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SUMMARY.  

 

 

Bacterial sliding clamps control the access of DNA polymerases to the replication fork and 

are appealing molecular targets for antibacterial drugs development. To this end, it is critical 

to decipher the polymerase-clamp binding mode across various bacterial species. We showed 

previously that synthetic peptides targeting the clamp binding pocket of Gram- bacteria 

poorly interact with that of Gram+ homologous proteins. Here we analyzed the interaction of 

a reference peptide with several E. coli and B. subtilis clamp variants. For both Gram- and 

Gram+ pockets, the peptide binds through an induced-fit process but the complex stability 
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varies according to a pocket specific network of interactions. Thermodynamic and molecular 

dynamics analyses identify a strategic position in the pocket where a mobile residue is 

necessary for an efficient peptide interaction. A residue at another position modulates the 

folding dynamics of the pocket upon ligand binding in E. coli, while in B. subtilis, this residue 

is essential for polymerase activity and might thus be a Gram+ specific molecular marker. 
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INTRODUCTION. 

 Bacterial resistance to antibiotics is a major threat for human health. According to 

several official reports, a return to the pre-antibiotic era during the 21st century is a realistic 

possibility
1
. In order to tackle this challenge, one strategy aims at identifying new bacterial 

molecular targets and at developing efficient molecules that will block their physiological 

functions. The bacterial processivity factor, also referred to as the sliding clamp (SC), has 

been previously identified as a potential drugable new target 
2
 

3
 
4
 
5
 

6
. The ultimate proof of 

concept was recently brought by the natural cyclic peptides griselimycins that bind to 

Mycobacterium tuberculosis sliding clamp (
Mt

SC) and display good in vivo anti-bacterial 

activity in animal models
7
. However, the molecular mechanisms that govern the SC/ligand 

interaction are not well understood
4589

. 

 In bacteria, SC is a homodimer that encircles and slides along double stranded DNA
10

. 

It binds the replicative DNA polymerase, thus conferring a high processivity to the resulting 

holoenzyme 
11

 
12

. It also serves as a molecular hub on which all the other DNA polymerases 

bind (polI, II , IV and V in E. coli) 
13

 
14

 as well as other enzymes involved in DNA 

metabolism 
15

 and this interaction is required for these proteins to fulfill their functions 
13

. 

Remarkably, in all cases, SC-protein interaction is  mediated by a short peptide segment  

which encompasses the consensus sequence (QL[S/D]LF)  
16

. This peptide portion binds SC 

within a hydrophobic pocket located between domains II and III of SC 
173

 and formed by two 

sub-sites joined by a shallow groove: sub-site 1, also referred to as the leucine-rich pocket, 

interacts with the C-terminal part of the peptide, whereas sub-site 2 binds the highly 

conserved Q residue (SI.1). 

 We have previously observed that short synthetic peptides designed to bind to 

Escherichia coli SC (
Ec

SC) with an increased affinity also interact efficiently with SC from 

other Gram- bacteria such as Pseudomonas aeruginosa
5
. However, they show a lower 

interaction with 
Mt

SC and fail to interact efficiently with SC from other Gram+ strains such as 

Staphylococcus aureus and Bacillus subtilis (
Bs

SC), suggesting that peptide binding on SC 

occurs through a different process in Gram+ and Gram- bacteria 
18

.  

 A careful analysis of the peptide binding process on 
Ec

SC revealed that a fully efficient 

binding pocket folds upon peptide binding 
3
 
5
 
19

. Notably, two residues, S346 and M362, seem to 

play a strategic role in the interaction process as, upon peptide interaction, their side chains 
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undergo a large concerted movement that allow the opening of a groove in which the linear 

peptide can lie 
5
 (SI.1). Interestingly enough, these two residues are conserved in Gram- 

strains but not in Gram+ bacteria, where they are essentially replaced by proline and 

leucine/threonine, respectively. Noteworthy, in 
Mt

SC only the residue corresponding to 
Ec

SC 

S346 is changed into proline, whereas the methionine residue (
Mt

SC M396) is conserved.  Thus, 

as far as these two residues are concerned,
 Mt

SC (P362, M396) stands as an intermediate between 

Ec
SC (S346, M362) and 

Bs
SC (P357, L373)  (Table 1). These observations, in correlation with 

peptide binding analyses 
18

, suggest that the mode of peptide interaction might be linked to the 

gating function of these two residues.  

 In this work, we evaluate the respective contribution of residues 
Ec

SC S346 and 
Ec

SC 

M362 and their corresponding residues in 
Mt

SC and 
Bs

SC, to peptide binding. For each SC, 

every residue was mutated (ML, SP, LM and PS), leading to a series of single and 

double mutants (Table 1). The interaction of peptide P7 (AcQXDLF, X = cyclohexylalanyl, 

Cha) (SI.2)
5
 with each of these SCs was analyzed by ITC, X-Ray crystallography, molecular 

dynamics and in vitro replication assays. Our results reveal the prominent role of these 

residues for the peptide interaction with Gram- and Gram+ SC, and will have strong 

implications for the design of strain-specific anti-replicative molecules. 

 

MATERIAL AND METHODS. 

Construction of mutant SC, expression and purification of processivity factors. 

 Plasmids pET15b containing the dnaN genes from E. coli, M. tuberculosis or B. subtilis 

18
 were site specifically mutagenized using the Quikchange® procedure (Stratagene). 

Oligonucleotides were from IDT. Selected recombinant plasmids were sequenced (GATC, 

Kontanz, Ge) and transformed in BL21 (DE3) pLys E. coli strains. For expression of dnaN 

proteins, cells were grown in LB at 37°C to OD 0.5, then induced by IPTG (0.1mM) at 28°C 

overnight. dnaN proteins fractions were first enriched on a Ni-NTA column, eluted with an 

histidine step (300 mM) and further purified on a Source Q column in buffer containing 20 

mM Tris HCl pH 7.5, 0.5 mM EDTA and 10% (v/v) glycerol, using a gradient from 0 to 0.5 

M NaCl. After a final ultracentrifugation (45K, 1 h, 20°C), soluble proteins were concentrated 

on a Centricon 30K (Millipore) in the same buffer and stored at 4°C in 2 M ammonium 

sulfate. Buffer exchange was performed on Centrikon 10K at 4°C before use and protein 

quality was assessed by DLS analysis (SI.3). 
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Peptide synthesis. 

 Procedure for the synthesis of peptide P7 has been described elsewhere 
5
. The chemical 

formula is shown in supporting information (SI.2)  

 

Isothermal Titration Calorimetry. 

 ITC was performed using an iTC200 (Microcal Malvern Panalytical) or a PEAQ-ITC 

instrument (Microcal Malvern Panalytical). Peptides (300 or 600 µM) were titrated at 

different temperatures (15, 25 and 34°C) by sequential injections (usually 2 µl each) into a SC 

solution (30 or 60 µM). Data were corrected for heat of injection by subtracting the signal of 

the titration of peptides into protein-free buffer solution (Hepes 10 mM pH 7.4, NaCl 0.15 M, 

EDTA 3 mM) (SI.4). Each titration was performed at least twice. Analyses of experimental 

data were performed following a classical treatment with the AFFINImeter software 

(https://www.affinimeter.com; S4S, Santiago de Compostela, Spain). Both types of analyses 

yield similar data (data not shown). Non classical methods were also used. First a global 

thermodynamic treatment (GTT, see below) was performed. In addition, kinetic information 

was obtained in some cases with kinITC 
20 32

 as implemented in the software AFFINImeter. A 

comparison of GTT and classical treatment analyses is presented in SI.5. All thermodynamic 

data are provided in SI.6, representative titration curves are presented in SI.7 and all 

thermodynamic profiles are presented in SI.8. 

