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Abstract

Motivated by the well known “four-thirds conjecture” for the traveling salesman

problem (TSP), we study the problem of uniform covers. A graph G = (V,E) has an

α-uniform cover for TSP (2EC, respectively) if the everywhere α vector (i.e., {α}E)

dominates a convex combination of incidence vectors of tours (2-edge-connected spanning

multigraphs, respectively). The polyhedral analysis of Christofides’ algorithm directly

implies that a 3-edge-connected, cubic graph has a 1-uniform cover for TSP. Sebő asked if

such graphs have (1− ε)-uniform covers for TSP for some ε > 0. Indeed, the four-thirds

conjecture implies that such graphs have 8
9 -uniform covers. We show that these graphs

have 18
19 -uniform covers for TSP. We also study uniform covers for 2EC and show that the

everywhere 15
17 vector can be efficiently written as a convex combination of 2-edge-connected

spanning multigraphs.

For a weighted, 3-edge-connected, cubic graph, our results show that if the everywhere
2
3 vector is an optimal solution for the subtour elimination linear programming relaxation

for TSP, then a tour with weight at most 27
19 times that of an optimal tour can be found

efficiently. Node-weighted, 3-edge-connected, cubic graphs fall into this category. In this

special case, we can apply our tools to obtain an even better approximation guarantee.

An essential ingredient in our proofs is decompositions of graphs (e.g., cycle covers) that

cover small-cardinality cuts an even (nonzero) number of times. Another essential tool we

use is half-integral tree augmentation, which is known to have a small integrality gap. To

extend our approach to input graphs that are 2-edge-connected, we present a procedure to

decompose a point in the subtour elimination polytope into spanning, connected subgraphs

that cover each 2-edge cut an even number of times. Using this decomposition, we obtain

a 17
12 -approximation algorithm for minimum weight 2-edge-connected spanning subgraphs

on subcubic, node-weighted graphs.
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1 Introduction

The traveling salesman problem (TSP) and the minimum-weight 2-edge-connected

spanning multigraph problem (2EC) are two fundamental and well-studied problems in

combinatorial optimization. A folklore conjecture sometimes tersely called the “four-thirds

conjecture” (see, e.g., [CV04, Goe95]) states that the optimal (integral) solution for the

metric TSP is no more than 4
3 times the value of the subtour elimination linear programming

relaxation. However, the best known approximation ratio for both TSP and 2EC currently

stands at 3
2 [Chr76, Wol80, SW90, FJ82]. A recent spate of work has focused on the special

case of graph-TSP when the underlying weights arise from hop distances in an undirected

graph [OSS11, BSvdSS14, MS16, Muc14]. The current best ratio for this problem is 7
5 [SV14].

A parallel line of work has improved the ratio for 2EC in the unweighted case (commonly

referred to as the 2-edge-connected spanning subgraph problem or 2ECSS for short) and

resulted in a 4
3 -approximation for this problem [SV14, BFS16]. So far, these new techniques

have not been extended to more general metrics.

One approach to general metrics is via convex combinations of incidence vectors of tours

that can be derived from solutions to the well-known subtour elimination linear programming

relaxation, which we will refer to as Subtour=(G). It is by now quite standard, but we

invite the unfamiliar reader to visit Section 2.1 for the formal definition. For a solution

x ∈ Subtour=(G), we use Gx = (V,Ex) to denote the graph G = (V,E) with edge set

Ex ⊆ E restricted to the support of x. Goemans and Carr and Vempala showed that the

four-thirds conjecture is equivalent to the following conjecture [Goe95, CV04].

Conjecture 1. If x ∈ Subtour=(G), the vector 4
3x dominates a convex combination of tours

in Gx.

Based on a polyhedral analysis of Christofides’ algorithm, we know that 3
2x dominates a

convex combination of tours in Gx [Wol80, SW90]; so far we cannot replace 3
2 with any smaller

constant. Following the terminology of Boyd and Sebő [BS17], for a graph G = (V,E) on n

vertices, let the everywhere r vector for G, be the vector in R(V2) that is r in all coordinates

corresponding to edges of G and 0 in all other coordinates. Conjecture 1 is closely related to

the problem of uniform covers, which we now formally define.

Definition 1. A graph G has an α-uniform cover for TSP (2EC) if the everywhere α vector

for G dominates a convex combination of incidence vectors of tours (2-edge-connected spanning

multigraphs).

This close connection is described in Proposition 1. Proposition 1 was observed by Carr

and Vempala [CV04] but for completeness we provide a (quite straightforward) proof in

Section 3.
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Proposition 1. The following statements are equivalent.

(a) If x ∈ Subtour=(G), the vector 4
3x dominates a convex combination of tours in Gx.

(b) For any positive integer k and an arbitrary k-edge-connected k-regular graph G, the

everywhere 8
3k vector for G dominates a convex combination of tours in G.

The first interesting case is when k = 3 (i.e., the case of 3-edge-connected, cubic graphs).

Since the everywhere 2
3 vector for a 3-edge-connected, cubic graph G is in Subtour=(G), Sebő

pointed out that the four-thirds conjecture implies that for a 3-edge-connected, cubic graph,

the everywhere 8
9 vector dominates a convex combination of tours [SBS14]. The following is

therefore a relaxed version of Conjecture 1 [SBS14, BS17].

Conjecture 2. Let G = (V,E) be a 3-edge-connected, cubic graph. The everywhere 8
9 vector

for G dominates a convex combination of tours of G.

For such graphs, the everywhere 1 vector does indeed dominate a convex combination of

tours, which can be shown via the aforementioned polyhedral proof of Christofides’ algorithm

by Wolsey [Wol80, SW90]. In other words, a 3-edge-connected, cubic graph has a 1-uniform

cover. Sebő [SBS14] asked if this bound can be improved: Does a 3-edge-connected, cubic

graph have a (1− ε)-uniform cover (for some small constant ε)? For the special class of 3-edge-

connected, cubic graphs that are also Hamiltonian, Boyd and Sebő show that the everywhere
6
7 vector for G dominates a convex combination of tours [BS17]. We give an affirmative

answer to Sebő’s question and improve this factor from 1 to 18
19 for all 3-edge-connected, cubic

graphs1.

Theorem 1. Let G = (V,E) be a 3-edge-connected, cubic graph. The everywhere 18
19 vector

for G dominates a convex combination of tours of G and this convex combination can be

found in polynomial time.

The same question can be posed replacing tours with 2-edge-connected spanning multi-

graphs: for an arbitrary positive integer k and an arbitrary k-edge-connected k-regular graph

G, can the everywhere αk vector be decomposed into a convex combination of 2-edge-connected

spanning multigraphs? For general k, the best-known factor for this question (as in the case

for tours) is αk = 3
k , which can be obtained via the polyhedral proof of Christofides’ algo-

rithm [Wol80]. For special cases, however, better factors are known. For k = 4, Carr and

Ravi showed that the everywhere 2
3 vector can be decomposed into a convex combination

of 2-edge-connected spanning multigraphs [CR98]. Their proof is constructive but is not

guaranteed to run in polynomial time.

1Applying Theorem 2.3 from [BL17], we note that this theorem applies to all 3-edge-connected (i.e., possibly
noncubic) graphs.
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For a 3-edge-connected, cubic graph (i.e., the case k = 3), Boyd and Legault showed that

the everywhere 4
5 vector can be written as a convex combination of 2-edge-connected spanning

multigraphs [BL17]. This factor was subsequently improved to 7
9 by Legault [Leg17]. These

convex combinations are a key ingredient for a related result on half-triangle graphs [BL17].

Both the factors 4
5 and 7

9 are obtained via constructive procedures that are not shown to run

in polynomial time. In this paper, we show that for a 3-edge-connected, cubic graph, there is

a polynomial-time algorithm to write the everywhere 15
17 vector as a convex combination of

2-edge-connected spanning multigraphs.

Theorem 2. Let G = (V,E) be a 3-edge-connected, cubic graph. The everywhere 15
17 vector

for G dominates a convex combination of 2-edge-connected spanning multigraphs of G and

this convex combination can be found in polynomial time.

One implication of Theorem 1 is that for a weighted, 3-edge-connected, cubic graph for

which the everywhere 2
3 vector is an optimal solution for Subtour=(G), we can achieve

an approximation ratio of 27
19 for TSP, which improves over the approximation factor of

Christofides’ algorithm for these graphs2. A natural class of such graphs are 3-edge-connected,

cubic, node-weighted graphs. In the node-weight metric, each vertex of an undirected graph is

assigned a positive integer weight; the weight of an edge is the sum of the weights of its two

endpoints. (The node-weight metric is an intermediate class between weighted and unweighted

graphs for studying the TSP and has been previously studied by Frank [Fra92].) In fact, we

show that using some of the same tools applied to the uniform cover problems, we can prove

the following improved approximation ratio for such graphs.

Theorem 3. There is a 7
5 -approximation algorithm for TSP on node-weighted, 3-edge-

connected, cubic graphs.

Similarly, Theorem 2 implies that for a weighted, 3-edge-connected, cubic graph for

which the everywhere 2
3 vector is an optimal solution for Subtour=(G), we can obtain an

approximation ratio of 45
34 for 2EC, which improves upon the best-known approximation factor

for such graphs derived from Christofides’ algorithm. We explore this problem further when

the input graph is no longer 3-edge-connected and prove the following theorem for subcubic,

node-weighted graphs.

Theorem 4. If G is a node-weighted, subcubic graph, then there exists a 17
12 -approximation

for 2EC on G.

