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__________________________________________________________________________________ 

 

Abstract 

 

A recently proposed density-based phase envelope construction method (Nichita, Fluid Phase Equilib. 

478, 100-113, 2018) is adapted to account for capillary effects. The set of saturation point equations is 

selected such as both the zero tangent plane distance (TPD) function (in terms of component molar 

densities and temperature) and the Young-Laplace equation are honored. The set of variables and 

potential specifications includes mixture molar density, temperature and the modified equilibrium 

constants (defined as the ratios of reference to incipient phase component molar density). The number 

of equations and the variables are the same as in the bulk fluid case. The density-based method 

including capillary pressure is not dependent on the thermodynamic model; any pressure-explicit 

equation of state and volume-explicit interfacial tension model can be used. The equation of state 

(EoS) must not be solved for volume and the elements of the Jacobian matrix have simpler expressions 

than those in conventional (pressure-based) methods. A code for phase envelope construction of bulk 

fluids can be easily modified by adding the capillary terms to the residual functions and Jacobian 

matrix. The additional partial derivatives of capillary terms have very simple expressions due to the 

explicit in volume form of the interfacial tension model. Unlike in conventional formulations, negative 

pressures in the reference phase can be handled. The proposed method is tested for several 

hydrocarbon mixtures, ranging from natural gases to heavy oils. As compared to a bulk fluid, under 

capillary pressure influence the bubble point pressures are suppressed and the dew point locus is 

expanded, with a shift of cricondentherm points towards higher temperatures. For the mixtures 

investigated, the computational results are practically identical to those reported in the literature. The 

computational procedure is robust, there are no problems neither in crossing the critical region (where 

interfacial tensions are very low) nor at important negative pressures and for very large capillary 

pressures (of the order of hundreds bar in some test examples). 
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1. Introduction  

 

 Saturation point calculations represent one of the basic phase equilibrium calculation 

problems. Phase envelopes are the fingerprint of a mixture of given composition in the planes defined 

by state variables or functions. Even though several stand-alone saturation point calculation 

procedures have been proposed [1-3], the safest procedure is to trace the entire phase envelope using 

continuation methods [4,5], by calculating the entire family of solutions, starting from an "easy" point 

where a non-problematic convergence can be obtained (such as a low-pressure dew or bubble point). 

The most widely used approach is the one presented by Michelsen (1980) [4]. Several variations of 

this kind of procedure have been proposed [6-10], using conventional (PT, or pressure-based) methods 

(with the Gibbs free energy as the central thermodynamic potential), in which the volume is a 

dependent variable and is calculated from the equation of state at given pressure, temperature and 

composition. 

 

 In volume-based thermodynamics (in which the Helmholtz free energy is the central 

thermodynamic potential), volume, temperature and mole numbers (which are the natural variables in 

a pressure-explicit equation of state) [11], or molar densities and temperature [12,13] are the primary 

variables. Whatever the type of phase equilibrium calculations (phase stability phase splitting, 

saturation points), the main advantages of volume-based methods are that the EoS is not solved for 

volume, simpler partial derivatives are required and calculations can be also performed at negative 

pressures. A disadvantage of volume-based methods is that successive substitutions (SSI) cannot be 

used (even if the SSI method can be formulated, it is not robust as in the conventional PT formulation 

[14-16]), thus robust modified Newton methods [15-19] or very good initial guesses for a full Newton 

method (as in automated phase envelope construction) are required. Volume-based methods are 

slightly slower than the conventional ones in terms of number of iterations required for convergence 

[16,19], but the computational cost of an iteration is lower. Volume-based phase envelope construction 

methods were presented by Kunz et al. [20], Quinones-Cisneros and Deiters [21], Deiters [22], Bell 

and Deiters [23] and Nichita [24]. A density marching method [10] (although not properly speaking a 

volume-based method) used density as an independent variable and constructed phase envelopes by 

monotonically varying the density of the feed. 

 

 Saturation point calculations are closely related to phase stability testing [25] in both 

conventional and volume-based approaches. At a saturation point, the tangent plane distance function 

equals zero and is at its non-trivial global minimum for the incipient phase composition [26]. In all 

saturation point calculation methods, the set of equations is selected in such a manner that both 
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equilibrium (of the reference phase with an incipient phase) and zero TPD function conditions are 

satisfied. 

 

 It is well known that capillarity affects fluid phase behavior in porous media and its influence 

increases with curvature; capillary effects are very important in nanopores. As compared to a bulk 

fluid, under capillary pressure influence the bubble point pressures are suppressed and the dew point 

locus is inflated (showing an increase of retrograde dew point pressures and a decrease of lower dew 

point pressures), with a shift of cricondentherm points towards higher temperatures [27-30]. 