 

Global thermodynamic treatment (GTT) of ITC experiments. 

 This procedure has been described in 
20

. Briefly, the method consists in using a single 

reduced set of parameters to fit at once all experimental titration curves obtained at different 

temperature. The free parameters are Kd0 and H0, the values of Kd and H at a reference 

temperature T0 (the mean temperature of all experiments) and Cp = H/T governing the 

evolution of H with the temperature. These three parameters alone, have to replace 2  Nexp 

parameters (one Kd and one H for each experiment). This GTT yields theoretical curves 

describing the evolution of all thermodynamic parameters with the temperature. These curves 

are shown with the points corresponding to the results from the usual individual treatments: it 

is important to stress that they do not result from a fit of these points (see Figure 1). A 

comparison of the data obtained by GTT and classical treatment is presented in SI.5.  When 

the peptide interaction with SC was weak, the deviation between the points from the 
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individual treatments and the curve from GTT was large (see Figure 1B and SI.5 B). In these 

cases, the reported results are from the individual treatments. Of course, the discrepancy just 

mentioned is a mark of poor quality.  

 

Crystallogenesis, X-ray diffraction, data collection and processing.  

 Crystals of 
Ecwt

SC/P7 and 
EcMt

SC/P7 complexes were obtained by screening the 

crystallization reagent kit PEG/Ion HT from Hampton Research. 200 nL sitting drops were 

prepared on plates (Greiner XTL round) by mixing 50 or 100 nL of preformed SC/P7 

complexes (protein concentration from 6 to 12 mg/ml; protein/peptide ratio: 1.5) with 150 or 

100 nL of crystallization solution, using a Mosquito pipetting station (TTP Labtech). Plates 

were incubated at 20°C (
Ec

SC) or 4°C (
Mt

SC). Crystals were obtained in several crystallization 

conditions and were frozen in liquid ethane. Crystals with the higher resolution were obtained 

in the following conditions: 
Ecwt

SC/P7: MES 50 mM pH 6, CaCl2 50 mM PEG400 30% (m/v) 

+ PEG/Ion HT kit condition E6 (0.2 M sodium malonate pH 6, PEG 3350 20% (m/v)). 

EcM1
SC/P7: MES 50 mM pH 6, CaCl2 50mM, PEG400 28% (m/v) + PEG/Ion HT kit 

condition B3 (0.2 M lithium nitrate, PEG 3350 20% (m/v), pH 7.1). 
Mtwt

SC/P7: Acetate de Na 

3.2 M pH 6.9, PEG 3350 18% (m/v) + PEG/Ion HT kit condition A2 (0.2 M potassium 

fluoride, PEG 3350 20% (m/v), pH 7.3). 
MtM1

SC/P7: Acetate de Na 3.2 M pH 6.9,  PEG 3350 

18% (m/v) + PEG/Ion HT kit condition B8 (Magnesium formate dihydrate 0.2 M; PEG 3350 

20% (m/v), pH 7).  

 The data were collected at the X06DA PXIII beamline at the Swiss Light Source 

(Villigen, Switzerland), equipped with a PILATUS 2M detector and the multiaxis PRIGo 

goniometer 
21

. The wavelength was 1.00 Å, with a flux at full transmission of 4·10
11

 

photons·s
-1

. The data were collected with two rotations of 360° at χ=0° and χ=30° (0.2° and 

0.1s per frame). The crystal-to-detector distance was 300 mm. The data were processed and 

merged using the software autoPROC version 1.0.5 
22

 and STARANISO (Cambridge, United 

Kingdom: Global Phasing Ltd) 
23

. The structures were solved by molecular replacement using 

the software MOLREP version 11.4.04 
24

 and search models 1OK7 for the E. coli cases and 

4TR7 for the M. tuberculosis cases. Refinement was performed with BUSTER version 2.10.3 

(Cambridge, United Kingdom: Global Phasing Ltd) and phenix.refine version 1.10.1-2155 
25

, 

with NCS constraints for all structures and TLS for both higher resolution E. coli structures. 

Secondary structure restraints were additionally imposed in phenix.refine for the Mtwt-P7 

structure. 5% of reflections were set aside for the Rfree test set. 
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Data processing and refinement statistics are available in SI.9 The 4 structures 
Ecwt

SC/P7, 

EcM1
SC/P7, 

Mtwt
SC/P7 and 

MtM1
SC/P7 are deposited in the Protein Data Bank (PDB) under the 

respective accession codes 6FVL, 6FVM, 6FVN and 6FVO. No complex structure could be 

solved for any 
Bs

SC. 

 The solvent accessible surface area was calculated using AREAIMOL in CCP4 
26

. The 

difference in accessible surface area of a binding pocket with and without P7 was obtained by 

considering the structures from this work and from Wolff et al.
18

 (PDB codes 1OK7 for 

Ecwt
SC and 4TR7 for 

Mtwt
SC).  

 

Replication assays. 

Escherichia coli Pol III* purification. E. coli strain BLR transformed with pHOC2.6.1 (kindly 

provided by C. McHenry), coding for all the 8 polIII subunits, were grown at 37°C in LB 

buffer supplemented with 100 µg/ml carbenicillin to reach an OD600nm of about 0.65, 

transferred to 30°C and then expression of Pol III* subunits was started by adjunction of 1 

mM IPTG and extended for 3 h. Cell pellets (16.8 g) were stored at -20°C overnight. 

Purification of PolIII* was conducted essentially as described previously 27
. Briefly, pellets 

thawed at 4°C for 30 min were resuspended in 50 ml of 50 mM Hepes-KOH pH 7.5, 10% 

(m/v) sucrose, 10 mM DTT. 5 ml of lysis buffer (50 mM Hepes-KOH pH 7.5, 10% (m/v) 

sucrose, 2 M NaCl, 0.3 M spermidine) were added to the cell suspension and Tris base 2 M 

was used to adjust to pH 8. Lysis was performed on ice for 1 h after addition of lysosyme to 

0.2 mg/ml. After centrifugation at 20 000 rpm for 1 hour at 4°C ( Beckmann 70 Ti rotor), 

proteins were precipitated by slow addition of 0.226 g/ml ammonium sulfate and incubation 

30 min at 4°C with agitation. After centrifugation (45 min, 16 000 rpm, 4°C), pellet was 

successively extracted with 3.275 ml of buffer A (25 mM Hepes-KOH pH 7.5, 5% (v/v) 

glycerol, 100 mM KCl, 1 mM EDTA, 5 mM DTT) supplemented with 0.2 g/ml ammonium 

sulfate, centrifuged, and further extracted with 1.2 ml of buffer A with 0.7 g/ml ammonium 

sulfate. After centrifugation (20 min, 30, 000 rpm, 4°C), the pellet was resuspended in buffer 

A without KCl and conductivity was adjusted to the one of buffer B (25 mM Hepes-KOH pH 

7.5, 5% (v/v) glycerol, 20 mM KCl, 1 mM EDTA, 5 mM DTT), then loaded onto a SP 

sepharose column (1 ml, GE Healthcare) equilibrated with buffer B and developed with a 

linear gradient of 0 to 30 % buffer C (25 mM Hepes-KOH pH 7.5, 5% (v/v) glycerol, 1 M 

KCl, 1 mM EDTA, 5 mM DTT) on AKTA smart chromatography system (GE Healthcare). 
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Finally, pooled fractions were buffer exchanged for buffer D (25 mM Hepes-KOH pH 7.5, 

5% (v/v) glycerol, 20 mM KCl, 5 mM DTT) on a PD10 column (GE Healthcare) and 

concentrated by ultra-filtration on Amicon Ultra centrifugal units (MWCO 10K), adjusted to 

50% (v/v) glycerol and to 0.21 mg of protein per ml and stored at -80°C. 