2We remark that characterizing instances by their optimal LP solutions is how classes of fundamental
points are defined. Incidentally, many fundamental classes of TSP and 2EC extreme points are either cubic or
subcubic [BC11, CR98, CV04].
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1.1 Outline and Organization

In Section 2, after stating some basic notation, we formally present the tools we use to prove

our main theorems. The first tool, presented in Section 2.2, is an efficient algorithm by Boyd,

Iwata and Takazawa to find a cycle cover that covers all 3- and 4-edge cuts in a bridgeless,

cubic graph [BIT13]. This is an essential tool in the proofs of Theorems 1, 2 and 3.

In Section 2.3, we present a key tool for proving Theorems 2 and 4, which is a theorem

by Cheriyan, Jordán and Ravi proving a small integrality gap for the half-integral 1-cover

problem [CJR99]. The 1-cover problem generalizes the tree augmentation problem: given a

connected subgraph S, the goal is to find an additional subset of edges (from the edges not in

the subgraph S) to make S 2-edge-connected. The best-known approximation factor for this

problem is 2 [FJ81], but when the solution is half-integral, there is a 4
3 -approximation [CJR99].

This latter result has been generalized by Iglesias and Ravi [IR17].

In Section 3, we show how to apply these tools to prove our main theorems on uniform

covers, which we introduced and motivated in the introduction. In Section 4, we show how to

apply these tools to go beyond the approximation guarantee obtained via uniform covers and

present several applications to connectivity problems on node-weighted, 3-edge-connected,

cubic graphs. In addition to Theorem 3, we present a 13
10 -approximation algorithm for 2EC in

cubic, 3-edge-connected graphs. This improves the approximation ratio of 3
2 for this problem

that follows from Christofides’ algorithm. A natural question is if we can extend these results

to graphs that are 2-edge-connected and either cubic or subcubic.

Extending our approach to input graphs that are 2-edge-connected necessitates finding

methods for covering 2-edge cuts. In Section 4.2, we present a procedure to decompose a

solution for the subtour elimination linear program into spanning, connected sub(multi)graphs

that cover each 2-edge cut an even (nonzero) number of times. In Section 4.3.1, we demonstrate

an application of this decomposition theorem for TSP on node-weighted, cubic graphs; we

show that an algorithm similar to that of Christofides has an approximation factor better

than 3
2 when the weight of an optimal subtour solution is strictly larger than twice the sum of

the node weights. In Section 4.3.2, we give another application of our decomposition theorem,

which allows us to (again) apply the aforementioned theorem of Cheriyan, Jordán and Ravi

and augment these spanning multigraphs with half-integral tree augmentations. Combining

this with ideas from Section 4.3.1, we prove Theorem 4.

2 Preliminaries and Tools

In the remainder of this paper, G = (V,E) denotes a weighted graph and w(e) denotes the

weight of edge e ∈ E. We can assume that G is 2-vertex-connected (e.g., applying Lemma

2.1 from [MS16]). Graph G is node-weighted if there is a function f : V → R+ such that
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for each e = uv ∈ E, we have w(e) = f(v) + f(u). In this case, we say G is node-weighted

with node-weight function f . Denote by w(E) the total edge weight:
∑

e∈E w(e). For ease of

notation let n = |V |. For vectors a, b ∈ Rm we say a dominates b if ai ≥ bi in each coordinate

i ∈ {1, . . . ,m}.
We will work with multisets of edges of G. For a multisubset F of E, the submultigraph

induced by F (henceforth referred to simply as a multigraph) is a graph that has the same

number of copies of each edge as in F . For a positive integer t, the multiset t ·F is the multiset

that contains t copies of each element in F . For multisets F and F ′, we denote by F ∪ F ′

the multiset that contains as many copies of each edge as those in F plus those in F ′. For a

multiset F and edge e ∈ F , we denote by F − e the multiset that results from removing a

single copy of e from F . By F + e, we denote the multiset that results from adding a single

copy of e to F . For a multiset of edges (or a multigraph) F the summand
∑

e∈F w(e) counts

each edge e ∈ F as many times as it appears in the multiset F .

A multigraph F of G is a tour if the vertex set of F spans V , F is connected, and

every vertex in F has even degree. For the sake of brevity, we henceforth use the term

2-edge-connected multigraph of G to refer to a 2-edge-connected spanning multigraph (i.e., a

multigraph that spans all the vertices of G). For a subset of edges S ⊆ E, the graph G/S

is the graph obtained from G by contracting the edges in S (and deleting self-loops). For a

subset S of vertices of G let δ(S) ⊂ E denote the edges crossing the cut (S, V \ S).

2.1 Subtour Elimination Linear Program

Consider a (not necessarily complete) weighted graph G = (V,E) with edge weights w(e)

for e ∈ E. The output of TSP and 2EC on input graph G is a minimum weight tour and a

minimum weight 2-edge connected multigraph of G, respectively. The following relaxation

provides a lower bound on the weight of an optimal solution for both problems.

zG = min
∑
e∈E

w(e)xe

x(δ(S)) ≥ 2 for ∅ ⊂ S ⊂ V (Subtour(G))

xe ≥ 0 for e ∈ E.

The metric completion of G is the complete graph Gmet on the vertex set of G such that

for u, v ∈ V the weight of the uv edge in Gmet is the weight of the shortest path between u

and v in G. Clearly, these weights obey the triangle inequality. TSP on G is equivalent to

finding a minimum weight tour in Gmet. Since Gmet contains a minimum weight tour that is

a Hamilton cycle, the following degree constraints are valid and yield the following seemingly
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stronger lower bound for TSP.

zGmet = min
∑
u,v∈V

w(uv)xuv∑
u∈S,v /∈S

xuv ≥ 2 for ∅ ⊂ S ⊂ V (Subtour=(G))

∑
v∈V \{u}

xuv = 2 for u ∈ V

xuv ≥ 0 for u, v ∈ V.

Note that in the above formulation, edges uv and vu are the same, so xuv and xvu represent the

same variable. Cunningham showed that the bounds zG and zGmet are in fact equal [MMP90,

GB93]. For a solution x ∈ Subtour=(G) let Gx = (V,Ex), where Ex = {uv : u, v ∈
V and xuv > 0}.

We will frequently use the following well-known fact [GLS88].

Fact 1. Any point x ∈ Subtour(G) dominates a convex combination of spanning trees, which

can be found efficiently.

2.2 Cycle Covers Covering All 3- and 4-Edge Cuts

We now present one of our main tools for proving Theorems 1 and 2. Given a graph G = (V,E),

a cycle cover (also known as a 2-factor) of G is a collection of vertex disjoint cycles whose

vertex sets partition V . Cycle covers have been extensively studied in the area of matching

theory and have been also used to obtain approximation algorithms for TSP.

Kaiser and Škrekovski [KŠ08] proved that every bridgeless, cubic graph has a cycle cover

that covers all 3-edge and 4-edge cuts of the graph. Their proof is not algorithmic and an

efficient, constructive version was given by Boyd, Iwata and Takazawa [BIT13].

Theorem 5 (Boyd, Iwata and Takazawa [BIT13]). Let G be a bridgeless, cubic graph. Then

there is an algorithm whose running time is polynomial in the size of G that finds a cycle

cover of G covering every 3-edge and 4-edge cut of G.

A straightforward observation is the following.

Observation 1. Let G be a 3-edge-connected, cubic graph. Let C be a cycle cover that covers

3-edge cuts and 4-edge cuts in the graph. Then G/C is a 5-edge-connected multigraph.

Cubic, bipartite graphs exhibit even more structure, allowing for a stronger corollary.

Observation 2. Let G be a cubic, bipartite graph. Let C be a cycle cover of G. Then the

graph G/C is Eulerian.

7



Proof. Each vertex in G/C corresponds to a cycle in C and the degree of this vertex has the

same parity as the number of edges in the cycle. Since G is bipartite, every cycle in C is an

even cycle. Therefore, each vertex in G/C has even degree, since it is obtained by contracting

a cycle in C. We can conclude that G/C is an Eulerian graph.

Observation 3. Let G be a 3-edge-connected, cubic, bipartite graph. Let C be a cycle cover

that covers 3-edge cuts and 4-edge cuts in the graph. Then G/C is a 6-edge-connected graph.

Proof. Graph G/C is 5-edge-connected by Observation 1. By Lemma 2, G/C is Eulerian.

Therefore, G/C does not contain any cuts crossed by an odd number of edges. In particular,

G/C contains no 5-edge cuts.

2.3 Tree Augmentation

We next present one of our main tools for proving Theorem 2. We first state the 1-cover

problem on a laminar family of sets. A family of sets S is called laminar if for any S and S′ in

S, the set S ∩ S′ is equal to either S, S′ or ∅. For a graph G = (V,E), we are given a laminar

family of sets, S, where each set in S consists of a subset of vertices. Additionally, we are

given a set of edges E with nonnegative edge weights w(e) for e ∈ E. The 1-cover problem

on family S asks for a 1-cover of S: a minimum weight subset of edges C ⊆ E such that

|C ∩ δ(S)| ≥ 1 for all S ∈ S. Indeed, we are interested in a special case of the 1-cover problem

on a laminar family of sets. Let F be a spanning, connected multigraph of a given graph G,

and let S be the family of 1-edge cuts of F : S = {S : |δ(S) ∩ F | = 1}. In this case, we refer

to a 1-cover of S as a 1-cover of F . Define a block to be a maximal 2-edge-connected induced

subgraph of F . Consider the tree obtained from contracting the blocks of F . Rooting this

tree at an arbitrary vertex, we can find a laminar family SF of sets in S such that the 1-covers

of S are exactly the 1-covers of SF . Hence, the natural linear programming relaxation for

the 1-cover problem for a graph G = (V,E) and multigraph F of G is:

min
∑
e∈E

w(e)ye

s.t.
∑

e∈E:e∈δ(S)

ye ≥ 1 for all S ∈ SF (Cover(G,F ))

ye ≥ 0 for all e ∈ E.