 

 In phase equilibrium calculations with capillary pressure influence, the equilibrium equations 

(equality of chemical potentials) are solved together with the capillary pressure (Young-Laplace) 

equation (Shapiro and Stenby [27], Brusilovski [31]).  Phase equilibrium calculations including 

capillary pressure received considerable attention in the last few years, mainly related to the increased 

interest of the petroleum and gas industry and research in the development of shale oil and gas 

reservoirs. Many papers present mixture phase envelopes and the influence of capillarity on phase 

boundaries using conventional (pressure-based) methods. In most of them, saturation points are 

indirectly calculated from flash calculations or stability testing; such a procedure is tedious (with 

possible problems near critical points) and calculations at many points are required to achieve a good 

precision. However, only in few papers a direct calculation of saturation points is reported 

(Brusilovski [31], Nojabaei et al. [32], Pang et al. [33], Li et al. [34]) and even fewer are presenting an 

automated construction of phase envelopes including capillary pressure (Sandoval et al. [28] and Zuo 

et al. [35]). 

 

 Recently, phase envelopes with capillary pressure influence were indirectly constructed using 

volume-based methods by VT (at constant volume, temperature and moles) flash calculations by Li et 

al. [30] and by Lu et al. [36]; in the latter work phase boundaries are drawn in the molar density-

temperature (d-T) plane. Sandoval et al. [37] presented an automated volume-based method for phase 

envelope construction. 

 

 In this paper, a density-based phase envelope construction including capillary pressure is 

proposed. It is shown how a recent calculation method for bulk fluids (Nichita [24]) can be readily 

adapted to include the capillary effects by simple modifications of the residual functions and Jacobian 

matrix; the partial derivatives including capillary terms have very simple expressions, since the 

interfacial tension model is explicit in molar densities (this represents an additional advantage of 

volume- or density-based methods if capillarity is taken into account). Geometrical confinement and 

adsorption are not addressed here. 
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 The paper is organized as follows. First, the tangent plane distance function in terms of molar 

densities and temperature and the equations of saturation point calculations are presented for both bulk 

fluids (section 2) and with capillary effects (section 3), then the phase envelope construction including 

capillary pressure is presented, with emphasis to the treatment of additional capillary terms (section 4). 

Several examples of various phase envelope construction (ranging from natural gases to heavy oils) 

without/with capillary pressure at different capillary radii are presented and discussed (section 5) 

before concluding. 

 

 

2. Saturation points of a bulk fluid 

 

 Saturation point calculations are closely related to phase stability testing; one way or another, 

the saturation point equations are selected to ensure that a TPD function equals zero. In volume-based 

methods for stability testing, the TPD function can be expressed at given temperature either in terms 

of mole numbers and volume [14,16,18,25] or of molar densities [12,13,14,38,39]. A volume-based 

stability criterion was proposed for the first time by Nagarajan et al. [12], with component molar 

densities and temperature as primary variables. The TPD function is 

       
   

RT

TPTP
TfTfdTD z

nc

i

izii

,,
,ln,ln,

1

z
z

dd
ddd






   (1) 

where d is the vector of component molar densities in the trial phase,  Tncdd ,...,1d , with 

dxVnd iii  /  and the index z corresponds to the feed (reference phase) of molar densities 

ncidzVnd ziziziz ,1;/  , with iTiz znn  .  

 

 In phase stability testing, the feed molar density, dz, is always fixed; it is directly related to the 

specifications ( zzTz vVnd /1/  ) in VT (at constant volume, temperature and moles) stability 

testing or it is directly calculated from the EoS at the specifications in conventional PT (at constant 

pressure and temperature) stability testing. Since the feed composition is fixed in all calculations, from 

here the vector z is dropped from all argument lists (this also means that the vector dz is replaced by dz 

in these lists). 

 

 A mixture is stable at given temperature T if 0D  for all feasible d (the global minimum is 

zero); if for some d the TPD function 0D , the mixture is unstable and it splits in two (or more) 

phases.  

 Several volume-based calculation methods have been proposed for phase stability testing 

using the TPD function in Eq. (1), for both VT stability testing [14,15,18,39] and PT stability 
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[12,19,38] testing, using either global optimization methods [18,38,39] or local minimization 

(modified Newton) methods starting from several initial guesses [14,15,18,19]. 

 

 At the saturation points, the following equations must be satisfied [24] 

       nciTdfTfTd zizizi ,1;0,ln,ln,,  dd     (2) 

and  

  
   

0
,,

,,1 


 
RT

TdPTP
Td zz

znc

d
d      (3) 

 Here d is the vector of molar densities of the incipient phase and dz can be either a variable or 

a specification (the latter for saturation temperature calculations at given molar density or volume). 

The denominator in Eq. (3) is kept for scaling purposes. 

 

 The RHS of Eq. (2) is the gradient of the TPD function in Eq. (1) [14-16], thus any values of 

d, dz and T satisfying Eq. (2) define a stationary point. Moreover, from equations (2) and (3), the TPD 

function is zero. A non-trivial solution of the nonlinear system of nc+1 equations (2) and (3) 

corresponds to a point on the phase boundary, with a non-trivial (global) minimum of the TPD 

function (see Ref. [24], where a detailed discussion can be found). Equations (2) and (3) represent the 

starting point of the recently proposed method for density-based phase envelope construction for a 

bulk fluid by Nichita [24]. 

