	27.364915	11.860490	16.892788
12	HYDROGEN	28.614266	13.514983	16.798386
13	HYDROGEN	26.457499	11.911473	18.743713
14	NITROGEN	25.348080	11.972107	14.944429
15	CARBON	23.090692	13.437974	15.650325
16	HYDROGEN	22.777242	13.280493	17.688059
17	HYDROGEN	23.263618	15.456989	15.209334
18	CARBON	26.918724	6.097611	19.246462
19	HYDROGEN	26.768281	4.041063	19.105071
20	HYDROGEN	28.491252	6.485273	20.540012
21	CARBON	26.289528	12.669092	12.411826
22	HYDROGEN	28.229143	13.392239	12.524368
23	HYDROGEN	25.150894	14.203631	11.616215
24	CARBON	24.462303	7.122604	20.375034
25	NITROGEN	22.356033	6.895581	18.531550
26	CARBON	20.753281	12.278084	14.380956
27	OXYGEN	20.757410	9.997473	13.771079
28	NITROGEN	18.762461	13.759222	14.006525
29	HYDROGEN	18.740152	15.598580	14.519111
30	HYDROGEN	17.145064	12.995789	13.323340
31	CARBON	26.246105	10.446160	10.553899
32	OXYGEN	25.592897	8.298375	11.252794
33	NITROGEN	26.983945	10.924681	8.194682
34	HYDROGEN	27.517891	12.663/81	7.604729
35	HYDROGEN	26.941950	9.515491	6.900942
36	NITROGEN	27.084856	0.993364	13.439054
37	HYDROGEN	28.881313	0.3503//	13.516631
38	HIDROGEN	25./4258/	-0.16554/	12./1/686
39	HYDROGEN	24.044101	6.092793	22.1231/3
40	HIDROGEN	24.0/369/	9.103979	20.893811
41	CARBON	19.914/00	/.802138	19.377090
42	CARBON	10 724616	0.34//30	10./33411
43	CARBON	19./34010	7 494000	20.747311
44	CARBON	13.330840	11 110165	19.393310
45	CARBON	15 147152	11.110155	21.4044/3
40	UVDBOCEN	17 006170	9.022023	20./3000/
4 /	HIDROGEN	21 415049	4.//2103	21 272647
48	HIDROGEN	21.413048	12 042007	21.3/304/
49	UVDBOCEN	100742	12.0430U/ 5 013000	22.403023 10 105002
5U 51	NTTROCEN	12 997740	10 967204	10.10J090 21 /20200
J⊥ 52	NIIRUGEN	10 922640	10.00/204 0.600670	21.420390
52	HVDDOCEN	10.022040 0 0/5701	3.0220/3 10 /02056	20.040303
53	CAPPON	3.04J/31 10 704700	10.402930 7 3770F0	21.414893 10 EDNOCO
54	UVDBOCEN	10./90/92	6 363470	10 1250603
55	CAPPON	3.00/449	6 212121	10 000/00
57	UVDBOCEN	13 100220	0.212121	17 705202
57	NIDROGEN	13.100220	4.42403/	TI.122220

The structure of model 2 (hydrogen atoms and phosphonate pendant arms are omitted) Zn complex of ligand **6** obtained by full geometry optimization at B3LYP/6-31G(d,p) level.

Figure S69.