Let us denote the feasible region of the above linear program by Cover(G,F ). By

contracting the blocks of F , we get a tree on these contracted components and the 1-cover

problem on SF is equivalent to the tree augmentation problem [FJ81]. Its integrality gap

is known to be between 3
2 and 2 [FJ81, Jai01, CKKK08]. However, in the special case of

half-integral points, the integrality gap is much smaller. Cheriyan, Jordan and Ravi [CJR99]
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proved that if y ∈ Cover(G,F ) and ye ∈ {0, 12 , 1} for all e ∈ E, then there is an algorithm,

whose running time is polynomial in the size of G, that writes the vector 4
3 · y as a convex

combination of 1-covers C1, . . . , Ch of F . Iglesias and Ravi generalized this result [IR17].

Theorem 6 (Iglesias and Ravi [IR17]). If y ∈ Cover(G,F ) and ye ≥ α or ye = 0 for all

e ∈ E, then there is an algorithm, whose running time is polynomial in the size of G, that

writes the vector 2
1+α · y as a convex combination of 1-covers C1, . . . , Ch of F .

3 Uniform Covers

First, we recall Proposition 1, stated in the introduction. This observation is due to Carr and

Vempala [CV04], but we prove the proposition for completeness.

Proposition 1. The following statements are equivalent.

(a) If x ∈ Subtour=(G), the vector 4
3x dominates a convex combination of tours in Gx.

(b) For any positive integer k and an arbitrary k-edge-connected k-regular graph G, the

everywhere 8
3k vector for G dominates a convex combination of tours in G.

Proof. (a) =⇒ (b): IfG is k-edge-connected and k-regular, then y, defined to be the everywhere
2
k vector for G, is in Subtour=(G). Therefore 4

3y, which is the everywhere 8
3k vector for G,

is dominated by a convex combination of tours of Gy. Notice that Gy = G.

(b) =⇒ (a): Let x ∈ Subtour=(G) for graph G = (V,E). Let k be the smallest integer

such that xe is a multiple of 1
k for every edge e ∈ Ex. Let G′ = (V,E′) be such that E′ has kxe

copies of each e ∈ Ex. It is easy to observe that G′ is 2k-edge-connected and 2k-regular. Let y

be the everywhere 8
6k vector for G′. So by (b), y dominates a convex combination of tours in

G′: y ≥
∑`

i=1 λiχ
Fi , where

∑`
i=1 λi = 1, λi > 0, and Fi is a tour of G′ for i = {1, . . . , `}. Since

G′ = k ·Gx, each Fi also corresponds to a tour in Gx, and
∑`

i=1 λiχ
Fi(e) = 8

6kkxe = 4
3xe.

3.1 Algorithms for Uniform Covers

Recall that the polyhedral proof of Christofides’ algorithm can be used to prove statement (b)

in Proposition 1 when the factor 8
3k is replaced by 3

k . The problem of reducing this factor to

anything less than 3
k has been open for decades. In the case where k = 3, we can improve this

result.

Theorem 1. Let G = (V,E) be a 3-edge-connected, cubic graph. The everywhere 18
19 vector

for G dominates a convex combination of tours of G and this convex combination can be

found in polynomial time.
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Proof. By Theorem 5, graph G has a cycle cover C such that C covers every 3-edge and

4-edge cut of G. Let G/C be the graph obtained by contracting each cycle of C in G. By

Observation 1, G/C is 5-edge-connected. Define vector y ∈ RE(G/C) as follows: ye = 2
5 for

e ∈ E(G/C). Observe that y ∈ Subtour(G/C). Thus, y dominates a convex combination

of spanning trees of G/C, which can be computed in polynomial time (see Fact 1). More

precisely, we can write y ≥
∑`

i=1 λiχ
Ti , where Ti is a spanning tree of G/C,

∑`
i=1 λi = 1,

and λi > 0 for i ∈ {1, . . . , `}. Consequently, we have 2y ≥
∑`

i=1 λiχ
2Ti (i.e., the vector 2y

dominates a convex combination of doubled spanning trees of G/C).

Let M be the set of edges in E \ C that are not in G/C; these are the edges that connect

two vertices of the same cycle in C. Define vector v ∈ R(V2) as follows: ve = 1 for e ∈ C,

ve = 4
5 for e ∈ E \ (M ∪ C), and ve = 0 otherwise. Note that v ≥

∑`
i=1 λiχ

C∪2Ti . For

i ∈ {1, . . . , `}, the graph induced by C ∪ 2Ti is a tour.

Now we define u ∈ R(V2) as follows: ue = 1
2 for e ∈ C and ue = 1 for e ∈ E \C, and ue = 0

otherwise. We have u ∈ Subtour=(G) : for each cut D of G, if |D| ≥ 4, clearly
∑

e∈D ue ≥ 2.

If |D| = 3, then |C ∩ D| = 2, so
∑

e∈D ue = 2 · 12 + 1 = 2. We can write 3
2u as a convex

combination of tours [Wol80].

Now vector 15
19v + 4

19(32u) can be written as convex combination of tours of G. For

edge e ∈ C we have 15
19ve + 4

19(32ue) = 15
19 + 4

19(32 ·
1
2) = 18

19 . For e ∈ E(G/C) we have
15
19ve + 4

19(32ue) = 15
19 ·

4
5 + 4

19(32) = 18
19 . For e ∈M , we have 15

19ve + 4
19(32ue) = 0 + 4

19(32) = 6
19 .

Therefore 15
19v + 4

19(32u) is dominated by the everywhere 18
19 vector for G.

If G is also bipartite, then by Observation 3, the graph G/C in the proof of Theorem 1 is

6-edge connected. We can therefore improve Theorem 1 in this case.

Theorem 7. Let G = (V,E) be a 3-edge-connected, cubic, bipartite graph. The everywhere
12
13 vector for G dominates a convex combination of tours of G and this convex combination

can be found in polynomial time.

Proof. Let C be the cycle cover in G that covers 3-edge and 4-edge cuts of G. By Observation

3, G/C is 6-edge-connected. Let M be the set of edges that have both endpoints in the same

cycle in the cycle cover C. Similar to the proof of Theorem 1, define vector v ∈ R(V2) as

follows: ve = 1 for e ∈ C, ve = 2
3 for e ∈ E(G/C), and ve = 0 otherwise. The vector v can be

written as a convex combination of tours of G.

Now define u ∈ R(V2) as follows: ue = 1
2 for e ∈ C, ue = 1 for e ∈ E \ C, and ue = 0

otherwise. Since u ∈ Subtour=(G), this implies that 3
2u can be written as a a convex

combination of tours of G.

Finally, vector 9
13v+ 4

13(32u) can be written as a convex combination of tours of G. For e ∈ C,
9
13ve + 4

13ue = 9
13 + 4

13(34) = 12
13 . For e ∈ E(G/C) we have 9

13ve + 4
13ue = 9

13 ·
2
3 + 4

13(32) = 12
13 .

Finally, if e ∈M , 9
13ve + 4

13ue = 4
13(32) = 6

13 . This proves the result.
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We can further relax Conjecture 2 and ask whether or not the everywhere 8
9 vector

for a 3-edge-connected, cubic graph G can be written as a convex combination of 2-edge-

connected multigraphs of G. The answer to this question is yes, and is a direct corollary of a

decomposition theorem due to Carr and Ravi [CR98]. In fact, in Lemma 1, we show that for

a 3-edge-connected, cubic graph G, the problem of determining if G has an α-uniform cover

can be reduced to bounding the integrality gap of half-integer solutions for Subtour=(G).

Lemma 1. Let G = (V,E) a 3-edge-connected, cubic graph. Suppose for any x ∈ Subtour=(G)

such that x ∈ {0, 12 , 1}
(V2), the vector αx dominates a convex combination of tours (2-edge-

connected multigraphs) of Gx. Then the everywhere 2
3α vector for G dominates a convex

combination of tours (2-edge-connected multigraphs) of G.

Proof. Let y ∈ RE be such that ye = 2
3 for e ∈ E. By Corollary 30.8a in [Sch03], y is in

the convex hull of cycle covers of G. Thus, there are cycle covers C1, . . . , C` and positive

multipliers λ1, . . . , λ` such that
∑`

i=1 λi = 1 and y =
∑`

i=1 λiCi. For i ∈ {1, . . . , `}, define

vector yi ∈ R(V2) as follows: yie = 1
2 for e ∈ Ci, yie = 1 for e ∈ E \ Ci, and yie = 0 otherwise.

Observe that yi ∈ Subtour=(G) for i ∈ {1, . . . , `}. Furthermore, v =
∑`

i=1 λiy
i is the

everywhere 2
3 vector for G; for e ∈ E we have

∑
i:e∈Ci

λi = 2
3 and

∑
i:e/∈Ci

λi = 1
3 , and so∑`

i=1 λiy
i
e =

∑
i:e∈Ci

λi · 12 +
∑

i:e/∈Ci
λi = 2

3 .

Since the vector yi ∈ {0, 12 , 1}
(V2), the vector αyi dominates a convex combination of tours

(2-edge-connected multigraphs) of Gyi = G for i ∈ {1, . . . , `}. Therefore, the everywhere 2
3α

vector for G dominates a convex combination of tours (2-edge-connected multigraphs) of

G.

Theorem 8 (Carr and Ravi [CR98]). If x ∈ Subtour=(G) and x ∈ {0, 12 , 1}
(V2), then the

vector 4
3x dominates a convex combination of 2-edge-connected multigraphs of Gx.

Corollary 8.1. Let G = (V,E) be a 3-edge-connected, cubic graph. The everywhere 8
9 vector

for G dominates a convex combination of 2-edge-connected multigraphs of G.

Proof. Follows directly from Lemma 1 and Theorem 8.