 

 

3. Saturation points with capillary pressure 

 

 In any type of phase equilibrium calculation in the presence of capillary effects (stability, flash 

or saturation point calculations), the thermodynamic equilibrium equations (the equality of chemical 

potentials) are solved together with the capillary pressure equation. 

 

 The capillary pressure PC is given by the Young-Laplace equation 

 
r

PPP LVC




cos2
       (4) 

where  is the interfacial tension, r is the capillary radius and  is the contact angle of the meniscus 

with the pore wall. 
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 The interfacial tension relation of Macleod [40] and Sugden [41] was extended to mixtures by 

Weinaug and Katz [42]  

    



nc

i

iViLi

nc

i

ViLii
E dddydx

11

/1      (5) 

where i is the parachor of component i, E is a scaling factor and d is the phase molar density. The 

scaling factor is 4E  [42] (various other values were proposed for E, ranging from 3.66 ton 3.91 

[43]). 

 

 The limit of validity of the parachor model for interfacial tensions given by several authors 

[32,44] is r=5 nm. Moreover, at small capillary radii, the role of confinement and adsorption (not 

addressed here) is predominant. In this paper, we assume that calculations performed at nm5r  can 

be considered physically correct; however, in some numerical experiments, a smaller capillary radius 

(r=2 nm) will be also considered to test the robustness of the proposed calculation method at very high 

curvature (or capillary pressure). 

 

 For phase stability testing and saturation point calculations, the interfacial tension is expressed 

as [45] 

    
E

nc

i

iziiz ddzd 







 

1

,d       (6) 

thus the capillary pressure is a function of only d and dz,  zCC dPP ,d . Whichever the reference 

phase, vapor or liquid, Eq. (6) is equivalent to Eq. (5) for 1 . 

 The values of  are 1  on the dew point side of the phase boundary (the reference phase is 

vapor and the incipient phase is liquid) and 1  on the bubble point side of the phase boundary (the 

reference phase is liquid and the trial phase is vapor); 0  corresponds to the bulk fluid. 

 

 The TPD function in terms of component molar densities including capillary pressure is (Kou 

and Sun [46]) 

       
     

RT

dP

RT

TdPTP
TdfTfdTdD zCzz

nc

i

ziziiz

,,,
,ln,ln,,

1

dd
dd 






 (7) 

The set of equations for saturation point calculations is 

       nciTdfTfTd ziizi ,1;0,ln,ln,,  dd     (8a) 

and  
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  
     

,0
,,,

,,1 


 
RT

dPTdPTP
Td zCzz

znc

dd
d     (8b) 

 

 The solution of the non-linear system of equations, equations (8a) and (8b): i) ensures a zero 

value of the TPD function; ii) honor the Young-Laplace equation, but iii) it does not correspond to a 

minimum of the TPD function (Eq. 7), in the sense that Eq. (8a) is not the stationarity condition of the 

TPD function in the space defined by d and T, and iv) is consistent with indirect solutions from 

conventional phase stability (which is not a minimum of the TPD function) and flash calculations 

(which is not a not minimum of the Gibbs free energy). 

 

 In fact, for any type of phase equilibrium calculations including capillary pressure, the residual 

functions are not the gradient of the objective function including capillary effects (the dependence of 

the capillary pressure on mole numbers or molar densities is not accounted for in the differentiation) 

and are formally identical to the gradient (thermodynamic equilibrium equations) in the bulk fluid 

case. Thus, a phase equilibrium problem including capillary pressure is usually not solved as a 

minimization problem, but as an equation solving problem, with a non-symmetric Jacobian matrix 

[29,31,37]. 

 

 If a direct minimization of the TPD function in Eq. (7) is performed, as in Kou and Sun (using 

an evolutionary method) [46] and Nichita (using a modified Newton method) [45], the dependence of 

capillary pressure on molar densities is considered in the gradient, which contains the derivative 

iC dP  / ; the main advantage of the minimization approach is that symmetry can be used both in 

constructing the Hessian matrix and in controlling the decrease of the objective function. There are 

some (generally slight) differences between the equation-solving (conventional and volume-based) 

results and those of the minimization approach for phase stability, as discussed in Ref. [45]. As 

mentioned, in this work, the saturation point equations correspond to the equation solving approach 

and the results are identical to those obtained by any conventional or similar volume-based methods, 

since the same system of equations (containing the thermodynamic equilibrium equations and the 

capillary pressure equation) is solved for different independent variables at different specifications 

(see also Ref. [37]). 
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4. Phase envelope construction with capillary pressure 

 

4.1. Thermodynamic functions and variables 

 

 When working with molar densities, it is more convenient to use a density function instead of 

fugacity coefficients. The density function is defined as  

  
 

i

i
i

d

Tf
T

,
,

d
d          (9) 

and was introduced [15] to isolate molar densities in the stationarity conditions of the TPD function 

(Eq. 2). 