Bacillus subtilis minimal replicase (BsP) was reconstitued by assembly of purified proteins 

(kindly provided by Charles McHenry and Paul R. Dohrmann) at ratio of 1 PolC, 5 tau, 1.25 

delta and 1.25 delta' to provide a 1.25 µM enzyme complex in buffer HD (40 mM Tris acetate 

pH=7.8, 10 mM Mg acetate, 3 µM zinc sulfate and 0.015 % (v/v) IGEPAL CA-630). 

In vitro primer extension assays.  Single-stranded pUC118 DNA was annealed to a 5' 

radiolabeled 40 mer oligonucleotide (5'GCTGGCGAAAGGGGGATGTGCTGCAAGGCGA 

TTAAGTTGG3') in 50 mM NaCl and 15 mM Tris acetate (pH=7.8). All DNA synthesis 

assays were pre-assembled on ice in RB buffer (HD buffer supplemented with 2 mM DTT, 

150 mM K glutamate, 160 µg/ml BSA, 0.5 %  (m/v) PEG 8000, 250 µM ATP and 100 µM 

each dNTP). Unless specified, each reaction contains 40 fmoles of primed DNA, 100 fmoles 

of polymerase complex and 100 fmoles, as a dimer, of beta sliding clamp (SC). DNA 

synthesis assay were performed for 6 min. at 37°C before addition of 15 µl of 95% formamide 

dye loading buffer and heating at 95°C for 5 minutes. Radioactive reaction products were 

analysed by electrophoresis on 6 to 8 % denaturing (8 M urea) polyacrylamide gels followed  

by imaging using a Typhoon FLA 9500 device (GE Healthcare). 

P7 primer extension inhibition assays were performed essentially as above except that 

mixtures of SC (100 fmoles in HD buffer, 1µl) and P7 peptide (diluted in HD buffer, 1µl) 

were first incubated for 5 min. at RT (20-25 °C) before adding 8 µl of primed DNA plus 

polymerase complex in RB buffer. 

Molecular Dynamics. 

Initial Structures: 

Experimental X-Ray structures of 
Ecwt

SC were used as a starting point for the molecular 

dynamics simulations of the 
Ecwt

SC in complex with a de-acetylated form of P7 (QXDLF, X = 

Cha).  Starting structure for the 
EcM2

SC (M362L) was constructed from the 
Ecwt

SC by side-chain 

modification using PyMol.  B. Subtilis simulations were constructed from the 
Bswt

SC structure 

(PDBID 4TR6, 
18

) by inserting the appropriate side-chain replacements with PyMoL for the 
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mutant 
BsM2

SC (L373M). For both
 wt

SC and mutant 
M2

SC, the peptide was positioned by 

superimposition onto P1 (PDB 1OK7) and P1 was subsequently removed.  

Free-energy perturbation calculation: 

The relative affinities of the 
wt

SC and 
M2

SC for the peptide were estimated using free energy 

perturbation implemented in NAMD 
28

 in the following thermodynamic cycle 
29

 
30

:  

 

 

Figure 1: Thermodynamic cycle used in computing the free energy change in the virtual mutation 

of the 
wt

SC into the mutant 
M2

SC in the unbinding form (ΔGu) and in the binding form (ΔGb).  

These relative affinities, ΔΔG, can be calculated from the following equation: 

  (1) 

Gu and Gb are calculated by transforming the Hamiltonian of the initial states (either the 

apo WT (Gu) or the holo WT (Gb)) into the final states (either the apo mutant M2 (Gu) or 

the holo mutant M2 (Gb)). The transformation is modeled by introducing a state variable, λ, 

which can vary from 0 (initial state) to 1 (final state). The free-energy calculation is split into 

small windows, each one involving a small variation of λ. A new residue is designed to 

simulate the transformation (for example of the residue M362 into L362). In that way, we have 

built a new residue, name M2L, which includes the atoms of the side chains of a methionine 

and of a leucine. The structure was then generated by using the force field (FF) charmm 27 
31

 

and was immersed in a tetragonal box filled with TIP3 water molecule and 24 Na
+
 ions to 

neutralize the total charge of the full system. The simulation was then heated at 300K and 

equilibrated before the free-energy perturbation calculation. 

 

RESULTS AND DISCUSSION. 
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 We have previously observed that peptides initially designed to bind 
Ec

SC with high 

affinities poorly interact with
 Mt

SC and 
Bs

SC, although the binding pockets of all SC are 

structurally highly homologous
18

. In order to decipher the molecular basis of these different 

binding processes, we determined the thermodynamic parameters of the interaction between a 

reference ligand, namely peptide P7 (SI.2 and SI.10) and different variants of 
Ec

SC, 
Mt

SC and 

Bs
SC (Table 1).  

Peptide P7 differentially interacts with natural SC from different bacteria.  

 We first determined the thermodynamic profiles at different temperatures of P7 

binding on natural SC, namely EcwtSC, MtwtSC and BswtSC, (Figure 1). For each SC/P7 

interaction, global thermodynamic treatment (GTT) 
32

 of all experiments at all temperatures 

yielded theoretical curves describing the evolution of each thermodynamic parameters with 

temperature (Figure 1, left column). Thermodynamic profiles are inferred from these curves 

(Figure 1, right column). The profiles observed with the three natural SC are very different 

(Figure 1, see also SI.5 for a comparison between GTT and individual analysis of ITC raw 

data and SI.6 for numerical data).  

 The 
Ecwt

SC/P7 interaction is enthalpy driven, with a significant increase of the 

enthalpic contribution from -10 to -14 kcal/mole when temperature rises from 15 to 34°C. 

This enthalpic contribution is much weaker for the
 Mtwt

SC (-4  to -8 kcal/mol), and for 
Bswt

SC 

(-6 to -3 kcal/mol) over the same range of temperature (Figure 1 right column, SI.5). 

Nevertheless, the binding process is still enthalpy-driven for 
Mtwt

SC  and 
Bswt

SC. The ΔCp 

(ΔH/T) values are -210 cal/mol/deg for P7 binding onto 
Ecwt

SC, -180 cal/mole/deg with 

Mtwt
SC.  The ΔCp for 

Bswt
SC was not reliably determined. P7 interaction with 

Ecwt
SC shows an 

unfavorable entropic contribution (-TΔS) which increases with temperature (Figure 1A and 

SI.5). For 
Bswt

SC, this contribution is weaker and becomes favorable above 25°C (Figure 1B), 

while for. 
Mtwt

SC, it evolves in an opposite way (Figure 1C). The Gibb's free energy, ΔG, also 

varies significantly between the different complexes. For 
Ecwt

SC, it reaches -9 kcal/mole and 

slightly increases with higher temperatures (Figure 1 and SI.5). It reaches about -5 and -7 

kcal/mole for 
Bswt

SC and 
Mtwt

SC, respectively, indicative of a weaker interaction between P7 

and these two SC, and in both cases, it varies very slightly over the range of temperature. 