However, this proof does not yield a polynomial-time decomposition since the number

of multigraphs in the convex combination output via Theorem 8 is not guaranteed to be

polynomial in the size of G. In fact, Legault proved a result that is stronger than Lemma 1:

the everywhere 7
9 vector for G can be written as a convex combination of 2-edge-connected

subgraphs [Leg17]. Notice that the result of Legault is stronger not only because the 7
9 is

smaller than 8
9 , but also in the sense that it restricts the multigraphs to subgraphs, i.e. no

edge in G is doubled. However, the proof in [Leg17] also does not guarantee that the number

of subgraphs in the decomposition is polynomial in the size of G.
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We now present a stronger version of Corollary 8.1. For the rest of this section we will do

all computations on the edges of the graph G = (V,E) so all the vectors are in dimension of E.

Thus, henceforth we slightly abuse the everywhere vector notation to make the presentation

simpler. Indeed, we can extend all the vectors to dimension
(
V
2

)
by adding zeros.

Theorem 9. Let G = (V,E) be a 3-edge-connected, cubic graph. The everywhere 8
9 vector

for G dominates a convex combination of 2-edge-connected subgraphs of G and this convex

combination can be found in polynomial time.

Proof. Let y ∈ RE be such that ye = 2
3 for e ∈ E. Since y ∈ Subtour(G), we can find in

polynomial time spanning trees T1, . . . , T` of G and positive multipliers λ1, . . . , λ` such that∑`
i=1 λi = 1 and y ≥

∑`
i=1 λiχ

Ti . For i ∈ {1, . . . , `} define vector yi ∈ RE as follows: yie = 0

for e ∈ Ti and yie = 1
2 for e /∈ Ti. Since G is 3-edge-connected, we have yi ∈ Cover(G,Ti)

for i ∈ {1, . . . , `}. By Theorem 6, there is a polynomial-time algorithm that finds 1-covers

Ci1, . . . , C
i
`i

of Ti for i ∈ {1, . . . , `} and positive multipliers λi1, . . . , λ
i
`i

such that
∑`i

j=1 λ
i
j = 1

and 4
3y

i =
∑`i

j=1 λ
i
jχ

Ci
j for i ∈ {1, . . . , `}. Note that Ti + Cij is a 2-edge-connected subgraph

of G for i ∈ {1, . . . , `} and j ∈ {1, . . . , `i}. Hence,

u =
∑

i∈{1,...,`}

∑
j∈{1,...,`i}

λiλ
i
jχ

Ti∪Ci
j , where

∑
i∈{1,...,`}

∑
j∈{1,...,`i}

λiλ
i
j = 1

is a convex combination of 2-edge-connected multigraphs of G. By construction, an edge

cannot belong both to a tree Ti and to a 1-cover Cij . Thus, there are no doubled edges in any

solution. Vector u is the everywhere 8
9 vector for G: for e ∈ E, we have

ue =
∑
i:e∈Ti

`i∑
j=1

λiλ
i
j +

∑
i:e/∈Ti

∑
j:e∈Ci

j

λiλ
i
j ≤

2

3
+

1

3
· 2

3
=

8

9
.

Observe that in the proof of Lemma 9, we never double any edge in any of the 2-edge-

connected subgraphs. (Hence, the statement of lemma uses subgraph rather than multigraph.)

If we relax this and allow doubled edges, we can indeed improve the factor by combining the

ideas from Theorem 1 and Theorem 9 to improve the bound in Theorem 9 from 8
9 to 15

17 .

Theorem 2. Let G = (V,E) be a 3-edge-connected, cubic graph. The everywhere 15
17 vector

for G dominates a convex combination of 2-edge-connected spanning multigraphs of G and

this convex combination can be found in polynomial time.

Proof. Let C be a cycle cover of G that covers every 3-edge and 4-edge cut of G. By

Observation 1, the graph G/C is 5-edge-connected. Let M = E \ (C ∪ E(G/C)). Define

12



r ∈ RE(G/C) as follows: re = 2
5 for e ∈ E(G/C). We have r ∈ Subtour(G/C), so 3

2r

dominates a convex combination of tours of G/C: namely R1, . . . , R`. Observe that the graph

induced by C ∪ Ri is a 2-edge-connected multigraph of G for i ∈ {1, . . . , `}. So, the vector

v ∈ RE where ve = 1 for e ∈ C, ve = 3
5 for e ∈ E(G/C), and ve = 0 for e ∈ M dominates a

convex combination of 2-edge-connected multigraphs of G.

Now define y ∈ RE as follows: ye = 1
2 for e ∈ C and ye = 1 for e ∈ E \ C. Since y ∈

Subtour(G), we can efficiently find spanning trees T1, . . . , T` of G and convex multipliers

λ1, . . . , λ` such that y ≥
∑`

i=1 λiχ
Ti . For i ∈ {1, . . . , `} define yi ∈ RE as follows: yie = 1

2 for

e /∈ Ti and yie = 0 otherwise. Notice, that yi ∈ Cover(G,Ti), hence by Theorem 6, there is a

polynomial-time algorithm that finds 1-covers Ci1, . . . , C
i
`i

of Ti for i ∈ {1, . . . , `} and positive

multipliers λi1, . . . , λ
i
`i

such that
∑`i

j=1 λ
i
j = 1 and 4

3y
i =

∑`i
j=1 λ

i
jχ

Ci
j for i ∈ {1, . . . , `}. Note

that Ti +Cij is a 2-edge-connected subgraph of G for i ∈ {1, . . . , `} and j ∈ {1, . . . , `i}. Hence,

u =
∑

i∈{1,...,`}

∑
j∈{1,...,`i}

λiλ
i
jχ

Ti∪Ci
j , where

∑
i∈{1,...,`}

∑
j∈{1,...,`i}

λiλ
i
j = 1

is a convex combination of 2-edge-connected multigraphs of G. For e ∈ C, we have

ue =
∑
i:e∈Ti

`i∑
j=1

λiλ
i
j +

∑
i:e/∈Ti

∑
j:e∈Ci

j

λiλ
i
j ≤

1

2
+

1

2
· 2

3
=

5

6
.

For e /∈ C, we have

ue =
∑
i:e∈Ti

`i∑
j=1

λiλ
i
j +

∑
i:e/∈Ti

∑
j:e∈Ci

j

λiλ
i
j ≤ 1 + 0 = 1.

Finally we conclude that the vector 5
17v+ 12

17u can be efficiently written as convex combina-

tion of 2-edge-connected multigraphs of G. For e ∈ C we have 5
17ve+

12
17ue = 5

17+ 12
17 ·

5
6 = 15

17 . For

e ∈ G/C we have 5
17ve+

12
17ue = 5

17 ·
3
5+ 12

17 = 15
17 . For e ∈M we have 5

17ve+
12
17ue = 5

17 ·0+ 12
17 = 12

17 .

Therefore 5
17v + 12

17u is dominated by the everywhere 15
17 vector for G.

We note that in the proof of Theorem 2, since the vector y is half-integral, we can

apply Theorem 8 to conclude that 4
3y dominates a convex combination of 2-edge-connected

multigraphs of G. This shows that the everywhere 7
8 vector for G dominates a convex

combination of 2-edge-connected multigraphs. (Specifically, 3
8(43y) + 5

8v is dominated by the

everywhere 7
8 vector for G.) But this approach does not produce a convex combination in

polynomial-time. We can improve Theorem 2 slightly when the graph G is also bipartite.

Theorem 10. Let G = (V,E) be a 3-edge-connected, cubic, bipartite graph. The everywhere
7
8 vector for G dominates a convex combination of 2-edge-connected multigraphs of G and this
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convex combination can be found in polynomial time.

Proof. Let C be the cycle cover in G that covers 3-edge and 4-edge cuts of G. Let M be the set

of edges in G that have both endpoints in the same cycle of C. Since G/C is 6-edge-connected,

the vector r with re = 1
3 for e ∈ E(G/C) is in Subtour(G/C). Therefore, we can show,

similarly as in the proof of Theorem 2, that the vector v such that ve = 1 for e ∈ C and

ve = 3
2 ·

1
3 = 1

2 for e ∈ E(G/C) and ve = 0 for e ∈M can be written as a convex combination

of 2-edge-connected multigraphs of G in polynomial time. Furthermore, as in the proof of

Theorem 2, the vector u, where ue = 5
6 for e ∈ C, ue = 1 for e ∈ E \ C, can be written as a

convex combination of 2-edge-connected subgraphs of G in polynomial time. Note that the

vector 1
4v + 3

4u is dominated by the everywhere 7
8 vector for G.

For the case where k = 4 in Proposition 1, Carr and Ravi [CR98] showed that the

everywhere 2
3 vector can be written as a convex combination of 2-edge-connected subgraphs3.

But as we mentioned earlier, their proof is constructive but might require exponential

time. The only known result on this problem before this work is applying Wolsey [Wol80]’s

decomposition which implies that the everywhere 3
4 vector for a 4-edge-connected 4-regular

graph can be decomposed into a convex combination of 2-edge-connected spanning multigraphs

in polynomial time. However, this is weaker in terms of both the factor and the fact that we

now allow doubled edges. By applying Theorem 6 we can slightly improve this. The proof of

the following theorem is very similar to the proof of Theorem 9.

Theorem 11. Let G = (V,E) be a 4-edge-connected, 4-regular graph. The everywhere 3
4

vector for G dominates a convex combination of 2-edge-connected subgraphs of G and this

convex combination can be found in polynomial time.