 

 The modified equilibrium coefficients were defined as the ratio of the feed to incipient phase 

molar densities [24] 

 
i

iz
i

d

d
K           (10) 

From equations (8a), (9) and (10), iK  is 

 
 Td

T
K

ziz

i
i

,

),(






d
        (11) 

 From the above equation, it can be seen that in the density-based method, the modified 

equilibrium constants replace equilibrium constants in iziiK  /  and the density function replace 

the fugacity coefficients, as compared to the conventional PT method.  In density-based saturation 

point calculations, the natural logarithms of the modified equilibrium constants (which are unbounded) 

can be used as independent variables (or one of them as a specification) instead of the component 

molar densities (which are bounded). 

 

 From Eq. (10) and ziiz dzd  , at fixed feed composition the component molar densities 

depend only on the modified equilibrium constants and on the molar density of the feed. 

 izii zdKd lnlnlnln         (12) 

 Eq. (12) is a key equation, relating the thermodynamic functions of molar densities to the 

independent variables. The partial derivatives of molar densities with respect to these variables are 

 ncjid
K

d
iij

j

i ,1,;
ln





       (13) 
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and 

 nci
d

d

d

d

z

i

z

i ,1; 



        (14) 

 

 Taking into account Eq. (10), the density functions 

       TdTdT zizii ,,,,, KlnKlndd       (15a) 

where  TncKK ln,...,ln 1Kln  and the pressure 

       TdPTdPTP zz ,,,,, KlnKlndd       (15b) 

depend on iKln , feed molar density and temperature. 

 For a fixed feed composition z, the thermodynamic functions depend only on feed molar 

density and temperature, that is,  

      TdTdT zizziziz ,,,,  zz nd       (16a) 

and 

      TdPTdPTP zzzzz ,,,,  zz nd       (16b) 

 

 The capillary pressure depends (at fixed capillary radius and contact angle) only on d and dz, 

via the interfacial tension, and can be written as 

       zCzzCzC dPddPdP ,,,, KlnKlndd       (17) 

 These dependences are used later in the chain rule to obtain the required partial derivatives. 

 

 The chemical potential and the pressure are first-order homogenous functions of mole 

numbers and volume (at constant temperature). Applying Euler's theorem on homogeneous functions 

 ncj
V

V
n

n
j

j

i
nc

i

i ,1;0
1













       (18a) 

and 

 0
1











 V

P
V

n

P
n

i

nc

i

i         (18b) 

 In terms of molar density, taking into account that vVnd /1/   and the symmetry of 

second-order partial derivatives of the Helmholtz fee energy (   RTnPVf ii ///ln  , expressed 

as   dRTdPdf ii ///ln  ), the above equations read 
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 ncj
d

P

RTd

f
d

jj

i
nc

i

i ,1;0
1ln

1













      (19a) 

and 

 0
1











 d

P
d

d

P
d

i

nc

i

i         (19b) 

 

 In the differentiation process to obtain the partial derivatives required to build the Jacobian 

matrix, the chain rule (in Eqs. 15 to 17), as well as the homogeneity and symmetry properties (in Eqs. 

19) are taken into account. 

 

 

4.2. Resolution of the nonlinear system of equations 

 

 The vector containing the nc+1 independent variables and one specification is 

 Tznc TdKK ln,ln,ln,...,ln 1 . The nonlinear system of equations is 

       niKTdTdTd izizzizi ,1;0ln,ln,,ln,,  KlnKln   (20a) 

        
0

,,,,
,,1 


 

RT

dPTdPTdP
Td zCzzz

znc

dKln
Kln    (20b) 

 02   Sknc         (20c) 

where k  is the specification and S the fixed value of the specification (the index k indicates the 

position of the specification in the vector of variables ; for example if dz is fixed, k=nc+1 ). 

 

 Note that in saturation point calculations with capillary pressure, the number of equations and 

the unknowns are the same as in the bulk case. 

 As compared with the corresponding equation for the bulk fluid, Eq. (20b) reads 

 
RT

PCbulk
nc

cap
nc  

)(
1

)(
1         (21) 

that is, the only difference is that  the capillary pressure is added to the nc+1 element in the vector of 

residuals. 

 

 The linear system of equations in the Newton method is, in matrix form 

 J          (22) 
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and the elements of the Jacobian matrix are 

 ncji
d

d
K

J

jsdT
j

i
jij

j

i
ij ,1,;

ln

ln
,




























    (23a) 

 nci
d

P

d

P

RTd
J

iszis dTzi

z

dTiz

i
nci ,1;

1

ln
,,,

1, 




















































    (23b) 

 nci
TT

T
T

J izii
nci ,1;

lnln

ln
2, 














































zdd

    (23c) 

 ncj
K

P

RTd

P

RT

d

K
J

zjs dTj

C

dT
j

j

j

nc
jnc ,1;

lnln
,,

1
,1 















































   (23d) 

 

dnn
z ,,,

1
1,1

ln

1

ln
Tz

C

Tz

z
z

Tz

nc
ncnc

d

P

RTd

P
d

d

P
d

RTd
J 






























































 

   (23e) 

 
 

ddd z ,
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




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
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and 

 2,1;2
,2 




 

 ncjJ jk

j

nc
jnc       (23g) 

 In the first term is the RHS of Eq. (23e), a misprint in Ref. [24] is corrected; if 0 , the 

above equations correspond to the bulk fluid case [24]. 

