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Abstract—Formaldehyde is a carcinogenic volatile organic 

compound that is largely used in the fabrication process of a 

variety of household products, being sometimes released indoor 

in concentrations that are beyond the limits recommended by 

the World Health Organization. The current commercially 

available formaldehyde sensors are far from simultaneously 

being ultra-portable, highly sensitive (< 1 ppb), real-time, and 

especially cost-efficient. This work aims to study the feasibility 

to miniaturize the formaldehyde sensing system down to a 

palm hand device, based on the microfluidic Hantzsch reaction 

method and fluorescence detection. A Gas-Liquid Micro-

Reactor based on integration of a hydrophobic membrane 

inside a polymer flat chip is proposed and its formaldehyde 

trapping yield is planned to be further tested. By combining 

contact sensing with time-resolved CMOS sensors, the 

dimensions of the fluorescence detection component could go 

down to 10 mm × 20 mm × 30 mm by using commercial-

available components and therefore, enabling continuous and 

fast-response measurements using small volumes and low 

concentration samples. 

 
Index Terms—Contact sensing, micro-fabrication, on-chip 

membrane-based gas-liquid contacting, time-resolved CMOS 

sensing.  

 

I. INTRODUCTION 

The indoor environment is a major source of concern 

since the concentrations of pollutants might reach up to five 

times concentrations values than outdoors [1]. People 

usually spend more than 90% of their time indoors, and 

many causalities and diseases are linked to the presence of 

specific chemical compounds in the air, such as volatile 

organic compounds (VOCs). VOCs have a boiling point 

lower than room temperature, a characteristic that makes 
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them have a high partial pressure and being released 

gradually in the surrounding air. One of the VOCs that 

raises increased concern is formaldehyde, a compound that 

is carcinogenic and mutagenic [2]. It is largely used in the 

fabrication of building materials, household products, and 

resins for wood products. There are research projects 

looking for a formaldehyde none harmful alternative in the 

form of bio-based platform chemical 5-HMF (5-

Hydroxymethylfurfural) [3], but meanwhile, the 

formaldehyde industrial consumption is continuously 

growing. The World Health Organization recommends 

today a value of 30 µg/m3 as acceptable concentration of 

formaldehyde indoor and from 2023 onwards, 10 µg/m3 will 

be accepted [1]. 

The sensors existing today on the market are far from 

being ultra-portable and low-cost. One miniaturized sensor 

answering these goals and providing real-time information 

about the low-limits formaldehyde concentration, could be 

used for more reliable measurements that could give a better 

insight about the formaldehyde releasing behavior in 

specific environments, and, finally, a better understanding of 

the formaldehyde impact on people’s health.  

This project aims to explore the miniaturization 

possibilities towards the lab-on-a-chip integration of the 

Hantzsch reaction coupled to fluorescence optical detection 

microfluidic method, used for the real-time detection of the 

low-limits formaldehyde (Fig. 1).  

 

 
Fig. 1. Formaldehyde detection methodology. 

 

The Hantzsch reaction is a derivatization process of the 

formaldehyde molecules into 3,5–diacetyl-1,4-

dihydrolutidine (DDL), a fluorescent chemical compound. 

The fluoral-P or acetylacetone based solutions are used as 

reagents for the derivatization process, once the 

formaldehyde molecules are trapped into the solution.  This 

technique is a very sensitive and a relatively simple tool to 
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detect formaldehyde. 

By better understanding the fluidics in micro and nano 

channels, enhanced mass-transfer could be achieved and, 

therefore, miniaturized and highly autonomous gas-liquid 

micro-reactors might be developed. The gas-liquid micro-

reactors are devices that are designed to contact two micro 

streams of fluids, in order to trap specific molecules from a 

phase to another. The efficiency of the process is governed 

by a multitude of parameters, such as the hydrodynamics, 

the contacting method, the fluid-solid interactions, and the 

volume-to-surface area coefficient. A chemical reaction 

usually enhances the process since it helps diminishing the 

polarization effects at the gas-liquid interface.  