Proof. Since G is a 4-edge-connected 4-regular graph the everywhere 1
2 vector for G, call it

v, is in Subtour(G). Therefore, v can be written as convex combination of spanning trees

of G: v ≥
∑`

i=1 λiχ
Ti , where λ1, . . . , λ` are convex multipliers and T1, . . . , T` are spanning

trees of G. For i ∈ {1, . . . , `}, define a vector yi, where yie = 0 if e ∈ Ti and yie = 1
3 if

e /∈ Ti. Since G is 4-edge-connected we have yi ∈ Cover(G,Ti). By Theorem 6, we can

find 1-covers Ci1, . . . , C
i
`i

of Ti for i ∈ {1, . . . , `} with convex multipliers λi1, . . . , λ
i
`i

such that
3
2y

i =
∑`i

j=1 λ
i
jχ

Ci
j for i ∈ {1, . . . , `}. Now Ti + Cij is a 2-edge-connected subgraph of G for

i ∈ {1, . . . , `} and j ∈ {1, . . . , `i}. Let

u =
∑

i∈{1,...,`}

∑
j∈{1,...,`i}

λiλ
i
jχ

Ti∪Ci
j , where

∑
i∈{1,...,`}

∑
j∈{1,...,`i}

λiλ
i
j = 1.

We can write u as a convex combination of 2-edge-connected subgraphs of G. Also,

3[CR98] do not double half edges, so in fact here we obtain a convex combination of subgraphs.
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ue =
∑
i:e∈Ti

`i∑
j=1

λiλ
i
j +

∑
i:e/∈Ti

∑
j:e∈Ci

j

λiλ
i
j =

1

2
+

1

2
· 1

3
· 3

2
=

3

4
.

4 A Bit Beyond Uniform Covers: Node-Weight Metrics

Theorems 1 and 2, which we proved in Section 3, imply that when G is a 3-edge-connected,

cubic graph and the everywhere 2
3 vector is an optimal solution for Subtour=(G), we can

efficiently find a tour and a 2-edge-connected spanning multigraph whose costs are at most
27
19 and 45

34 , respectively, times that of an optimal solution. A 3-edge-connected, cubic graph

with node-weight function f : V → R+ falls into this category, as we will show later on.

However, for such graphs we can obtain approximation guarantees better than 27
19 and 45

34

for the respective problems. The techniques we use to show this are similar to those used

in Section 3. However, these techniques do not generalize to cubic graphs that have 2-edge

cuts. In order to obtain improved approximation algorithms for this more general class of

graphs, we introduce a connector decomposition theorem. We use this decomposition theorem

to design algorithms for 2EC and TSP on node-weighted, subcubic graphs.

4.1 3-Edge-Connected Cubic Graphs

First we show that the everywhere 2
3 vector is in fact an optimal solution for Subtour(G)

when G is a cubic, 3-edge-connected graph.

Lemma 2. Let G = (V,E) be a 3-edge-connected, cubic graph with node-weight function

f : V → R+. Then zG = 2 ·
∑

v∈V fv.

Proof. For any x ∈ Subtour(G), we have x(δ(v)) ≥ 2. So,∑
e∈E

w(e)xe =
∑
v∈V

x(δ(v)) · fv ≥ 2 ·
∑
v∈V

fv.

Thus, zG ≥ 2 ·
∑

v∈V fv. On the other hand, let x′e denote the everywhere 2
3 vector for G. Note

that x′ ∈ Subtour(G), since G is 3-edge-connected. Moreover,
∑

e∈E w(e)x′e = 2 ·
∑

v∈V fv.

Hence zG ≤ 2 ·
∑

v∈V fv.

Thus, we see that we can achieve a 27
19 -approximation for TSP on node-weighted, cubic,

3-edge-connected graphs. We now show in fact this approximation ratio can be improved in

this special case. We start with the following observations.

Fact 2. Let C be a cycle cover of G. Then
∑

e∈C w(e) = 2 ·
∑

v∈V fv = zG.
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Fact 3. Let M be a perfect matching of G. Then
∑

e∈M w(e) =
∑

v∈V fv = zG
2 .

Theorem 3. There is a 7
5 -approximation algorithm for TSP on node-weighted, 3-edge-

connected, cubic graphs.

Proof. Let C be a cycle cover of G that covers all 3-edge and 4-edge cuts of G. By Observation

1, the graph G/C is 5-edge-connected. Let ye = 2
5 if e ∈ E(G/C), and ye = 0 otherwise.

Notice that y ∈ Subtour(G/C), since for every S ⊂ V (G/C), we have y(δ(S)) ≥ 2
5 · 5 ≥ 2.

By Fact 1, y dominates a convex combination of spanning trees of G/C. Let T be a minimum

spanning tree of G/C.∑
e∈T

w(e) ≤
∑

e∈E(G/C)

w(e)ye

≤
∑

e∈E\C

w(e)ye (E(G/C) ⊆ E \ C)

≤
∑

e∈E\C

w(e) · 2

5
(ye ≤

2

5
for e ∈ E \ C)

=
zG
2
· 2

5
=

zG
5

(By Fact 3; E \ C is a perfect matching of G).

Finally, note that C ∪ 2T is a tour of G and

∑
e∈C∪2T

w(e) ≤
∑
e∈C

w(e) + 2 ·
∑
e∈T

w(e) ≤ zG +
2

5
zG =

7

5
zG.

Next we show that we can use a very similar approach to 2EC on node-weighted, 3-edge-

connected, cubic graphs.

Theorem 12. There is a 13
10-approximation algorithm for 2EC on node-weighted, 3-edge-

connected, cubic graphs.

Proof. Let C be a cycle cover of G that covers all 3-edge and 4-edge cuts of G. By Observation

1 graph G/C is 5-edge-connected. For e ∈ E(G/C) let ye = 2
5 , and ye = 0 otherwise. Notice

that y ∈ Subtour(G/C). By Christofides’ algorithm, one can find a 2-edge-connected

multigraph F on G/C, such that
∑

e∈F w(e) ≤ 3
2

∑
e∈E(G/C)w(e)ye. In particular,

∑
e∈F

w(e) ≤ 3

2

∑
e∈E(G/C)

w(e)ye

≤ 3

2

∑
e∈E\C

w(e)ye (E(G/C) ⊆ E \ C)
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≤ 3

5

∑
e∈E\C

w(e) (ye ≤
2

5
for e ∈ E \ C)

=
3

10
zG (By Fact 3; E \ C is a perfect matching of G).

Note that C ∪ F is a 2-edge-connected multigraph of G and

∑
e∈C∪F

w(e) ≤
∑
e∈C

w(e) +
∑
e∈F

w(e) ≤ zG +
3

10
zG =

13

10
zG.

We note that for the 2EC problem on 3-edge-connected cubic graphs, there are better

(i.e., smaller) bounds on the integrality gap than those implied by Theorem 12. In particular,

Boyd and Legault [BL17] and Legault [Leg17] gave bounds of 6
5 and 7

6 , respectively, on the

integrality gap. While their procedures are constructive, they do not run in polynomial time.

Thus, the best previously known approximation factor for this problem is 3
2 via Christofides

algorithm. Finally one can easily obtain the following theorem using the ideas in the above

theorems together with Observation 3.

Theorem 13. There is a 4
3 -approximation (respectively, 5

4 -approximation) algorithm for TSP

(respectively, 2EC) on node-weighted, 3-edge-connected, cubic, bipartite graphs.

4.2 A Tool for Covering 2-Edge Cuts

The results in Theorems 3 and 12 do not apply to bridgeless, cubic graphs. In this section,

we give an alternative tool to the BIT cycle cover (from Theorem 5) for graphs that are not

3-edge-connected (i.e., graphs that contain 2-edge cuts). In particular, we find a decomposition

of a point x∗ in Subtour(G) such that this decomposition has certain properties. Many

approaches for TSP decompose x∗ into a convex combination of spanning trees, whose average

weight does not exceed zG. In this section, we propose an alternate way of decomposing x∗

into connectors.

Definition 1. A connector F of graph G is a (multi) subset of edges of G such that F is

connected and spanning and contains at most two copies of each edge in G.

It is known that a vector x∗ ∈ Subtour(G) dominates a convex combination of spanning

trees (and hence connectors) of G. We now show that x∗ can be decomposed into connectors

with the additional property that every 2-edge cut is covered an even number of times.

These connectors can be augmented to obtain a tour or a 2-edge-connected multigraph of

G, and under certain conditions, this property can be exploited to bound the weight of an

augmentation.
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Theorem 14. Let x∗ ∈ Subtour(G). We can find a family of connectors F = {F1, . . . , F`}
and multipliers λ1, . . . , λ`, in polynomial-time in the size of the graph G, such that

(a) x∗ ≥
∑`

i=1 λiFi, where
∑
λi = 1 and λi > 0, and

(b) every Fi has an even number of edges crossing each 2-edge cut in G.

We note that G can be assumed to be the support of x∗, so every Fi will actually have an

even number of edges crossing each 2-edge cut in the support of G on x∗.

4.2.1 Proof of Theorem 14

To prove Theorem 14, we need to understand the structure of 2-edge cuts in a 2-edge connected

graph. Assume G = (V,E) is a 2-edge-connected graph. For S ⊆ V , let G[S] denote the

subgraph induced by vertex set S (i.e., the graph on the vertex set S containing edges from

E with both endpoints in S).

Lemma 3. If S ⊆ V and |δ(S)| = 2, then G[S] is connected.

Proof. Suppose not, then S can be partitioned into S1 and S2, such that there is no edge in

G between S1 and S2. Hence, |δ(S1)|+ |δ(S2)| = 2. However, since G is 2-edge-connected we

have |δ(S1)|+ |δ(S2)| ≥ 4, which is a contradiction.

Lemma 4. Let e, f and g be distinct edges of G. If {e, f} and {f, g} are each 2-edge cuts in

G, then {e, g} is also a 2-edge cut in G.

Proof. Let S, T ⊂ V be such that δ(S) = {e, f} and δ(T ) = {f, g}. Without loss of generality,

we can assume that neither endpoint of e belongs to T . (If both endpoints of e belong to T ,

we set T equal to its complement.) Moreover, we can assume that S ∩ T 6= ∅ (since otherwise

we can set S equal to its complement). We can also assume that S \T 6= ∅ (since one endpoint

of e belongs to S but not to T ). Suppose T \ S is not empty. By Lemma 3, G[T ] is connected.