 

 The Jacobian matrices without/with capillary pressure influence are related by 

CJJ  )()( bulkcap , or 

 ncjiCJJ ij
bulk

ij
cap

ij ,1,;)()(         (24) 

 

 The interfacial tension is  zd,d  and the partial derivatives of the capillary pressure with 

respect to molar densities and temperature are 

 

 nciE
rd

P
i

E

E

Td,di

C

zij

,1;
cos2

1

,






















     (25) 

and 
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





zd

C

T

P

d

         (26) 

 

 The matrix C contains capillary terms and has non-zero elements only on the row nc+1 

( ncjncinciCij ,1;2;,1;0  ). The elements of this row are 

 ncjdE
RTrK

P

RT
C jj

E

E

dT
j

C
jnc

z

,1;
1cos2

ln

1

,
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



















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and 
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C

d

C
ncnc P

RTT

TP

R
C

z















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d,

2,1
ln

/
     (27c) 

where equations (25) and (26) were used in the differentiation. 

 Note the extremely simple expressions of the above derivatives (which are calculated at 

practically no extra computational cost as compared to the bulk case), due to the explicit form in molar 

density of the interfacial tension model; this property makes volume-based methods particularly suited 

for phase equilibrium calculations including capillary pressure. A density-based Newton iteration is 

clearly faster than a conventional (PT) one, because the EoS is not solved for volume, there is no root 

selection procedure and the partial derivatives are substantially simpler. 

 

 

4.3. Phase envelope construction 

 

 The density-based phase envelope calculation procedure is the same as the one for the bulk 

fluid (described in detail in Nichita [24]), which follows Michelsen's [4] framework (also extended by 

Sandoval et al. [28,37] to include capillary effects) to automatically calculate the entire family of 

solutions in a single run. 

 

 High quality initial guesses are available at each point on the phase envelope. The linear 

system of equations  

 
SS 






ξ
J          (28) 
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is solved, where  TS 1,0,...,0,0/  , and its solutions are used to perform linear (at the first point) 

and cubic (at subsequent points) extrapolations. The most sensitive variable is selected as the 

specification at the next step. 

 

 Calculations start at an "easy" point where a non-problematic convergence can be obtained, 

such as a dew point (DP) temperature calculation at a low pressure (10-20 bar) or at a small feed molar 

density (e.g., dz=0.1 Kmol/m
3
). The EoS is solved for volume only for initialization at the first point 

and initial guesses of equilibrium constants are obtained from Wilson's [47] relation. Note that for the 

first point, density-based iterations are also used in this work, unlike in Sandoval et al. [37] where 

traditional PT-based iterations are used. The remaining part of the saturation curve can be drawn in the 

opposite direction (i.e., by increasing the logarithm of the most volatile component or by decreasing 

the feed molar density for the low pressure part of the lower dew point curve). A bubble point (BP) 

temperature calculation at low pressure can also be used for the first point; for usual (closed) phase 

envelopes the results are the same for both DP and BP initial points, but unstable branches of the 

phase envelope can be found starting from a BP [4,20,24]. 

 

 No computational problems were observed in crossing critical points where the algorithm 

keeps its robustness shown for bulk fluids [24]; interfacial tensions are very small in the neighborhood 

of a critical point (where they vanish) and small on a relatively large part of the phase boundary, where 

the algorithm behaves almost like in the bulk fluid case. 

 Far from the critical point, where capillary pressures may become important (as in most 

examples in the next section), there are no computational problems neither at high capillary pressures, 

nor at important negative pressures in the reference phase on the bubble point side of the phase 

envelope. 

 

 The equations of temperature (in d-T and T-P planes) and pressure (in the T-P plane) extrema 

are the same as for the bulk fluid [24], with the capillary terms included in equations (23d) and (23e). 

 

 It can be noted that the partial derivatives at constant temperature required to assemble the 

Jacobian matrix are with respect to molar densities. For any EoS, these derivatives are usually given 

with respect to mole numbers and volume. It was shown in Nichita [15,24], that due to homogeneity 

properties, the existing routines (in mole numbers and volume) need not to be modified and can be 

called to calculate the required functions and partial derivatives. All the required relations between 

functions and their partial derivatives expressed in terms of molar densities and those expressed in 

mole numbers and volume are given in Ref. [24]. 
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5. Results and discussion 

 

 The proposed method is tested for several representative hydrocarbon mixtures, ranging from 

natural gases to heavy oils. A general form of two-parameter cubic EoS (containing the forms of SRK 

EoS [48] and PR EoS [49,50]) is used in all calculations (see Ref. [24] for the EoS, thermodynamic 

functions and required partial derivatives). In the interfacial tension model, the scaling factor is 4E  

and the contact angle is taken 0  (complete liquid-wetting) in all calculations. 

 Data for all mixtures (composition, component properties and non-zero binary interaction 

parameters) are given in a supplementary material (Tables S1 to S5). Saturation point calculations are 

performed between a very small dz and a molar density very close to minmax /1 vd  , corresponding to 

the covolume of the reference phase,  


nc

i iiz zbbv
1min . Mixture phase boundaries are shown in 

both T-P and d-T planes for the bulk fluid and for different capillary radii. The properties of the 

critical points (temperature, pressure and molar density) for all mixtures are listed in Table 1. 