3		NUCLEAR COORDINATES					
1	ATOM	Х	Y	Z			
1	ATOM 1 CARBON 2 ZINC 3 NITROGEN 4 CARBON 5 NITROGEN 6 HYDROGEN 7 HYDROGEN 8 HYDROGEN 10 HYDROGEN 11 CARBON 12 HYDROGEN 13 HYDROGEN 14 CARBON 15 HYDROGEN 16 HYDROGEN 17 NITROGEN 18 CARBON 19 HYDROGEN 20 CARBON 21 CARBON 22 CARBON 23 CARBON 23 CARBON 24 CARBON 25 CARBON 24 CARBON 25 CARBON 26 CARBON 27 HYDROGEN 28 HYDROGEN 30 CARBON 31 HYDROGEN 31 H	X 4.995841 3.727122 3.782732 5.166810 5.933712 4.895786 4.444615 7.140996 3.025511 6.054876 5.113142 6.335093 3.223861 5.090883 4.577148 6.992187 3.377869 4.191854 6.258058 3.568689 1.328538 -0.186508 0.542361 -2.565823 -1.752392 -3.370424 0.373123 1.775793 -2.380954 8.682281 9.594215 9.557673	Y 6.172709 8.611654 4.654839 4.038590 8.60084 4.090178 2.287398 3.677389 6.461654 5.639507 10.895263 11.280969 10.537069 13.229625 14.898619 13.577583 12.894840 14.105375 14.106582 16.077368 3.438447 2.603114 3.210878 1.481425 2.139846 1.250111 2.775271 3.862793 1.922097 8.562019 7.013882 10.302316	Z 2.693548 7.315908 7.035271 4.649561 3.775121 8.501602 3.827388 5.145689 2.151884 0.991114 2.383673 0.752563 1.635724 4.118474 2.998734 4.848027 6.314252 8.677708 8.763989 8.845625 7.445446 5.506238 9.998637 6.052718 10.569587 8.621028 3.540161 11.508443 12.507787 4.235889 3.204902 3.535163			
	32 HYDROGEN 33 CARBON 34 HYDROGEN 35 HYDROGEN 36 CARBON 37 OXYGEN 38 NITROGEN	9.557673 0.704727 0.509738 -0.224817 9.284903 7.577465 11.683951	10.302316 13.402407 14.754913 14.259854 8.356908 8.616459 7.941464	3.535163 5.731418 4.169847 7.369907 7.060866 8.661910 7.703635			
	40 HYDROGEN 41 CARBON 42 OXYGEN 43 NITROGEN 44 HYDROGEN 45 HYDROGEN	12.13434 13.075149 3.268072 2.802898 3.029453 3.377605 2.542902	7.715624 12.528511 10.229797 13.685862 15.549523 12.663919	6.414330 10.933905 10.665397 13.148835 13.377503 14.693206			
	 46 CARBON 47 OXYGEN 48 NITRCGEN 49 HYDROGEN 50 HYDROGEN 51 CARBON 52 HYDROGEN 53 CARBON 54 HYDROGEN 55 NITROGEN 56 CARBON 	-0.738682 0.258682 -3.076450 -3.901530 -4.123268 -3.679241 -6.480419 -7.789519 -5.622819 -7.098987	10.972604 8.867567 11.218161 12.917407 9.647282 0.551651 0.670880 -0.509220 -1.253288 0.205071 -0.634777	5.111168 5.447328 4.216753 3.935062 3.903048 4.156021 2.177831 4.864335 3.473512 9.294585 7.472712			
	3	3 1 X TOM 1 CARBON 2 ZINC 3 NITROGEN 4 CARBON 5 NITROGEN 6 HYDROGEN 7 HYDROGEN 8 HYDROGEN 10 HYDROGEN 11 CARBON 12 HYDROGEN 13 HYDROGEN 14 CARBON 13 HYDROGEN 13 HYDROGEN 14 CARBON 15 HYDROGEN 16 HYDROGEN 17 NITROGEN 18 CARBON 19 HYDROGEN 19 HYDROGEN 10 HYDROGEN 20 CARBON 21 CARBON 21 CARBON 23 CARBON 24 CARBON 23 CARBON 24 CARBON 25 CARBON 26 CARBON 27 HYDROGEN 28 HYDROGEN 30 CARBON 31 HYDROGEN 32 HYDROGEN 33 CARBON 34 HYDROGEN 33 CARBON 34 HYDROGEN 35 HYDROGEN 35 HYDROGEN 36 CARBON 31 HYDROGEN 37 OXYGEN 38 NITROGEN 39 HYDROGEN 39 HYDROGEN 31 HYDROGEN 31 CARBON 31 HYDROGEN 33 CARBON 34 HYDROGEN 34 HYDROGEN 35 HYDROGEN 36 CARBON 37 OXYGEN 38 NITROGEN 39 HYDROGEN 30 NITROGEN 30 HYDROGEN 30 NITROGEN 31 NITROGEN 31 NITROGEN 32 HYDROGEN 33 CARBON 34 HYDROGEN 34 HYDROGEN 35 HYDROGEN 36 CARBON 37 OXYGEN 38 NITROGEN 39 HYDROGEN 30 NITROGEN 30 HYDROGEN 30 CARBON 31 CARBON 32 HYDROGEN 33 CARBON 34 HYDROGEN 34 HYDROGEN 35 HYDROGEN 35 HYDROGEN 36 CARBON 37 OXYGEN 38 NITROGEN 30 CARBON 30 HYDROGEN 30 CARBON 30 CARBON 31 CARBON 31 CARBON 32 HYDROGEN 30 CARBON 33 CARBON 34 HYDROGEN 34 HYDROGEN 35 HYDROGEN 35 HYDROGEN 35 HYDROGEN 36 CARBON 36 CARBON 37 OXYGEN 38 NITROGEN 30 CARBON 30 CA	3 NUCLEAR 1 ATOM X 1 CARBON 4.995841 2 ZINC 3.727122 3 NITROGEN 3.782732 4 CARBON 5.166810 5 NITROGEN 5.933712 6 HYDROGEN 4.895786 7 HYDROGEN 4.895786 7 HYDROGEN 4.895786 7 HYDROGEN 7.140996 9 HYDROGEN 7.140996 9 HYDROGEN 7.140996 9 HYDROGEN 6.054876 11 CARBON 5.113142 12 HYDROGEN 6.054876 11 CARBON 5.113142 12 HYDROGEN 6.335093 13 HYDROGEN 6.23861 14 CARBON 5.090883 15 HYDROGEN 4.577148 16 HYDROGEN 6.992187 17 NITROGEN 3.57869 18 CARBON 4.191854 19 HYDROGEN 6.258058 20 HYDROGEN 3.58689 21 CARBON 0.542361 24 CARBON -2.565823 25 CARBON -0.186508 23 CARBON 0.542361 24 CARBON -2.565823 25 CARBON -1.752392 26 CARBON -2.380954 30 CARBON 8.682281 31 HYDROGEN 9.597673 32 HYDROGEN 9.594215 32 HYDROGEN 9.5977435 33 CARBON 0.704727 34 HYDROGEN 1.683951 35 HYDROGEN 1.683951 37 OXYEEN 7.57465 38 NITROGEN 1.683951 39 HYDROGEN 1.2.154454 40 HYDROGEN 2.542902 46 CARBON 0.704727 34 HYDROGEN 1.2.154454 40 HYDROGEN 1.2.15445	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Figure S70.