Hence there exists an edge h from S ∩ T to T \ S. Notice h ∈ δ(S), and h /∈ δ(T ). Therefore,

h = e. However, since both endpoints of h are in T , this is a contradiction. So we can assume

that T \ S = ∅. In other words, T ⊂ S.

Now we show that δ(S \ T ) = {e, g}. Since T ⊂ S and neither endpoint of e belongs to

T , it follows that e ∈ δ(S \ T ). Moreover, since only one endpoint of g belongs to T (and

therefore to S) and g /∈ δ(S), it follows that g ∈ δ(S \ T ). So we have {e, g} ⊆ δ(S \ T ).

Suppose there is another edge h ∈ δ(S \ T ) with endpoints v ∈ S \ T and u /∈ S \ T . Note

that h 6= f , because neither endpoint of f belongs to S \ T . If u ∈ T , then h ∈ δ(T ) which is

a contradiction to T being a 2-edge cut. Otherwise if u ∈ V \ S, then h ∈ δ(S) which is again

a contradiction to S being a 2-edge cut.
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We will later use these properties when building a family of connectors to delete and

replace edges along the 2-edge cuts of the graph. Next, we need a decomposition lemma for

x∗.

Lemma 5. A vector x∗ ∈ Subtour(G) can be represented as a convex combination of

connectors of G, and the number of connectors in this convex combination is polynomial in

the number of vertices of G.

Proof. By Corollary 50.8a in [Sch03] the following polytope is the convex hull of connectors

of G.

x(δ(P)) ≥ |P| − 1 for P ∈ Πn

0 ≤ xe ≤ 2 for e ∈ E

Here, Πn is the collection of partitions of V . For P ∈ Πn, we denote by δ(P) the set of edges

with endpoint in different parts of partition P, and |P| is the number of parts in partition P.

Notice that for any partition P of V with parts P1, . . . , P|P| we have

x∗(δ(P)) =
1

2

|P|∑
i=1

x∗(δ(Pi)) ≥ |P|.

Therefore, x∗ can be written as a convex combination of connectors of G. The fact that

the number of connectors in the convex combination is polynomial follows from the fact

that the polytope above is separable, and hence we can apply the constructive version of

Carathéodory’s theorem to get the result [GLS88, Sch03].

By Lemma 5, there exists positive reals λ1, . . . , λ`, such that
∑`

i=1 λi = 1, and connectors

F1, . . . , F` such that

x∗ =
∑̀
i=1

λiχ
Fi , (1)

where χFi is the characteristic vector of Fi for i ∈ {1, . . . , `}. Furthermore, we can find

this decomposition in time polynomial in the size of G. Notice F1, . . . , F` satisfy (a) in the

statement of Theorem 14. We will now show that given F1, . . . , F`, we can obtain a new

family of connectors satisfying both (a) and (b) from Theorem 14.

Lemma 6. Given a family of connectors F1, . . . , F` of G such that x∗ =
∑`

i=1 λiχ
Fi , λi > 0 for

i ∈ {1, . . . , `}, and
∑`

i=1 λi = 1, there is a polynomial-time algorithm that outputs connectors

F ′1, . . . , F
′
` such that

(1) x∗ =
∑`

i=1 λiχ
F ′i .

19



(2) If x∗e ≥ 1, then χF
′
i (e) ≥ 1 for all i ∈ {1, . . . , `}.

(3) If x∗e < 1, then there is no i ∈ {1, . . . , `} such that χF
′
i (e) = 2.

Proof. Call a tuple (e, i, j) where e ∈ E, i, j ∈ {1, . . . , `} bad if

χFi(e) = 2 and χFj (e) = 0.

Let m be the number of bad tuples and let (e, i, j) be a bad tuple. Then

F ′i = Fi − e, F ′j = Fj + e, and F ′p = Fp for p ∈ {1, . . . , `} \ {i, j}

satisfies property (1). Notice that now F ′1, . . . , F
′
` has at most m− 1 bad tuples; no new bad

tuples are created by the above procedure. Thus, after at most m iterations, we have that for

each e ∈ E, there is no i, j ∈ {1, . . . , `} such that χF
′
i (e) = 2 and χF

′
j (e) = 0. This implies

properties (2) and (3) in the statement of the lemma. Finally, it is also easy to see that fixing

each tuple can be done in polynomial time, and that the number of tuples is polynomial in

the size of G.

We now proceed to the proof of Theorem 14. By Lemma 4, the relation “is in a 2-edge

cut with” is transitive. So, we can partition the edges in 2-edge cuts of G into equivalence

classes via this relation. Let D be the collection of disjoint subsets of edges of G such that

for all D ∈ D: (i) |D| ≥ 2, and (ii) for each pair of edges {e, f} ⊆ D, edges e and f form a

2-edge cut of G. Note that for D ∈ D and any distinct edges e, f ∈ D, it cannot be the case

that both x∗e < 1 and x∗f < 1, since {e, f} is a 2-edge cut and x∗ ∈ Subtour(G). We classify

the subsets in D into two types:

D1 = {D ∈ D : for all e ∈ D, x∗e ≥ 1},

D2 = {D ∈ D : there is exactly one edge e ∈ D such that x∗e < 1}.

Let F1, . . . , F` be a family of connectors satisfying properties (1), (2) and (3) in Lemma 6.

We propose a procedure to modify these connectors and output F ′1, . . . , F
′
` such that for each

D ∈ D, property (b) in Theorem 14 is satisfied while property (a) is preserved. In particular,

by property (1) from Lemma 6, we have

∑̀
i=1

χFi(e) = x∗e for e ∈ E.

Our specific procedure depends on whether D ∈ D1 or D ∈ D2.

Case 1 (D ∈ D1): In this case, we have χFi(e) ≥ 1 for all e ∈ D and i ∈ {1, . . . , `}, by
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property (2) in Lemma 6. For i ∈ {1, . . . , `} let F ′i be such that

χF
′
i (e) = 1 for e ∈ D and χF

′
i (e) = χFi(e) for e ∈ E \D.

Now we reset F1, . . . , F` := F ′1, . . . , F
′
`, and proceed to the next D ∈ D1.

It is easy to see that we can apply this procedure iteratively for D ∈ D1. This is because

after applying this operation on D ∈ D1, properties (2) and (3) in Lemma 6 are preserved.

Moreover, property (1) in Lemma 6 is also preserved for every edge not in D, i.e.

∑̀
i=1

λiχ
F ′i (e) = x∗e for all e ∈ E \D (and

∑`
i=1 λiχ

F ′i (e) ≤ x∗e for all e ∈ D).

In addition, given any 2-edge cut {e, f} such that {e, f} ⊆ D for D ∈ D1, we have χF
′
i (e) +

χF
′
i (f) = 1 + 1 = 2 for all i ∈ {1, . . . , `}.

Case 2 (D ∈ D2): Let e be the unique edge in D with x∗e < 1. By property (3) in Lemma

6, we have χFi(e) ≤ 1 for all i ∈ {1, . . . , `}. Without loss of generality, assume for χFi(e) = 1

for i ∈ {1, . . . , p} and χFi(e) = 0 for i ∈ {p+ 1, . . . , `}. For i ∈ {1, . . . , p}, let F ′i be such that

χF
′
i (f) = 1 for f ∈ D and χF

′
i (f) = χFi(f) for f ∈ E \D.

For i ∈ {p+ 1, . . . , `}, let F ′i be such that

χF
′
i (e) = 0, χF

′
i (f) = 2 for f ∈ D \ {e} and χF

′
i (f) = χFi(f) for f ∈ E \D.

Now we reset F1, . . . , F` := F ′1, . . . , F
′
`, and proceed to the next D ∈ D2. After each iteration,

we observe that

∑̀
i=1

λiχ
F ′i (e) =

p∑
i=1

λiχ
F ′i (e) +

∑̀
i=p+1

λiχ
F ′i (e)

=

p∑
i=1

λi = x∗e. (2)

For f ∈ D \ {e}, we have

∑̀
i=1

λiχ
F ′i (f) =

p∑
i=1

λiχ
F ′i (f) +

∑̀
i=p+1

λiχ
F ′i (f)

=

p∑
i=1

λi + 2
∑̀
i=p+1

λi
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= x∗e + 2(1− x∗e) (From (2))

= 2− x∗e
≤ x∗f (Since x∗ ∈ Subtour(G)).

This also clearly holds for any f ∈ E \D as we do not touch these edges. Note that after the

final iteration, F1, . . . , F` are connected, spanning multigraphs of G, because we began with

connected, spanning multigraphs and we only remove an edge f from Fi if it contained at

least two copies of f .

Finally, note that given any 2-edge cut {e, f} ∈ D for D ∈ D2, we have χFi(e) + χFi(f) =

1 + 1 = 2, χFi(e) + χFi(f) = 0 + 2 = 2 or χFi(e) + χFi(f) = 2 + 2 = 4 for all i ∈ {1, . . . , `}.
This concludes the proof of Theorem 14.

4.3 Subcubic Graphs

We now present two applications of Theorem 14. In the first application, we show that for a

node-weighted, subcubic graph, Christofides’ algorithm has an approximation factor better

than 3
2 when the weight of an optimal subtour solution is strictly larger than twice the sum

of the node weights. In the second application, we show that there is a set of edges that

can be added to a connector to yield a 2-edge-connected graph, and this addition can be

found via an application of the tree augmentation problem, which we introduced in Section

2.3. This resembles methods used in the proof of Theorem 9. We then show that combining

the approaches in these applications, we can beat the approximation ratio of Christofides’

algorithm for 2EC on node-weighted, subcubic graphs.