Interestingly, ΔG reaches a maximum at 18°C for 
Bswt

SC/P7 and a minimum at 29°C for 

Mtwt
SC/P7 interactions due to the null value of ΔS at these temperatures (Figure 1 left 
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column), implying that around these temperatures, the ΔG variation is minimal. For 
Ecwt

SC/P7, 

extrapolation of the curve ΔS= f(T) indicates that ΔS = 0 at T < 0°C.  

 E. coli M. tuberculosis B. subtilis 

 Name Amino acids Name Amino acids Name Amino acids 

wt 
Ecwt

SC S346; M362 
Mtwt

SC P362; M396 
Bswt

SC P357; L373 

M1 
EcM1

SC P346; M362 
MtM1

SC S362; M396 
BsM1

SC S357; L373 

M2 
EcM2

SC S346; L362 
MtM2

SC P362; L396 
BsM2

SC P357; M373 

M3 
EcM3

SC P346; L362 - - 
BsM3

SC S357; M373 

G1 
EcG1

SC
 

G346; M362 - - 
BsG1

SC
 

G357; L373 

G2 
EcG2

SC
 

S346; G362 - - 
BsG2

SC
 

P357; G373 

Table 1: Names and sequences characteristics of the different sliding clamps used in this study. Ec: 

Escherichia coli; Mt: Mycobacterium tuberculosis; Bs: Bacillus subtilis; wt: wild type sliding clamps; M1, M2, 

M3, G1 and G2: mutant sliding clamps.  

 

The dissociation constant measured for
 Ecwt

SC/P7 interaction increases from 100 to 450 nM  

between 15 and 34°C (Table 2, Figure 1A and SI.6). For the 
Mtwt

SC/P7 interaction, the Kd is 

about 20 to 40 times lower (between 4 and 7 µM), while the lowest affinity is observed for 

Bswt
SC, with Kd values ranging from 40 to 80 µM range.  

 All these data confirm our previous observations and show that P7 binding greatly 

vary with the SC bacterial origin
18

. To investigate the molecular basis of these differences, we 

constructed several mutants of each SC where the residues corresponding to 
Ecwt

SC S346 and 

Ecwt
SC M362 are singly (M1, M2, G1 and G2 respectively) or both (M3) mutated (Table 1). 

The interaction of P7 with these SC variants was analyzed using ITC, crystal structures, in 

vitro replication assays and molecular modeling analyses.  
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Figure 1: Thermodynamic analyses of P7 interaction with 
Ecwt

SC (A),
 Bswt

SC (B)  and 
Mtwt

SC (C) at 

different temperatures.  Global thermodynamic treatment (GTT) (left column):  The  curves represent the 

functions obtained by treating simultaneously all experimental ITC data at three temperatures. Dots represent the 

results of a classical treatment of each experimental ITC data processed individually. For weak interaction, such 

as 
Bswt

SC/ P7, the gap between individual treatment and the theoretical curve obtained by GTT is more important. 

Thermodynamics profiles (right column) displaying ΔH, -TΔS and ΔG at three temperatures were obtained from 

the GTT derived curves. ΔH, -TΔS and ΔG (all in kcal/mol) are white, grey and dark bars, respectively. All ITC 

data are presented in SI.6 and typical ITC titration curves are shown in SI.7. ITC control experiments at three 

temperatures are presented in SI.4. 
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  15°C (288.15 K) 25°C (298.15 K) 34°C (307.15 K) 

 

Ecwt
SC 

Classical processing 0.09 (± 0.04) 0.16 (± 0.05) 0.42 (± 0.04) 

GTT processing 0.12 0.22 0.44 

 
Bswt

SC 

Classical processing 
24 (± 18) 14 (± 0.6 ) 43(± 49) 

GTT processing 49 68 82 

 

Mtwt
SC 

Classical processing 3.5 (± 3) 5 (± 3.9) 7.23 (± 1) 

GTT processing 4 5 7 

 

Table 2: Dissociation constants (KD: µM) of the P7 interaction with the three natural SC at different 

temperatures. The large standard deviations observed for 
Bswt

SC and  
Mtwt

SC are indicative of a poor interaction. 

Independent experiments were performed two to four times. All results were obtained through classical or GTT 

processing of experimental data, as indicated. Full thermodynamic data are in SI.6 and examples of ITC titration 

curves are presented in SI.7. 

 

Mutations S346P and M362L in 
Ecwt

SC drastically modify the thermodynamics of SC/P7 

interaction.  

 Complete thermodynamic profiles of P7 interaction with the various SC mutants are 

presented in SI.8 and SI.11. Figure 2 presents a comparison of the thermodynamics profiles 

of the P7 interaction with 
Ecwt

SC and the double mutant 
EcM3

SC. Details on the specific effects 

induced by single mutations are developed in SI.11. Introduction of the S346P and M362L 

mutations in the 
Ecwt

SC binding pocket results in a large reduction of |ΔH| of about +6 

kcal/mol at 15°C and +10 kcal/mol at 34°C. The resulting ΔCp drops from -210 (
Ecwt

SC) to -

50 cal/mol/deg for 
EcM3

SC, indicative of a change in the mode of interaction
33

. As opposed to 

what is observed with 
Ecwt

SC, the entropic component (-TΔS) becomes favorable (≈ -2 to -3 

kcal/mol) to the 
EcM3

SC/P7 interaction at all temperatures. The resulting free energy of 

interaction, ΔG, is stabilized around -6 to -7 kcal/mol, i.e. about 2-3 kcal/mol higher that those 

observed for 
Ecwt

SC, at all temperatures. Consequently, the mutations S346P and M362L in 

Ecwt
SC trigger a drastic change in the P7 mode of interaction, underlying the significant 

contribution of these residues to the efficient binding of P7 on 
Ecwt

SC.   
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Figure 2: Thermodynamic profiles of P7 interactions with 
Ecwt

SC (wt) and 
EcM3

SC (M3) at different 

temperatures. ΔH, -TΔS  and ΔG ( all in kcal/mol) are white, grey and dark bars, respectively. Data are means 

of at least two independent experiments. For the sake of comparison, all results are obtained through classical 

processing of experimental data (SI.6). 

 

EcM3
SC and 

Bswt
SC present similar thermodynamic profiles upon P7 interaction. 

 Because the two mutations introduced in 
EcM3

SC are equivalent to the natural residues 

found in 
Bswt

SC (Table 1), we also compared the thermodynamic profiles obtained for P7 

interaction with 
EcM3

SC and 
Bswt

SC (Figure 3). These profiles are very similar at all 

temperatures, confirming that the introduction of S346P and M362L mutations in 
Ecwt

SC is 

sufficient to convert the E. coli specific thermodynamic profile into that observed with 
Bswt

SC. 

For both types of interactions, the enthalpic contribution is equivalent, ranging from -3 to -4 

kcal/mole, and in both cases, the entropic contributions are favorable to the interaction, 

around -3 kcal/mol. The large variations of both parameters result from the poor efficiency of 

the peptide binding. The resulting free energy of interaction is slightly more favorable for 

EcM3
SC/P7 than for 

Bswt
SC/P7, suggesting that besides the contributions of S346 and M362 
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residues, the local environment of the 
Ec

SC pocket stabilizes the peptide interaction more 

significantly than that of 
Bswt

SC.  

 

Figure 3: Thermodynamic profiles of P7 interactions with 
EcM3

SC (M3) and 
Bswt

SC (wt) at different 

temperatures. ΔH, -TΔS  and ΔG (all in kcal/mol)  are white, grey and black bars, respectively. Data are means 

of at least two independent experiments. Results are obtained through classical processing of experimental data 

(SI.6). 

Mutations P357S and L373M residues in 
Bswt

SC improve P7 interaction. 