COORD 2

VIB 1

NUCLEAR COORDINATES

	ATOM	Х	Y	Z
1	CARBON	4.058382	4.690461	1.323544
2	ZINC	2.896477	7.117825	6.029103
3	NITROGEN	3.044570	3.097994	5.697966
4	CARBON	4.398986	2.583033	3.268971
5	NITROGEN	4.879492	7.166838	2.387838
6	HYDROGEN	4.228647	2.598604	7.130536
7	HYDROGEN	3.745344	0.787693	2.461424
8	HYDROGEN	6.400009	2.314272	3.719779
9	HYDROGEN	2.079404	4.874512	0.766010
10	HYDROGEN	5.143232	4.219167	-0.382641
11	CARBON	3.872846	9.381759	0.987064
12	HYDROGEN	5.014165	9.798833	-0.695389
13	HYDROGEN	1.984659	8.888114	0.311289
14	CARBON	3.814216	11.745701	2.679975
15	HYDROGEN	3.043520	13.335756	1.593246
16	HYDROGEN	5.737361	12.284106	3.211080
17	NITROGEN	2.364049	11.324341	5.040652
18	CARBON	3.391154	12.557988	7.309313
19	HYDROGEN	5.453594	12.413341	7.275437
20	HYDROGEN	2.894048	14.568526	7.443426
21	CARBON	0.690544	1.742976	6.130979
22	CARBON	-0.884922	1.000586	4.198594
23	CARBON	0.044259	1.239359	8.685203
24	CARBON	-3.166234	-0.302727	4.754099
20	CARBON	-2.100487	-0.001849	9.200000
20	UNDROCEN	-3.828439	-0.808014	2 225240
21	HIDROGEN	-0.430230	1 001100	2.233340
20	HYDROGEN	-2 670589	-0 432686	11 203763
30	CAPRON	-2.070309	-0.432000	2 753704
31	HYDROGEN	8 631340	6 017756	1 1/15923
32	HYDROGEN	8 324127	9 192003	2 342320
33	CARBON	-0 383434	11 725757	4 770494
34	HYDROGEN	-0.799036	13.227402	3.401203
35	HYDROGEN	-1.218886	12.274620	6.590593
36	CARBON	8.363560	6.701673	5.494801
37	OXYGEN	6.770144	6.980319	7.223490
38	NITROGEN	10.730852	5.974418	5.908122
39	HYDROGEN	11.891574	5.576390	4.424269
40	CARBON	2.428084	11.084994	9.611068
41	OXYGEN	2.145841	8.744734	9.470461
42	NITROGEN	1.888157	12.390205	11.701308
43	HYDROGEN	2.033208	14.296742	11.627218
44	CARBON	-1.704677	9.268134	4.054129
45	OXYGEN	-0.745099	7.188167	4.604680
46	NITROGEN	-3.946530	9.437486	2.905252
47	HYDROGEN	-4.604447	11.160048	2.402756
48	CARBON	-4.851030	-1.169175	2.852756
49	HYDROGEN	-4.408792	-0.832883	0.876318
50	CARBON	-7.005907	-2.434894	3.561939
51	HYDROGEN	-8.326038	-3.157863	2.169285
52	NITROGEN	-5.984192	-2.044302	7.997868
53	CARBON	-7.491076	-2.820065	6.172682
54	HYDROGEN	-9.194978	-3.814663	6.753122