A useful fact about node-weighted, subcubic graphs is that the total edge weight cannot

be too much larger than zG.

Fact 4. Let G = (V,E) be a node-weighted, subcubic graph. Then w(E) ≤ 3
2zG.

Proof. Observe that w(E) ≤ 3 ·
∑

v∈V fv, where f : V → R+ is the node-weight function.

Also, notice that zG ≥ 2 ·
∑

v∈V fv. ♦

Since all graphs are assumed to be 2-vertex-connected (i.e., bridgeless), we can show the

following fact.

Fact 5. Let G = (V,E) be a node-weighted, subcubic graph. Then zG ≤ 3 ·
∑

v∈V fv.

Proof. This follows from the fact that xe = 1 for all e ∈ E is a feasible solution for Subtour(G)

when G is a 2-vertex-connected subcubic graph. ♦

For the remainder of this section, let x∗ be an optimal solution for Subtour(G). By

Theorem 14, we have x∗ ≥
∑`

i=1 λiχ
Fi where Fi is a connector satisfying (a) and (b) in the
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statement of Theorem 14 for i ∈ {1, . . . , `}. Let x′ =
∑`

i=1 λiχ
Fi . Clearly

∑
e∈E w(e)x′e ≤ zG.

Define x̄ ∈ RE as follows: x̄e = min{1, x′e}.

4.3.1 An Algorithm for TSP à la Christofides with Simple Deletions

In the graph metric, every (minimum) spanning tree has weight at most n. It follows that

in the case where zG ≥ (1 + ε)n, Christofides’ algorithm has an approximation guarantee

strictly better than 3
2 (in fact, at most (32 −

ε
1+ε)). This implies that, in some sense, the most

difficult case for graph-TSP is when zG = n. It seems that it should also be the case for

node-weighted graphs: the most difficult case should be when zG = 2 ·
∑

v∈V fv, and when

zG ≥ (1 + ε) · 2 ·
∑

v∈V fv, Christofides’ algorithm should give an approximation guarantee

strictly better than 3
2 .

However, in the case of node-weighted graphs (even for subcubic graphs), a minimum

spanning tree of G may have weight exceeding 2 ·
∑

v∈V fv when zG > 2 ·
∑

v∈V fv. See

Figure 1 for an example. Thus, proving an approximation factor strictly better than 3
2 for

node-weighted graphs in this scenario does not follow the same argument as in the graph

metric. Nevertheless, we can use connectors to prove that we can beat Christofides’ algorithm

when G is a subcubic node-weighted graph and zG is much larger than 2 ·
∑

v∈V fv.

(a)

(b)

Figure 1: The graph in (b) has a total of 10t (here t = 5) vertices: each circular vertex
corresponds to the gadget in (a). The weight of each square vertex in (b) is 1, and all other
vertices have weight zero. A minimum spanning tree (denoted by the thick, blue edges) has
weight 5t− 2 while sum of the node weights is 2t. In this case, Theorem 15 yields a tour of
weight 7t− 2, providing a 7

5 -approximation for this instance.

Lemma 7. Let G = (V,E) be a graph with nonnegative edge weights. There is an efficient

algorithm to find a tour in G with weight at most zG + w(E)
3 .

In fact, we prove something slightly stronger that will be useful later in the paper.
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Lemma 8. Let G = (V,E) be a graph with nonnegative edge weights. There is an efficient

algorithm to find a tour in G with weight at most w(E)
3 + 1

3 ·
∑

e∈E w(e)x′e + 2
3 ·
∑

e∈E w(e)x̄e.

For a subset T of vertices in V , where |T | is even, a T -join of G is a subgraph J of G in

which the set of odd-degree vertices of J are exactly T . Edmonds and Johnson [EJ73] proved

that the inequalities below describe the convex hull of T -joins of G.

x(δ(U) \W )− x(W ) ≥ 1− |W | for U ⊆ V,W ⊆ δ(U), |U ∩ T |+ |W | odd (T -Join(G))

0 ≤ xe ≤ 1 for all e ∈ E.

In Christofides’ algorithm, one can write an optimal solution x∗ for Subtour(G) as a

convex combination of spanning trees (see Fact 1). Each of these spanning trees is then

augmented with a T -join, where T ⊆ V is the set of odd-degree vertices in the spanning tree.

In particular, for a spanning tree F of G, let T be the set of odd-degree vertices of F . Then,
x∗

2 dominates a point in the T -join polytope. This mean the vector x∗ + x∗

2 = 3
2x
∗ dominates

a convex combination of tours of G.

If we decompose the optimal solution for Subtour(G) into a family of connectors according

to Theorem 14, then we can augment each connector by a T -join that is obtained from writing

the vector {13}
E as a convex combination of T -joins.

Lemma 9. Let F be a family of connectors for G = (V,E) satisfying properties (a) and (b)

from Theorem 14. For an Fi ∈ F , let T denote the odd-degree vertices in Fi. Then the vector

{13}
E belongs to T -Join(G).

Proof. Let F be a connector of G and let T ⊆ V denote the vertices with odd degree in F .

Since all edges have value 1
3 , we only need to check that

|δ(U)|
3

+
|W |

3
≥ 1 for U ⊆ V,W ⊆ δ(U), |U ∩ T |+ |W | odd. (3)

Consider U ⊂ V such that |δ(U)| = 2. Note that
∑

e∈δ(U) χ
F
e is even by the properties of

a connector. This implies that |U ∩ T | is even. So we need to check the case where |W | = 1.

In this case, we see that Inequality (3) is satisfied. Now consider case in which |δ(U)| ≥ 3. In

this case,
|δ(U)|

3
+
|W |

3
≥ |δ(U)|

3
≥ 1.

Hence, {13}
E ∈ T -Join(G).

Observe that Lemma 9 is sufficient to prove Lemma 7. To prove (the potentially stronger)

Lemma 8, we modify Christofides’ algorithm further by adding the following deletion step.

Suppose an edge e occurs in a connector F as a doubled edge. If this edge e also belongs to
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the T -join J , we remove two copies of e from the multigraph F ∪ J . We observe that the

resulting multigraph remains a tour.

Observation 4. Let F be a connector for G = (V,E) and let J be a T -join, where T is the

set of vertices with odd degree in F . Let E′ ⊂ E denote the set of edges that occur doubled in

F and also belong to J . Then the multigraph F ∪ J \ {2E′} is a tour.

We are now ready to prove Lemma 8 via an analysis of the modified Christofides’ algorithm

we have just described.

Proof of Lemma 8. We have x′ =
∑`

i=1 λiχ
Fi where Fi is a connector satisfying (a) and (b)

in the statement of Theorem 14 for i ∈ {1, . . . , `}. Choose i ∈ {1, . . . , `} uniformly at random

according to the probability distribution defined by λ1, . . . , λ`. Let Ti be the set of odd-degree

vertices of Fi. By Lemma 9, we have {13}
E =

∑`i
j=1 λ

i
jχ

Ji
j , where J ij is a Ti-join of G. Choose

j ∈ {1, . . . , `i} at random according to probability distribution defined by λi1, . . . , λ
i
`i

. Let

E′ ⊂ E denote the edges that occur doubled in Fi and also belong to J ij . By Observation 4,

H = Fi ∪ J ij \ {2E′} is a tour of G. We have

E[w(H)] = E[w(Fi)] + E[w(J ij)]− 2 · E[w(E′)]

=
∑
e∈E

w(e)x′e +
w(E)

3
− 2 ·

∑
e∈E:x′e>1

w(e) · Pr[χFi
e = 2] · Pr[e ∈ J ij ]

=
∑
e∈E

w(e)x′e +
w(E)

3
− 2 ·

∑
e∈E:x′e>1

w(e)(x′e − 1) · 1

3

=
∑
e∈E

w(e)x′e +
w(E)

3
− 2

3

 ∑
e∈E:x′e>1

w(e)x′e −
∑

e∈E:x′e>1

w(e)


=
∑
e∈E

w(e)x′e +
w(E)

3
− 2

3

(∑
e∈E

w(e)x′e −
∑
e∈E

w(e)x̄e

)

=

∑
e∈E w(e)x′e

3
+
w(E)

3
+

2

3
·
∑
e∈E

w(e)x̄e.

Theorem 15. Let G be a node-weighted, subcubic graph. If zG ≥ 2 · (1 + ε) ·
∑

v∈V fv, then

there is an (32 −
ε
3)-approximation algorithm for TSP on G.

Proof. For a node-weighted, subcubic graph, we have

w(E) ≤ 3 ·
∑
v∈V

fv. (4)
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By the assumption of the theorem and (4), we have zG ≥ 2(1 + ε)
∑

v∈V fv ≥
2(1+ε)

3 w(E).

Applying Lemma 7, we get a tour of weight at most

zG +
w(E)

3
≤ (

3 + 2ε

2 + 2ε
) · zG

= (
3

2
− ε

2 + 2ε
) · zG

≤ (
3

2
− ε

3
) · zG.

The last inequality comes from the fact that ε ≤ 1
2 since zG ≤ 3 ·

∑
v∈V fv, which follows from

Fact 5.

4.3.2 An Algorithm for 2EC

Recall the set-up for 2EC. We are given a graph G = (V,E) with nonnegative weights w(e)

for e ∈ E. Our goal is to find a minimum weight 2-edge-connected multigraph of G. We now

prove the following lemma.

Lemma 10. Let G = (V,E) be a graph with nonnegative edge weights. We can find a 2-edge-

connected multigraph of G with weight at most
∑

e∈E w(e)x′e + 2
3w(E)− 2

3 ·
∑

e∈E w(e)x̄e.