 We also analyzed the effects of the introduction of Ec natural residues (S346 and M362) 

in the Bs context (Figure 4, SI.8 B and SI.11 B for details on single mutations effects on P7 

interaction). As opposed to the major deleterious effect on complex formation triggered by 

mutations introduced in 
Ecwt

SC (Figure 2), the mutations of the corresponding residues in 

Bs
SC improve the efficiency of the interaction with P7, as indicated by the systematic increase 

of ΔG values with 
BsM3

SC as compared to 
Bswt

SC (Figure 4). However, the effect is limited as 

these ΔG values remain about 2 kcal/mole lower than those measured for 
Ecwt

SC. This is in 

agreement with the above mentioned observation that the 
Bs

SC pocket might be globally less 

favorable to P7 binding. Consequently, as observed for the Ec context (SI.11 A) but with 

opposite effects, these mutations differentially trigger a change in the thermodynamic profiles 
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of the interaction (SI.11 B). At all temperatures, the P357S mutation (mutant 
BsM1

SC) triggers a 

reduction of the ΔH values, as compared to those measured in 
Bswt

SC, and an increase of the 

entropic factor favorable contribution. Alternatively, the L373M mutation (mutant 
BsM2

SC) 

increases the ΔH value by -3 to -5 kcal/mol at each temperature and drastically reduces the 

entropic contribution, which becomes unfavorable at high temperature.  

 

Figure 4 : Thermodynamic profiles of P7 interactions with 
Bswt

SC (wt) and
 BsM3

SC (M3) at different 

temperatures. ΔH, -TΔS  and ΔG (all in kcal/mol)  are white, grey and black bars, respectively. Data are means 

of at least two independent experiments. Results are obtained through classical processing of experimental data 

(SI.6). 

 The added contribution of both mutations, measured with mutant BsM3, combine the 

effects of each individual mutation. As a result, the ΔH evolution becomes strongly dependent 

on temperature and the entropic contribution turns to be unfavorable at 34°C for both M2 and 

M3 mutants (SI.11 B), but already at 25°C for the double mutant, which suggests a 

synergistic effect of both mutations (Figure 4). Indeed, the ΔCp value determined for 
BsM3

SC 

(-270 cal/mole/deg) is closed to that measured for 
Ecwt

SC (-210 cal/mole/deg), whereas the 

values calculated for 
BsM1

SC and 
BsM2

SC are -10 and -40 cal/mol/deg, respectively. These 
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observations show that the two mutations, P357S and L373M, induce a complete change of the 

thermodynamic profile of the 
Bs

SC/P7 interaction. Moreover, in the two different pocket 

environments, Ec and Bs,   the drastic changes in thermodynamic profiles are triggered by the 

M2 mutations (Figure SI.11 A and B) thus identifying a strategic position for what concerns 

the peptide interaction. The position of M1 mutations is not that crucial for the complex 

formation. 

Specific contributions of the strategic residues to the P7 interaction.  

 To further analyze the specific contributions of the S346 (or P346) and M362 (or L362) 

residues to the P7 interaction, we compared the thermodynamic data obtained for 
wt

SC (or 

M1
SC or

 M2
SC) with those obtained with 

G1
SC and 

G2
SC (Table 1), where the natural residues 

are replaced by glycine (Figure 5 and SI.12). Note that thermodynamic data obtained with the 

G mutants directly provide the whole pocket contribution to the interaction, excluding the S/P 

and M/L side chain effects. The specific contributions of the S/P and M/L residues to each 

thermodynamic parameter are obtained by the difference between the parameter measured for 

wt
SC and that measured for the 

Gn
SC (SI.12). The results are presented in Figure 5. 

 In the Ec context, the S346 residue does not contribute significantly to the P7 

interaction, as indicated by the weak ΔG value, particularly at high temperatures (Figure 5A, 

left). The ΔH value reveals an endothermic contribution, while the favorable entropic 

contribution increases with temperature and might be linked, at least partly, to water release 

upon peptide interaction, as observed in crystal structures
5
. A very different profile is 

observed for the M362 residue (Figure 5A, right), with essentially an exothermic specific 

contribution, no entropic effect and a constant Gibb's free energy (-1 kcal/mole) over the 

temperature range. Thus this residue contributes for about one tenth of the overall interaction 

of the peptide (see Figure 1A). Mutation S346P (Figure 5B, left) presents a similar profile as 

that observed for the natural residue, with a very weak contribution to binding. In contrast, the 

profile observed for the M362L mutation (Figure 5B, right) reveals how detrimental is the L 

residue at this position to the P7 interaction in the Ec context. All together, these residue 

specific profiles reveal that position 362 in 
Ec

SC significantlycontributes to the binding, while 

position 346 does not. In addition, the nature of the residue, M vs L, at this very position 

appears to be crucial for the binding. 
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Figure 5: Specific contribution to the P7 interaction of residues at positions 346 and
 
362 in 

EC
SC. (A): 

contribution of natural residues S346 (left) and M362 (right). The residue specific profiles result from the 

difference between thermodynamic values for
 Ec

wt and
 Ec

G1 (left) or 
Ec

G2 (right). (B): contribution of non 

natural residues P346 (left) and L362 (right). The residue specific profiles result from the difference between 

thermodynamic values for
 Ec

M1 and
 Ec

G1 (left) or 
Ec

M2 and 
Ec

G2 (right) (SI.12). ΔH, -TΔS and ΔG (all in 

kcal/mol) are white, grey and black bars, respectively. ΔH and -TΔS numerical data are retrieved from GTT 

curves (SI.5), except for 
Ec

M2 and 
Ec

G2 (SI.6).  

 A similar approach aiming at defining the specific contributions of the same residues 

in the Bs context was hardly feasible as the large variations in thermodynamic data obtained 

with 
Bs

SC (Figure 1 and 4, SI.6) preclude one to retrieve any reliable conclusion on the 

contribution of the P/S and L/M residues in this context. Nevertheless, the thermodynamic 

profiles obtained with 
BsG1

SC and 
BsG2

SC provide information on the contribution of the 
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exchanged residue (Figure SI.12 B). As for the S346 residue in the Ec context, the P357 residue 

does not seems to contribute to the P7 interaction as indicated by the similarity of profiles 

observed with 
Bswt

SC and 
BsG1

SC (Figure SI.12 B). On the contrary, the profiles obtained for 

the 
BsG2

SC/P7 interaction reveal that the L residue, as observed for the M362 residue in the Ec 

context, occupies a strategic position to impede the efficient interaction of P7 with 
Bswt

SC, as 

indicated by the fact that the L373G mutation restores an interaction profile similar to that 

observed for 
Ec

SC (Figure SI.12B). Indeed, the ΔCp value calculated for the 
BsG2

SC/P7 

interaction is -226 cal/mol/deg, equivalent to that measured with 
Ecwt

SC.  

Specific contribution of the binding pocket to the P7 interaction. 