 

 

5.1. M7 natural gas 

 

 A natural gas from Michelsen [25], containing 7 components (normal alkanes from C1 to nC6 

and nitrogen), denoted here M7, with component properties and non-zero binary interaction 

parameters (BIPs) from Ref. [28] given in Table S1. The SRK EoS is used (as in Refs. [28] and [37]) 

and calculations are performed at three capillary radii, r=10 nm, r=5 nm and r=2 nm; the latter 

capillary radius is included to evaluate the capabilities of the algorithm to handle such conditions at 

very high curvatures. 

 The phase boundaries of the bulk fluid and with capillary pressure influence are plotted in the 

d-T plane in Fig. 1a, with a detail at high temperatures around the cricondentherm point in Fig. 1b and 

in the T-P plane (including the negative pressures domain) in Fig. 2a, with a detail in Fig. 2b, showing 

also the pressure of the incipient (here liquid) phase, noted Pw; the pressure of the reference phase is 

noted Pz. The bubble point pressures are suppressed, the upper (retrograde) dew point pressures are 

increased, while the lower dew point pressures are decreased by capillary effects; the cricondentherm 

points are displaced towards higher temperatures. For r=10 nm, the results are identical with those 

reported in Ref. [28] for several selected points on the phase envelope. 

 

 The largest capillary pressures in this example, as well as the largest negative pressures exceed 

100 bar for r=2 nm, both at low temperatures and on the dew point side of the phase boundary. The 

cricondentherm points are shifted with 5 K for r=5 nm and with 12 K for r=2 nm.  
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 The branch of negative pressures Pw (incipient liquid phase) at high temperatures can be 

handled by conventional PT methods since Pz (vapor) is positive (as for instance in Sandoval et al. 

[28]). However, the portion of the saturation curve at low temperature for negative pressure Pz (liquid 

reference phase) cannot be handled by conventional PT methods, but there is not any problem in 

volume-based methods, even at very high capillary pressure differences and very large negative values 

of the pressure Pz. 

 

 The incipient phase molar density is plotted vs. feed molar density in Fig. 3. Differences in 

density seem to be less important than those in pressure; however, relative deviations up to 50 % can 

be observed at large densities. The less usual representation of the pressure in function of molar 

density (with a unique pressure at fixed molar density) is given in Fig. 4, showing both reference and 

incipient phase pressures. 

 

 

5.2. SJ15 oil and gas condensate 

 

 Two mixtures (denoted here SJ15 Oil and SJ15 gas condensate) were used as test mixtures by 

Sherafati and Jessen [29] to study phase stability testing with capillary pressure. The mixtures are 

described with 15 components (with 5 heavy pseudo-components), of compositions, component 

properties and BIPs [29] listed in Table S2.  

 

 Calculations for the SJ15 Oil are performed using the SRK EoS, for the capillary radii of r=10 

nm and r=5 nm (as in Ref. [29]). The phase envelopes of SJ15 oil are plotted in Fig. 5a in the d-T 

plane (with a detail in Fig. 5b) and in Fig. 6 in the T-P plane. Details of the phase envelopes in the T-P 

plane are presented in Fig. 7a (on the dew point side) and in Fig7b (on the bubble point side). The 

results are identical to those in Ref. [29] and match those in Ref. [45], obtained using the conventional 

approach by indirect calculation of saturation points from stability testing. 

 The cricondentherm points shift is from 9 K (r=10 nm) to 17 K (r=2 nm); capillary pressures 

and negative pressures (Pz) on the bubble point side are very noticeable, greater than 250 bar at r=2 

nm. 

 

 The phase envelopes of the SJ15 gas condensate, calculated with the SRK EoS, are presented 

in Fig. 8a in the d-T plane (with a detail around the cricondentherm point in Fig. 8b) and Fig. 9a (with 

a detail in Fig. 9b) in the T-P plane, for there capillary radii (r=10 nm, r=5 nm [29,37] and r=2 nm 

[37]). The stability of the algorithm is not affected by the presence of only traces of the three heaviest 

pseudo-components. The cricondentherm points exhibit an important shift, with 12 K at r=10 nm, with 
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24 K at r=5 nm and with 52 K at r=2 nm. The results are the same as those in Refs. [29] (for nm5r ) 

and [37], but here Pw is also shown, with negative pressures exceeding 250 bar. The maximum 

negative value of Pz is also important. 

 

 

5.3. Eagle Ford oil 

 

 The composition of the Eagle Ford oil mixture is described with 14 components (including 4 

heavy pseudo-components). Composition and component properties (see Table S3) and non-zero BIPs 

(see Table S4) are taken from Orangi et al. [51]. The SRK EoS is used (as in Ref. [37]). 

 Calculations are performed for the capillary radii of r=10 nm, r=5 nm and again, r=2 nm to 

test the robustness at very high curvatures. 