55	CARBON	11.746206	5.243488	8.374418
56	HYDROGEN	10.204742	4.963120	9.710686
57	HYDROGEN	13.000464	6.719321	9.104720
58	CARBON	0.283462	11.348610	13.691937
59	HYDROGEN	0.577168	9.311471	13.782922
60	HYDROGEN	0.758472	12.187346	15.514265
61	CARBON	-5.299828	7.217450	1.989599
62	HYDROGEN	-4.937919	5.640496	3.270128
63	HYDROGEN	-7.325264	7.611045	1.960132
64	PHOSPHORUS	-3 040700	12 016089	12 838324
65	OXYGEN	-3.508790	11.672990	10.073827
66	OXYGEN	-4.767501	10.371368	14.698127
67	OXYGEN	-3.260946	14.819048	13.949390
68	PHOSPHORUS	13.601856	2.338944	7.849470
69	OXYGEN	11.557144	0.227096	8.590756
70	OXYGEN	14.609662	2.365276	5.221259
71	OXYGEN	15.617196	2.161096	10.092285
72	PHOSPHORUS	-4.140492	6.332503	-1.176224
73	OXYGEN	-1.332912	6.278990	-1.351523
74	OXYGEN	-5.363192	3.636052	-1.826028
7.5	OXYGEN	-5.558611	8.430444	-2.860328
76	CARBON	-8.034583	3.230420	-2.295668
77	HYDROGEN	-8.161006	1.725968	-3.696440
78	HYDROGEN	-8.951077	2.630297	-0.545521
79	HYDROGEN	-8.929838	4.939105	-3.028082
80	CARBON	-4.850574	8.813373	-5.490023
81	HYDROGEN	-2.804377	9.014886	-5.652814
82	HYDROGEN	-5.497684	7.225175	-6.638872
83	HYDROGEN	-5.795039	10.540514	-6.089577
84	CARBON	12.295554	-2.420432	8.636307
85	HYDROGEN	10.585717	-3.482909	9.064927
86	HYDROGEN	13.040465	-2.989304	6.797280
87	HYDROGEN	13.704069	-2.726856	10.112026
88	CARBON	18.273377	2.772016	9.733210
89	HYDROGEN	19.325438	1.536416	10.999774
90	HYDROGEN	18.831953	2.446416	7.775942
91	HYDROGEN	18.592529	4.743576	10.255690
92	CARBON	-5.659193	16.159260	13.975212
93	HYDROGEN	-6.450380	16.249561	12.070557
94	HYDROGEN	-6.967767	15.214889	15.259637
95	HYDROGEN	-5.241871	18.054613	14.658761
96	CARBON	-5.993110	8.052997	13.902925
97	HYDROGEN	-6.684497	8.230306	11.968820
98	HYDROGEN	-4.666242	6.476212	14.043911
99	HYDROGEN	-7.559795	7.760360	15.205624

Figure S71. Comparison of IR-spectra (neat, ZnSe) of 6 (a), $[Hg(6)](ClO_4)_2$ (b), $[Zn(6)](ClO_4)_2$ and $[Cu(6)](ClO_4)_2$

4.4. ESI-spectra of of [Hg(6)]²⁺ complex

Scheme S72. (a) and (b) ESI HRMS spectra obtained from the solution of 6 and $Hg(ClO_4)_2$ (H₂O, 1:1 molar ratio). (c) Calculated spectra of $[Hg(6)]^{2+}$ complex.