 Beside these strategic positions, the whole pocket largely contributes to an efficient 

ligand binding, as revealed by the thermodynamic profiles obtained with G1 or G2 mutants 

(SI.12). In the Ec context, the pocket-specific thermodynamic profiles are only slightly 

modulated by the S346G or M362G mutation (Figure SI.12 A), while in the Bs context, the 

profiles obtained with G1 and G2 are very different (Figure SI.12 B). The G1 profile 

characterizes a weak interaction similar to that observed with 
Bswt

SC.  In contrast, the G2 

profile, similar to those observed for the Ec context, reveals that the Bs pocket environment is 

also suitable for peptide binding, provided the L373 side chain is removed. This observation 

confirms the strategic position of the Bs373 (or Ec362) residue for the control of peptide 

interaction and the deleterious effect of L for P7 binding. However, as indicated by the KD 

values (SI.6), P7 interaction with 
BsG2

SC remains weaker than with 
EcG2

SC (SI.12). Moreover, 

the introduction of a M373 residue (
BsM2

SC) fails to restore an interaction as strong as that 

observed in the Ec context (Figure 4 and SI.11), which may suggest that the side chain of this 

M residue is not adapted to the Bs pocket environment and that subtle pocket residue to 

residue interactions determine an optimal ligand interaction 18
. 

 In conclusion, thermodynamic analyses reveal that, for both Ec and Bs contexts, the 

same strategic position, corresponding to EcM362 or BsL373, controls the efficient interaction 

of the peptide with the SC binding pocket. Residues at position corresponding to EcS346 ( or 

BsP357) are not actively contributing to the binding. Finally, both pockets contribute to the 

interaction but with different efficiency. 
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Mode of peptide interaction as deduced from the ΔCp analysis.  

 ΔCp analysis provides insights into the peptide mode of interaction with SC. It has 

been previously shown that a ΔCp ≠ 0 is partly linked to a variation in the hydration pattern 

and to a variation in the solvent accessible surface area (ASA) of the protein
34

. A ΔCp
calc

 

value can be retrieved by measuring the ASA variation from the crystal structure of the 

Ecwt
SC/P7 complex (SI.9), as compared to the structure of the peptide free 

Ecwt
SC (PDB 1OK7 

chain A). This approach characterizes the ΔCp value resulting from the burying of amino acid 

residues upon peptide binding and is calculated using the empiric formula: ΔCp
calc

 = 0.27 

ΔAaromatic + 0.40 ΔAnonaromatic
35

. We also took into account the specific contribution of the free 

P7 by considering that the residues Q, L and F were fully buried and Cha, which stacks on the 

platform {Wolff, 2011 #60} was only 50% hidden after binding. As indicated by the crystal 

structures, the D residue, which points toward the solvent, does not contribute to the 

interaction.  Accessible surfaces area values for each P7 residue were determined according to 

{Lins, 2003 #122}. A value of -276 cal/mole/deg is calculated for
 Ecwt

SC/P7 which is close to 

the ΔCp
ITC  

(-213
 
cal/mol/deg)

 
considering the

 
approximations on P7. Similar close values are 

obtained for 
EcM1

SC/P7 (ΔCp
ITC

= -240 cal/mole/deg and ΔCp
calc

= -281 cal/mole/deg).  

 In absence of any 
Bs

SC/P7 complex structure, such information is not available for the 

Bs context. However, the profiles obtained with 
BsG2

SC (SI.12 B) yields a ΔCp value of -226 

cal/mol/deg, very close to that measured with 
Ecwt

SC. It suggests that this mutated pocket 

binds P7 according to an induced-fit process and that the low ΔCp values calculated for 
Bswt

SC 

and 
BsM1

SC is more indicative of a weak interaction, due to the presence of the L residue, than 

of a different binding mode. Interestingly, the ΔCp value measured for 
BsM2

SC (-42 

cal/mole/deg) remains weak, despite the L373M mutation. Only for the double mutant 
BsM3

SC 

is the ΔCp value (-269 cal/mole/deg) in the range of that measured for 
BsG2

SC. This may 

reflect the fact that, in contrast to G373,  introducing a single M373 residue in the 
Bs

SC pocket 

does not trigger a large structural change, presumably because of some steric hindrance 

between the M373 side chain and the P357 residue (or others). Only the double mutant 
BsM3

SC 

allows this structural change, as indicated by the corresponding ΔCp value, because the S357 

and M373 side chains move along, as observed in 
Ecwt

SC. This observation reveals that a subtle 

network of residue to residue interactions operate specifically in each pocket, as we noted 

before 18
, to ensure an optimal binding process. 
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Structure analysis of mutant SC/P7 complexes. 

 We solved the structures of different complexes, namely 
Ecwt

SC/P7 (PDB ID: 6FVL),
 

EcM1
SC/P7 (PDB ID: 6FVM), 

Mtwt
SC/P7 (PDB ID: 6FVN) and 

MtM1
SC/P7 (PDB ID: 6FVO) 

(SI.9). Until now, no structure of a SC/P7 complex has been obtained using 
EcM2

SC, 
EcM3

SC or 

any 
Bs

SC. Although crystals were obtained with these SC, no density corresponding to the 

peptide was observed in the electron density map. This observation reflects the weak peptide 

interaction, in agreement with thermodynamic and biochemical data, and suggests that P7 is 

mobile in these specific complexes, or that the crystallization process has selected the peptide-

free SC. The overlay of several complexes structures is presented in SI.13. 
Ecwt

Sc/P7 and 

EcM1
SC/P7 complexes align nicely, yielding an rmsd = 0.37 Å over 327 C atoms (Figure 

SI.13 A). 
Mtwt

SC/P7 and 
MtM1

SC/P7 complexes also superimpose correctly, with an rmsd= 0.89 

Å over 330 C atoms (Figure SI.13 C). Not surprisingly, 
Ecwt

SC/P7 and 
Mtwt

SC/P7 do not 

readily superimpose as indicated by an averaged rmsd = 1.9 Å over 280 C atoms (Figure 

SI.13 B). Nevertheless, the two P7 peptides superimpose correctly. In all cases, we observed a 

full overlap of the 
Ecwt

S346 and 
Ecwt

M362 or their corresponding residues in 
Mtwt

SC, with their 

cognate residues in the M1 mutant SC. This indicates that the conversion of this residue (from 

S to P, or the opposite) does not alter the pocket conformation, in agreement with the ITC and 

biochemical data for the Ec replicative system (SI.11A and Figure 11 below). 

 

Kinetics analysis of the P7 binding onto SC. 

 The treatment of the ITC injection curves by the kinITC program 
20

 
32

 provides the 

kinetic rate constants that govern the peptide interaction (Figure SI.14 A and B). Figure 6 

shows the Arrhenius plots for the association and dissociation constants obtained at different 

temperatures for the interaction of P7 with 
Ecwt

SC and 
EcM1

SC. No kinetic information could 

be obtained, neither for 
EcM2

SC/P7 and 
EcM3

SC/P7 complexes formation (SI.14 C and D), nor 

for
 Bswt

SC/P7 and 
Mtwt

SC/P7 (data not shown), due to too weak signals.  

 The Arrhenius plots describing the 
Ec

SC/P7 interaction (Figure 6) reveal a significant 

difference between the two complexes: an unusual negative ΔH
‡

on is observed for the 

EcM1
SC/P7 complex formation because the ON-rate decreases upon temperature increase. This 

can be interpreted in the frame of a two-step kinetic model, which was described in great 
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details in two seminal papers on DNA helix formation. A two steps process has also been 

proposed previously for the ligand-SC system. According to this model, an initial but labile 

binding of P7 by one of its two anchors, the N-ter Q residue or the C-ter LF region, is 

followed by a fast step, conditioned by the first one, and corresponding to the full binding of 

the peptide into the SC pocket. Therefore, the observed kon is a global rate constant for the 

two successive steps, which explains that the global ΔH
‡
on may be negative. A smaller effect 

of the S346P mutation is also observed for the ΔH
‡
off which is reduced four times with

 EcM1
SC 

as compared to 
Ecwt

SC. All together, these effects suggest that the 
Ecwt

SC/P7 interaction 

proceeds through an induced-fit mechanism, in agreement with the ΔCp analysis, and that the 

mutation affects the binding-induced dynamics of the pocket but not the overall efficiency of 

binding, as indicated by the similar thermodynamic data obtained with 
Ecwt

SC and 
EcM1

SC 

(SI.6). 
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Figure 6: Arrhenius plots for the association and dissociation constants of 
Ecwt

SC/P7 and 
EcM1

SC/P7 

complexes.  kon and  koff values measured for the 
Ecwt

SC/P7 interaction are 3.4, 5.4 and 7.1 10
4
 M

-1
.s

-1
  and 4.8, 15 

and 47 10
-3

 s
-1

 at 15, 25 and 34°C, respectively. Values measured for the 
EcM1

SC/P7 interaction are 3.2, 2.4 and 

2.1 10
4
 M

-1
.s

-1
 and 5.3, 6.7 and 13 10

-3
 s

-1
.  