 The phase envelopes of the Eagle Ford oil (with and without capillary pressure) are drawn in 

Fig. 10a and Fig. 10b (detail) in the d-T plane and Fig. 11a and Fig. 11b (a detail, showing also Pw) in 

the T-P plane. The shift in cricondentherm points is modest for this mixture, only 3 K at r=10 nm and 

9 K at r=2 nm. The negative pressures are important, Pz is about -175 bar at low temperatures and Pw 

is less than -250 bar for r=2 nm. 

 

 The phase envelopes in the T-P plane are the practically the same as reported in Sandoval et 

al. [37] (here the Pw branch is also shown), except for r= 2 nm (in this work there is an inflection point 

of the bubble point branch at negative pressures and low temperatures). For r=10 nm, the results are 

very close to those from Ref. [52]. 

 

 A plot of incipient phase molar density against feed molar density is shown in Fig. 12. Note 

the different shape (as compared to Fig. 3 for the natural gas) for this oil mixture, with the maximum 

at high density (the differences in phase densities are important around the maximum). 

 

 

5.4. Bakken and Wolfcamp shale oils 

 

 The Bakken shale oil is described by 8 components (four light alkanes, two intermediate and 

two heavy pseudo-components). The composition, component properties and non-zero BIPs taken 

from Nojabaei et al. [32] are given in Table S5. The PR EoS is used and calculations are performed at 

r=10 nm (as in Ref. [32]). 

 The phase envelopes for the bulk fluid and with capillary pressure are represented in the d-T 

plane in Fig. 13 and in the T-P plane in Fig. 14. At the reservoir temperature (T=389.3 K, marked with 

a dashed line in Figs. 13 and 14), the bubble point pressure is suppressed by 5 bar and the capillary 
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pressure is less than 2 bar; the influence of capillary pressure is not important for this mixture at r=10 

nm. The difference in cricondentherm points between bulk and capillary cases is 8 K. The results are 

similar to those reported by Nojabaei et al. [32]; the differences between bulk and capillary cases are 

smaller than in Teklu et al. [53] (with confinement and capillary pressure). 

 

 Li and Sheng [54] adopted the same fluid characterization for the Wolfcamp shale oil, with the 

composition given in Table S5. In the Wolfcamp reservoir, 93.7 % of pores have a capillary radius 

r<10 nm [54]. Calculations for this mixture are performed using the PR EoS at r=10 nm and r=5 nm. 

 The phase envelopes are drawn in Fig. 15 (in the d-T plane) and in Fig. 16 (in the P-T plane). 

At the reservoir temperature (T=397 K, marked with a dashed line in Figs. 15 and 16) the bubble point 

pressure is suppressed by 9 bar for r=10 nm and by 20 bar for r=5 nm and the capillary pressure is 4 

bar for r=10 nm and 11 bar for r=5 nm (these differences are smaller than with confinement [54]). The 

differences in cricondentherm points in presence and absence of capillary pressure are 7 K for r=10 

nm and 12 K for r=5 nm.  

 

 In the bulk fluid case, for any EoS, the partial derivatives required in the Jacobian matrix by a 

volume-based approach are simpler than in the conventional (PT) approach. For two-parameter cubic 

EoS, these derivatives (given in Ref. [24]) have rather simple forms. 

 The partial derivatives additionally required when capillary pressure is included have very 

simple forms in the proposed method, while in PT conventional methods the partial derivatives 

( iC nP  / , wC PP  /  and TPC  / ) are more complex, since implicit functions are involved. In 

volume- (or density-) based methods, the simple forms of the partial derivatives are due to the explicit 

in volume form of the interfacial tension model. For this reason, the volume-based approach seems 

particularly suited for phase equilibrium calculations including capillary pressure. 

 

 The effects of geometrical confinement [55-58] and of adsorption [59], which are important at 

small capillary radii, are not addressed here. However, the proposed calculation procedure is 

applicable using modified component critical properties, to account for the critical shift experienced 

by a confined fluid [55,56] (as a result, the mixture critical point is changing with capillary radius and 

phase envelopes are shifted towards lower temperatures and pressures with respect to the bulk fluid). 

A more complex approach is to extend the EoS by introducing a pair of parameters that characterize 

the molecule-wall interaction intensity (Travalloni et al. [57,58]); in this case the proposed method is 

applicable using the appropriate functions and derivatives from the modified EoS. 

 

 As in the bulk fluid case [24], a simplified version of the proposed method can be obtained by 

always calculating a saturation temperature at a specified feed molar density (with a unique saturation 

temperature for a given feed molar density), starting from a low-pressure dew point. Such a simplified 
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approach can be seen as a volume-based improved version of the density marching method presented 

in Ref. [10]. 

 

 The proposed method is implemented by very easy modifications of an existing code for phase 

envelope construction (described in Ref. [24]), by only adding the simple capillary pressure terms to 

residual functions (equation 21) and Jacobian matrix (equation 24). 

 As a final remark, the main advantage of the proposed density-based method as compared to 

any conventional (pressure-based) method is that the EoS is not solved for volume and the required 

partial derivatives are simpler in both bulk and capillary parts of the Jacobian matrix. These features 

may be very attractive for complex thermodynamic models. 