Proof. Recall that we have x′ =
∑`

i=1 λiχ
Fi where Fi is a connector satisfying (a) and (b)

in the statement of Theorem 14 for i ∈ {1, . . . , `}. For i ∈ {1, . . . , `}, let Si be the family of

1-edge cuts of Fi. As discussed in Section 2.3, there is a laminar family S∗i ⊆ Si that is enough

to describe Cover(G,Fi) for all i ∈ {1, . . . , `}. Define vector yi ∈ RE as follows: yie = 0 for

e ∈ Fi and yie = 1
2 for e ∈ E \ Fi.

Claim 1. For i ∈ {i, . . . , `}, we have yi ∈ Cover(G,Fi).

Proof. Let S be a 1-edge cut of Fi. Then δ(S) ∩ Fi contains exactly one edge e. Note that it

cannot be the case that |δ(S)| = 2. This is because if δ(S) were a 2-edge cut of G, then by

property (b) in Theorem 14, there would be an even number of edges in Fi that are also in

δ(S). Hence, |δ(S)| ≥ 3. So we have

∑
e∈δ(S)

ye =
∑

e∈δ(S)\Fi

1

2
=

∑
e∈δ(S)\{e}

1

2
=
|δ(S) \ {e}|

2
≥ 1.

This concludes the proof of the claim. ♦

For i ∈ {1, . . . , `}, define vector ri as follows: rie = 0 for e ∈ Fi and rie = 2
3 for e ∈ E \ Fi.

Claim 2. For i ∈ {1, . . . , `}, the vector ri can be written as a convex combination of 1-covers

of Fi.
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Proof. By Claim 1 and Theorem 6, vector 4
3y

i can be written as a convex combination of

1-covers of Fi, and 4
3y

i = ri. ♦

By Claim 2, for i ∈ {1, . . . , `} we can write ri as
∑`i

j=1 λ
i
jC

i
j , where for j ∈ {1, . . . , `i}, Cij

is a 1-cover for Fi. Let Rij = Fi∪Cij . Notice, for all choices of i and j, Rji is a 2-edge-connected

multigraph of G. To argue that there exists a low-weight, 2-edge-connected multigraph, we

show the following claim.

Claim 3. There exists i ∈ {1, . . . , `} and j ∈ {1, . . . , `i} such that Rij ≤
∑

e∈E w(e)x′e +
2
3w(E)− 2

3 ·
∑

e∈E w(e)x̄e.

Proof. Pick i ∈ {1, . . . , `} at random according to the probability distribution defined by

λ1, . . . , λ`. Now, pick j ∈ {1, . . . , `i} at random according to the probability distribution

defined by λi1, . . . , λ
i
`i

. We have

E[w(Rij)] = E[w(Fi)] + E[w(Cij)]

=
∑
e∈E

(
2w(e) · Pr[χFi(e) = 2] + w(e) · Pr[χFi(e) = 1]

)
+
∑
e∈E

w(e) · Pr[e ∈ Cij ]

=
∑
e∈E

(
2w(e) · Pr[χFi(e) = 2] + w(e) · Pr[χFi(e) = 1]

)
+
∑
e∈E

2

3
w(e) · Pr[χFi(e) = 0]

=
∑

e∈E:x′e>1

(
2w(e) · Pr[χFi(e) = 2]︸ ︷︷ ︸

=(x′e−1)

+w(e) · Pr[χFi(e) = 1]︸ ︷︷ ︸
=(2−x′e)

+
2

3
w(e) · Pr[χFi(e) = 0]︸ ︷︷ ︸

=0

)
+

∑
e∈E:x′e≤1

(
2w(e) · Pr[χFi(e) = 2]︸ ︷︷ ︸

=0

+w(e) · Pr[χFi(e) = 1]︸ ︷︷ ︸
=x′e

+
2

3
w(e) · Pr[χFi(e) = 0]︸ ︷︷ ︸

=(1−x′e)

)
=

∑
e∈E:x′e>1

(
2w(e)x′e − 2w(e) + 2w(e)− w(e)x′e

)
+

∑
e∈E:x′e≤1

(
w(e)x′e +

2

3
w(e)− 2

3
w(e)x′e

)
=

∑
e∈E:x′e>1

w(e)x′e +
∑

e∈E:x′e≤1

(1

3
w(e)x′e +

2

3
w(e)

)
=

∑
e∈E:x′e>1

w(e)(x′e − 1) +
∑
e∈E

(
1

3
w(e)x̄e +

2

3
w(e))

=
∑
e∈E

w(e)x′e −
∑
e∈E

w(e)x̄e +
∑
e∈E

1

3
w(e)x̄e +

∑
e∈E

2

3
w(e)

=
∑
e∈E

w(e)x′e +
2

3
w(E)− 2

3
·
∑
e∈E

w(e)x̄e.

♦

This concludes the proof of Lemma 10.
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Assume w(E) ≤ 3
2zG. In this case, Lemma 10 finds a 2-edge-connected multigraph of weight

at most 2zG − 2
3 ·
∑

e∈E w(e)x̄e. If
∑

e∈E w(e)x̄e = zG, then this implies a 4
3 -approximation

for 2EC. (Note that this is the case if x∗ ≤ 1.) However, there are instances for which this

does not happen. Figure 2 illustrates an example where the algorithm in Lemma 10 does not

improve the bound of Christofides’ algorithm.

v12

v21 v3 0

v4 1

ε 1− ε
2

1− ε
2

ε

2− 2ε

1− ε
2

Figure 2: Let G = (V,E) be the node-weighted K4 shown above. For e ∈ E, we is defined
as the sum of the node-weights of the two endpoints (e.g., wv1v2 = 2 + 1 = 3). The edge
labels represents solution x∗ ∈ Subtour(G). Here we have x′ = x∗. We have w(E) = 12,∑

e∈E w(e)x′e = 8,
∑

e∈E w(e)x̄e = 6+4ε. For this x∗, Lemma 10 yields a (3−ε2 )-approximation,
which does not outperform Christofides’ algorithm by any constant factor. However, Lemma
8 provides a (4+ε3 )-approximation for 2EC on the graph G.

Lemma 11. Let G = (V,E) be a graph such that w(E) ≤ β · zG, then there is a (23 + β
2 )-

approximation for 2EC on graph G.

Proof. Taking the best of the guarantees from Lemmas 8 and 10,we have an algorithm that

outputs a 2-edge-connected multigraph of weight at most

1

2

(
4

3

∑
e∈E

w(e)x′e + w(E))

)
≤ 1

2

(
4

3
zG + w(E)

)
= (

2

3
+
β

2
) · zG.

Note that the above bound is obtained by taking the average of the two guarantees.

Theorem 4. If G is a node-weighted, subcubic graph, then there exists a 17
12 -approximation

for 2EC on G.

Proof. For a node-weighted, subcubic graph, we have w(E) ≤ 3
2zG (by Fact 4). By Lemma

11, we get a 17
12 -approximation for 2EC on graph G.
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5 Concluding Remarks

Carr and Ravi [CR98] proved that for any 4-regular 4-edge-connected graph G, the everywhere
2
3 vector can be decomposed into a convex combination of 2-edge-connected subgraphs of

G. This implies an upper bound of 4
3 on the integrality gap of half-integer points for the

2EC problem with metric weights. Their proof however does not lead to a polynomial-time

algorithm for such instances. In Theorem 11, we gave an alternate way (as opposed to that of

Wolsey [Wol80]) to obtain such a convex combination for the everywhere 3
4 vector. It is an

interesting open problem to determine if the everywhere 3
4 − ε vector for G can be decomposed

into convex combination tours of G in polynomial time. Another open problem is stated

in Conjecture 2, which is implied by the four-thirds conjecture. Finally, for node-weighted

metrics, it would be interesting to find a 4
3 -approximation algorithm for TSP in bridgeless,

cubic graphs to match the corresponding bound for graph metrics [BSvdSS14].
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[BSvdSS14] Sylvia Boyd, René Sitters, Suzanne van der Ster, and Leen Stougie. The traveling

salesman problem on cubic and subcubic graphs. Mathematical Programming,

144(1-2):227–245, 2014.

[Chr76] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling sales-

man problem. Technical report, Graduate School of Industrial Administration,

Carnegie Mellon University, 1976.

[CJR99] Joseph Cheriyan, Tibor Jordán, and R. Ravi. On 2-coverings and 2-packings of

laminar families. In European Symposium on Algorithms, pages 510–520. Springer,

1999.

[CKKK08] Joseph Cheriyan, Howard Karloff, Rohit Khandekar, and Jochen Könemann.

On the integrality ratio for tree augmentation. Operations Research Letters,

36(4):399–401, 2008.

[CR98] Robert Carr and R. Ravi. A new bound for the 2-edge connected subgraph

problem. In Proceedings of 6th International Conference on Integer Programming

and Combinatorial Optimization, pages 112–125. Springer, 1998.

[CV04] Robert Carr and Santosh Vempala. On the Held-Karp relaxation for the asym-

metric and symmetric traveling salesman problems. Mathematical Programming,

100(3):569–587, 2004.

[EJ73] Jack Edmonds and Ellis L. Johnson. Matching, Euler tours and the Chinese

postman. Mathematical Programming, 5(1):88–124, 1973.

[FJ81] Greg N. Frederickson and Joseph Ja’Ja’. Approximation algorithms for several

graph augmentation problems. SIAM Journal on Computing, 10(2):270–283,

1981.

[FJ82] Greg N. Frederickson and Joseph Ja’Ja’. On the relationship between the bicon-

nectivity augmentation and traveling salesman problems. Theoretical Computer

Science, 19(2):189–201, 1982.

30



[Fra92] András Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM

Journal on Discrete Mathematics, 5(1):25–53, 1992.

[GB93] Michel X. Goemans and Dimitris J. Bertsimas. Survivable networks, linear pro-

gramming relaxations and the parsimonious property. Mathematical Programming,

60(1):145–166, 1993.
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