 

Molecular modeling studies. 

 Molecular dynamics simulations were performed to elucidate how the nature of 

residues EcM/L362 and BsL/M373 modulate the ligand interaction, as indicated by the ITC 

analyses. Table 3 compares the results of ITC-derived experimental and calculated ΔΔG 

values. The simulation data are in good agreement with the experimental values and reveal 

that the EcL362 residue is highly detrimental to the interaction while the BsM373 residue 

slightly favors the complex formation, in full agreement with our ITC analyses. The simulated 

structures of the different complexes (
Bswt

SC/P7 and 
EcM2

SC/P7 on one hand and 
Ecwt

SC/P7 and 

BsM2
SC/P7 on the other hand) were superimposed (SI.15). In both cases, the peptides are nicely 

aligned (rmsd (C) = 0.38 Å), while the two SC chains present a looser alignement (rmsd = 

1.33 Å over 305 atoms). Nevertheless, the superimposition reveals that in 
EcM2

SC and 
Bswt

SC, 

the L362/373 residue positions immediately below the peptide's third residue (SI.15 A). This 

position blocks the path where the peptide can lie and results in a poor interaction, as 

observed by ITC for 
EcM2

SC and 
Bswt

SC. In contrast, the M373 residue of 
BsM2

SC adopts  

 

Data for peptide binding ΔΔG 
EcM2

SC vs 
Ecwt

SC ΔΔG 
BsM2

SC vs 
Bswt

SC 

Experimental (ITC) 2,8  1.1 -0,3   0.5 

Calculated 3,7   0,7 -0,4  0,04 

Table 3: Comparison of calculated and experimental ΔΔG values. ΔΔG (kcal/mole) results from the 

comparison between  ΔG
M2

SC and ΔG
wt

SC (namely, ΔG
 M2

SC - ΔG
 wt

SC) at 25°C.  When positive, binding to 

mutant is less favorable. In 
Ec

SC, M2 corresponds to a M362L mutation (Table 1). In 
Bs

SC, M2 corresponds to a 

L373M mutation (Table 1). 

 

a position similar to the M362 position in 
Ecwt

SC (SI.15 B), i.e a shift of its side chain that clear 

the way for the peptide to lie within the resulting groove, thus allowing an improved 

interaction. 
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Biochemical analysis of the various SC activities.  

 We used a primer elongation assay to analyze the biochemical properties of the 

various 
Ec

SC and 
Bs

SC to promote SC dependent polymerization by in vitro reconstituted 

cognate and non-cognate replicative DNA polymerase complexes. In this assay, the 

interaction between the replicase and the clamps is mediated by the polymerase specific 

peptide, namely QADMF for the E. coli polIII holoenzyme
36

 and QLSLF for the B. subtilis 

PolC
16

. The ability of P7 to interact with these various SC in this biochemical tests is 

evaluated in competition assays. 

 As shown in Figure 7, both 
Ecwt

SC and 
Bswt

SC associate with their cognate in vitro 

reconstituted E. coli (EcP) and B. subtilis (BsP) DNA polymerases to promote a SC 

dependent primer elongation. The reaction is concentration dependent and saturation is 

reached at equimolar concentrations of SC and polymerases (100 fmole/reaction). The 

elongation profiles show distinct bands of arrest specific for each type of polymerase, which 

may result from a different sensitivity of each complex for DNA sequences or secondary 

structures. Neither the E. coli nor the B. subtilis replicative complexes (comprised of at least 

the DNA polymerase catalytic subunit and the SC loading complex) are able to form 

productive complexes with the non cognate SC (SI.16), as previously observed by others 

when E. coli (Gram-) and S. pyogenes (Gram+) replicative machineries were analyzed 37
. This 

underlines the specificity of interaction between the partners, mediated by the specific  

peptides but also others polymerase-SC contacts such as described for Ec PolIV
17

 {Beuning, 

2006 #123}. 
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Figure 7 : Elongation profiles obtained with reconstituted E. coli and B. subtilis holoenzymes. The E. 

coli and B. subtilis polymerases (EcP or BsP, 100 fmoles) are supplemented with various amount of 

the cognate 
wt

SC (from 0 to 400 fmoles). The labeled lanes (*) correspond to 100 fmoles 
wt

SC. The 

primer position is indicated by the arrow.  

  

 Then we analyzed how EcP and BsP behave when associated with the different 

cognate mutant SC (Figure 8). Holoenzyme formed between EcP and 
EcM1

SC (Figure 8, lane 

4) displays the same primer elongation profile as that observed using 
Ecwt

SC (Figure 8, lane 

3). This indicates that the natural EcP peptide interaction is not altered by the S346P mutation, 

nor in terms of elongation efficiency, as indicated by the equal bands intensities in lanes 3 and 

4, nor in terms of specificity as indicated by their similar elongation profiles. This result is in 

agreement with the P7 interaction data obtained in ITC experiments (Figure SI. 8 A and S.I 

11 A). In contrast, holoenzymes formed by association of EcP with 
EcM2

SC or 
EcM3

SC (Figure 

8, lanes 5 and 6) present a profile different from that observed for the natural holoenzyme, 
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which can be accounted for by a decrease in processivity and/or modifications of polymerase-

SC interaction dynamics. This is in agreement with the ITC data and indicates that, regardless 

of the peptide, the M362L mutation is deleterious to the interaction. The combination of both 

mutations (
EcM3

SC, lane 6) shows a synergistic effect, as revealed by the decrease in full 

length band intensity in lane 6 as compared to lane 5. Surprisingly enough, these profiles, and 

particularly that obtained with 
EcM3

SC, are very similar to that obtained with the natural BsP 

holoenzyme (Figure 8, lane 8).  

   

Figure 8: Elongation assays with the different 
Ec

Sc and 
Bs

Sc. EcP or BsP reconstituted polymerases 

(100 fmoles) were each tested with the various cognate SC (lanes 3 to 6 and lanes 8 to 11 for Ec and 

Bs polymerases, respectively) (100 fmoles) (Table 1). The primer position is indicated by the arrow 

(lane 1). Lanes 2 and 7 display the activity of Ec and Bs polymerases in absence of the cognate SC. 