NMR-titration of ligand 6 with Hg(II) perchlorate

Figure S73. 400 MHz ¹H NMR spectra (aromatic) of **6** in D₂O-MeOD (5:1 v/v, [**6**] = 0.04 M) at 298 K before (a) and after addition of 0.2 (b), 0.4 (c), 0.6 (d), 0.8 (e) and 1.0 (f) equiv. of mercury(II) perchlorate.

Figure S74. 400 MHz ¹H NMR spectra (aliphatic) of **6** in D₂O-MeOD (5:1 v/v, [**6**] = 0.04 M) at 298 K before (a) and after addition of 0.2 (b), 0.4 (c), 0.6 (d), 0.8 (e) and 1.0 (f) equiv. of mercury(II) perchlorate.

Figure S75. 162.5 MHz ³¹P NMR spectra of **6** in D₂O-MeOD (5:1 v/v, [**6**] = 0.04 M) at 298 K before (a) and after addition of 0.2 (b), 0.4 (c), 0.6 (d), 0.8 (e) and 1.0 (f) equiv. of mercury(II) perchlorate.

5. Detection of sulfide anions.

Figure S76. Changes in emission of an aqueous solution of ligand **5** (red line) (26.6 mM, pH=7.4, 0.03M HEPES, $\lambda_{ex} = 356$ nm) after addition of Cu^{II} ions (1 equiv) (rose line) followed by S²⁻ions (excess) (blue line). Inset: Visual detection of S²⁻ions (excess) under UV light ($\lambda = 365$ nm) in the aqueous solution of ligand **5** (26.6 mM, pH=7.4, 0.03M HEPES) and copper(II) perchlorate (1 equiv).

NMR spectra

Figure S77. ¹H NMR spectrum of 9a (CDCl₃, 400MHz, 300K).

Figure S78. ¹³C NMR spectrum of **9a** (CDCl₃, 100.6 MHz, 300K).

Figure S79. ¹H NMR spectrum of **9b** (CDCl₃, 400MHz, 300K).

Figure S80. ¹³C NMR spectrum of 9b (CDCl₃, 100.6 MHz, 300K).

Figure S81. ¹H NMR spectrum of 9c (CDCl₃, 400MHz, 300K).

Figure S82. ¹³C NMR spectrum of 9c (CDCl₃, 100.6 MHz, 300K).

Figure S83. ¹H NMR spectrum of 9d (CDCl₃, 400MHz, 300K).

Figure S84. ¹³C NMR spectrum of 9d (CDCl₃, 100.6 MHz, 300K).

Figure S85. ¹H NMR spectrum of **9e** (CDCl₃, 400MHz, 300K).

Figure S86. ¹³C NMR spectrum of **9e** (CDCl₃, 100.6 MHz, 300K).

Figure S87. ¹H NMR spectrum of 9f (CDCl₃, 400MHz, 300K).

Figure S88. ¹³C NMR spectrum of 9f (CDCl₃, 100.6 MHz, 300K).

Figure S89. ¹H NMR spectrum of **5** (CDCl₃, 400MHz, 300K).

Figure S90. ¹³C NMR spectrum of 5 (CDCl₃, 100.6 MHz, 300K).

Figure S91. ³¹P NMR spectrum of **5** (CDCl₃, 162.5 MHz, 300K).

Figure S92. ¹H NMR spectrum of 6 (CDCl3, 400MHz, 300K).

Figure S93. ¹³C NMR spectrum of **6** (CDCl₃, 100.6 MHz, 300K).

Figure S94. ³¹P NMR spectrum of **6** (CDCl₃, 162.5 MHz, 300K).

Figure S95. ¹H NMR spectrum of **10** (CDCl₃, 400MHz, 300K).

Figure S96. ¹³C NMR spectrum of **10** (CDCl₃, 100.6 MHz, 300K).