 

 

6. Conclusions 

 

 A recently developed density-based phase envelope construction method has been adapted to 

include the capillary pressure effects. As compared to a bulk fluid, under capillary pressure influence 

the phase envelope is reshaped; bubble point pressures are suppressed and the dew point locus is 

expanded, with a shift of cricondentherm points towards higher temperatures. 

 The phase envelope is traced in the molar density-temperature plane, where a unique 

saturation temperature exists at a specified mixture molar density; the phase envelope in the pressure-

temperature plane is obtained by calculating explicitly the pressure (which is always a dependent 

variable) from the equation of state at given temperature and component molar densities on the 

saturation curve. The EoS is not solved for volume and the required partial derivatives are simpler 

than in conventional (pressure-based) methods.  The proposed method to include capillary pressure in 

the phase envelope construction can be applied to any pressure-explicit EoS and to any volume-

explicit interfacial tension model. 

 The additional (as compared to the bulk fluid case) partial derivatives containing capillary 

terms have extremely simple forms, due to the explicit in volume expression of the interfacial tension. 

It is shown how the method can be implemented with very easy modifications of an existing code for 

phase envelope construction of bulk fluids. 

 The proposed method can handle negative pressures (pressure of the reference liquid phase on 

the bubble point side at low temperatures), unlike in conventional PT methods. 

 For the mixtures investigated (ranging from natural gases to heavy oils), the computational 

results are practically identical to those reported in the literature. The computational procedure is 

robust, there are no problems in crossing the critical region (where interfacial tensions are very low), 

at important negative pressures or for large capillary pressures (of the order of hundreds bar in some 

test examples). 



 19 

 

List of symbols 

 

Cij matrix contaning capillary terms 

D TPD function in terms of molar densities 

d mixture molar density (incipient phase) 

dz mixture molar density (feed) 

di molar density of component i (incipient phase) 

diz molar density of component i (feed) 

E scaling exponent 

fi fugacity of component i  

J Jacobian matrix 

Ki equilibrium constants 

iK  modified equilibrium constants 

nc number of components 

ni mole numbers of component i (incipient phase) 

nT total number of moles  

nzi mole numbers of component i (feed) 

P pressure 

PC capillary pressure 

Pw pressure in the incipient phase 

Pz pressure in the reference phase 

R universal gas constant 

r capillary radius 

S specification 

T temperature 

V volume 

v molar volume 

xi mole fraction of component i in the incipient phase 

zi feed composition 

 

 

Greek letters 

 

 ±1, depending on the reference phase 

ij Kronecker delta 

 tolerance for convergence 

i residual 

i fugacity coefficient of component i  

i chemical potential of component i  

i Parachor of component i  

 mixture molar density 

 contact angle 

 interfacial tension 

ξi independent variables 

i density function of component i 
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 acentric factor 

 

 

Subscripts 

 

i,j component index 

C capillary 

c critical 

w incipient phase 

z reference phase 

 

 

Superscripts 

 

T transposed 
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Table 1 Mixture critical points 

 

Mixture Tc, K Pc, bar dc, Kmol/m
3
 

M7 203.238 58.934 11.1386 

SJ15 oil 721.343 114.674 2.2478 

SJ15 gas cond. 239.655 105.353 13.4235 

Eagle Ford 712.762 101.819 2.1161 

Bakken 584.451 259.255 5.4770 

Wolfcamp 661.082 226.676 4.2890 
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Fig. 1 Phase envelope of M7 natural gas. (a) d-T plane; (b) d-T plane (detail) 
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Fig. 2 Phase envelope of M7 natural gas. (a) T-P plane; (b) T-P plane (detail) 
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Fig. 3 Incipient phase vs. feed molar densities for the M7 natural gas 
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Fig. 4 Phase envelope of M7 natural gas in the d-P plane 
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Fig. 5 Phase envelope of SJ15 oil. (a) d-T plane; (b) d-T plane (detail) 
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Fig. 6 Phase envelope of SJ15 oil in the T-P plane 
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Fig. 7 Phase envelope of SJ15 oil. (a) T-P plane (detail on the dew point side); (b) T-P plane 

(detail on the bubble point side) 
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Fig. 8 Phase envelope of SJ15 gas-condensate. (a) d-T plane; (b) d-T plane (detail) 
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Fig. 9 Phase envelope of SJ15 gas-condensate. (a) T-P plane; (b) T-P plane (detail) 
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Fig. 10 Phase envelope of Eagle Ford oil. (a) d-T plane; (b) d-T plane (detail) 
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Fig. 11 Phase envelope of Eagle Ford oil. (a) T-P plane; (b) T-P plane (detail) 
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Fig. 12 Incipient phase vs. feed molar densities for the Eagle Ford oil 
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Fig. 13 Phase envelope of Bakken oil in the d-T plane 
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Fig. 14 Phase envelope of Bakken oil in the T-P plane 
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Fig. 15 Phase envelope of Wolfcamp oil in the d-T plane 
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Fig. 16 Phase envelope of Wolfcamp oil in the T-P plane 

 

 

 