 

   

 We observed that only 
BsM2

SC associates productively with BsP and yields a similar 

pattern of elongation as the natural BsP holoenzyme (Figure 8, lane 10), while nor 
BsM1

SC 

neither 
BsM3

SC form a productive complex (Figure 8, lane 9 and 11). In this Gram+ context, 
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the P357S mutation appears to be highly deleterious to the polymerase-SC interaction, as 

opposed to what is observed with the 
Ec

SC, while the L373M mutation is harmless and even 

favorable to the interaction, as indicated by the increased band intensities of the full length 

products (lane 10). The lack of elongation with 
BsM3

SC is in contradiction with ITC data 

showing that the combination of the two mutations in 
BsM3

SC improves the P7 interaction as 

compared to 
BsM1

SC/P7 or 
BsM2

SC/P7 interactions (Figure 4). In the elongation assay, the 

effect of both mutations is not cumulative but rather reflects the effect of the P357S mutation 

alone. These differences between the two approaches reveals that, in the Bs context, the S357 

residue blocks the interaction of the PolC polymerase natural peptide with 
Bs

SC, but not that 

of P7. Alternatively, the BsP357 position could have some unknown specific contribution to the 

whole polymerase function. This effect is not observed in the Ec context and could thus reveal 

this position as a specific marker for Gram+ SC/polymerase interaction. Finally, as observed 

for both natural SC, none of the mutants SC form a productive heterologous complex with 

their non cognate polymerase (data not shown). 

 To make sure that the effects observed with BsP reflect the polymerase activity and 

not the SC loading process, we performed the same assay using a linear template (SI.17). SC 

dependent elongation products are detected with the 
Bswt

SC and 
BsM2

SC, as observed when 

using circular templates, but none with 
BsM1

SC, ruling out any defect in the SC loading 

process. Noteworthy, in this assay with linear templates, we observed 
BsM3

SC dependent 

products, as opposed to what we obtained using circular DNA (Figure 8, lane 11). This 

suggests that the observed increased elongation activity brought by the L373M mutation 

compensate the deleterious effect of the P357S mutation for what concerns the polymerase 

interaction, but not the SC loading process. Elucidation of this point will require the study of 

the respective natural peptides with these SC variants. 

 Then, we challenged the different reconstituted holoenzymes for their primer 

elongation activity with increasing concentrations of P7. The elongation profiles are displayed 

in Figure 9, and the data are analyzed in Figure 10. In accordance with our previous 

observations in Figure 8 (lanes 3 and 4) showing that 
Ecwt

SC and 
EcM1

SC are similarly 

efficient in driving EcP SC-dependent elongation, equal concentrations of P7,  pre-incubated 

with 
Ecwt

SC or 
EcM1

SC, equally inhibit the SC dependent primer elongation activity of EcP, 

yielding a IC50 of 1.5 µM (Figure 10 A, D). These values are close to our previous results 

yielding an IC50 of 2.8 µM for the inhibition of EcP holoenzyme elongation by P7 
5
. These 
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experiments confirm that the S346P mutation has no, or a limited influence on the peptides 

binding, either the natural peptide (QADMF) or P7. We note a 4-fold difference between these 

biochemical results and those measured by ITC at 34°C (SI. 6), but both approaches describe 

the same trend despite their different sensitivity, as observed before 
5
. 

 

  

 

 

Figure 9 : Inhibition of primer elongation by P7. EcP and BsP are complemented with their cognate 

wt or mutants SC pre-incubated with increasing concentrations of P7 peptide (0, 1, 2, 4, 8 and 10 µM 

for 
Ecwt

SC and 0, 2, 8, 25 and 75 µM for all the other SC). Lanes 1 to 6: EcP-
Ecwt

SC. Lanes 7 to 12: 

EcP-
EcM1

SC. Lanes 13 to 18: EcP-
EcM2

SC. Lanes 19 to 24: EcP-
EcM3

SC. Lanes 25 to 30: BsP-
Bswt

SC. 

Lanes 31 to 36: BsP-
BsM2

SC. 

 

 The same approach using 
EcM2

SC or 
EcM3

SC yield a much higher IC50 value of 46 µM, 

indicating a much weaker interaction of these SC with P7 (Figure 10 B, D), in agreement with 

our ITC data (SI.6). All the results from different analytical approaches indicate that for 
Ec

SC, 

the introduction of a S346P mutation is innocuous, whereas the M362L mutation is strongly 

deleterious.  
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 Finally, we challenged the natural BsP holoenzyme and its 
BsM2

SC supplemented 

version by P7 (Figure 10 C, D). While the interaction of P7 with 
Bswt

SC is weak (IC50 = 68 

µM), in agreement with our ITC data (SI.2), a 5 fold (IC50 = 14 µM) improvement is 

measured by introduction of the L373M mutation in 
Bs

SC, in good agreement with ITC and 

MD data. 

 

Figure 10: Quantification of EcP and BsP holoenzymes inhibition by P7. A: 
Ecwt

SC 

(diamonds); 
EcM1

SC (crosses). B: 
ECM1

SC (diamonds, dotted line); 
EcM2

SC (squares, black line); 
EcM3

SC (triangles, 

dotted line). C: 
Bswt

SC (diamonds); 
BsM2

SC (squares, dotted line). D: Determination of IC50 from the curves in A, 

B and C .  

 

CONCLUSION. 

 The interaction of all DNA polymerases with the replicative processivity factor (or 

SC) is central for their activities and is mediated by a conserved peptide sequence which binds 

into a hydrophobic pocket located at the SC surface. In this piece of work, we analyzed the 

interaction of a reference peptide, P7, with natural and mutant SC from E. coli, B. subtilis and 

M. tuberculosis. In particular, we focused on the contribution of two residues of the
 Ec

SC 

binding pocket, namely S346 and M362, and their corresponding residues in 
Bs

SC, P357 and L373. 
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  ITC experiments confirm the differential interaction of P7 with the different natural 

SC. Single mutant analyses identify a strategic position in the 
Ec

SC binding pocket: a single 

M362L mutation is sufficient 1) to turn the thermodynamic profile of P7 interaction into that 

observed with 
Bswt

SC , 2) to inhibit the SC dependant activity of the Pol III holoenzyme and 3) 

to reduce the competitive inhibitory effect of P7 on this enzyme activity. Converesely, the 

L373M substitution in the 
Bs

SC pocket strongly modifies the thermodynamic profile which 

becomes almost similar to that observed in the natural Ec context. All these results are in line 

with molecular dynamics data indicating that, contrary to M residues that, in both Ec and Bs 

contexts, shift upon peptide interaction, L residues remain in place, immediately below the 

peptide, providing a structural rationale for the peptide binding inhibition in 
EcM2

SC and in 

Bswt
SC. ΔCp analyses reveal that all binding pockets endow a large structural change upon 

peptide binding, suggesting that P7 interacts through an induced fit process
33

. In the case of 

Bs
SC, this process is observed only with G2 and M3 mutants, because they lack the static L373 

residue which blocks peptide interaction. This indicates that the weak ΔCp values calculated 

for 
Bswt

SC, 
EcM2

SC and others, reveal a poor peptide binding and not necessarily a change in 

binding mode. 

 Thermodynamic analyses suggest that the nature of the Ec346 residue (S or P) is not as 

important for the binding as the M362 residue, as deduced from the closely similar 

thermodynamic profiles obtained with 
Ecwt

SC, 
EcG1

SC and 
EcM1

SC. However, kinetics analyses 

reveal that the S346P mutation strongly reduces the pocket dynamics. This suggests that the 

residue composition of each binding pocket is highly specific and has evolved to ensure an 

optimized binding process through a complex and specific network of interaction, as observed 

previously 18
. Another example is illustrated in the Bs context where biochemical analyses 

highlighted the P357 residue as a Bs specific strategic position for productive elongation. These 

data underline the interest of a multidisciplinary approach in defining the binding 

characteristics of each binding pocket and will help in the future design of SC targeting 

compounds, with either large spectrum or strain specific activities. 
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