Fluorescence represents the property of a molecule to 

emit light at a specific wavelength and specific intensity, 

once it is excited by a light pulse. By measuring the 

fluorescence intensity emitted by the molecules located 

inside a known interrogation volume, at a specific period of 

time, the concentration of those molecules could be 

quantified. Among all optical methods, fluorescence sensing 

is the most common analytical and diagnostic method in 

biological, chemical and medical applications [4]-[6], and it 

is widespread due to its capability to attain ultra-low 

detection limits, being considered the most sensitive and 

robust methodology [7], [8].  

A first prototype concept is here proposed, aiming to 

embed all the required functions of the process in a modular 

palm-hand device. For a better understanding and control of 

the parameters involved, formaldehyde derivatization are 

assigned to a sub-device, named Gas-Liquid Micro-Reactor, 

and the fluorescence detection system to another sub-system, 

named optical detector.  

A micro-machined polymer chip, embedding a flat 

hydrophobic membrane, stands for continually contacting 

the two streams using an overlapping network of 

meandering channels. The interest here is to study the 

feasibility of enabling enhanced formaldehyde trapping 

inside relatively cheap on-chip membrane-based polymer 

chips.  

The optical detection sub-system targets the development 

of a miniaturized device for the fluorescence intensity 

quantification based on the contact sensing and the time-

resolved CMOS fluorescence sensing in low interrogation 

volumes (600 nL - 5 μL). 

 

II. DETECTION METHODOLOGY 

Prior to the Hantzsch reaction, the formaldehyde 

molecules are continuously trapped from the atmospheric air 

flow by contacting the air stream and the reagent stream into 

a microfluidic network of overlapping micro-channels. Once 

the formaldehyde derivatization process is finished, after a 

molecule residence time of about three minutes at 65°C, the 

liquid carrying the DDL molecules is streamed towards the 

interrogation chamber (Fig. 1), where a beam of 412 nm 

wavelength light excites the molecules and makes them 

fluoresce at a 510 nm wavelength. The fluorescence read-

out intensity signal gives the concentration of DDL that is 

correlated with the trapping efficiency of the gas-liquid 

micro-reactor and indicates the formaldehyde concentration 

in the environment.  

The concentration of formaldehyde can be determined by 

controlling and measuring the volume of the air that is 

contacted with the liquid reagent, knowing the diffusion 

efficiency of the system, and the rate of replacement of the 

liquid from the interrogation volume in the optical detector. 

The gas-liquid contacting method influences the trapping 

efficiency or the mass transfer yield. Gas-Liquid contacting 

could be realized using a solid, molecule permeable medium, 

such as a polymer membrane, or by a direct gas-liquid 

interaction in the same micro-channel. Each choice comes 

with advantages and disadvantages. While the gas-liquid 

contactors based on membranes provide a system where the 

hydrodynamic conditions could be easily and precisely 

controlled, the physical medium represented by the 

membrane increases the mass transfer resistance and 

decreases the diffusion. By introducing in the same micro-

channel a gas and a liquid stream, different flow patterns 

(e.g. slug flow, annular flow, churn flow or bubbly flow) are 

realized, depending on the hydrodynamic conditions that are 

accomplished. These methods are usually characterized by a 

better diffusion at the gas-liquid interface, but they strongly 

depend on the stability of the hydrodynamic conditions 

which are difficult to be controlled at micro-scale, especially 

for annular flow. An annular flow provides very good 

characteristics for this particular application since it contacts 

a large volume of gas with a low volume of liquid without 

using a membrane [1].   

Formaldehyde trapping from a microfluidic gas stream 

into the reagent stream is mathematically described using 

advection-diffusion equation that is assumed to govern the 

flow of the solute in the channels, separated by the porous 

membrane (Fig. 2). In equilibrium at temperature T, 

  L Gn H T n                               (1) 

    and    are the equilibrium number densities of the 

solute in the liquid and the gas phase, respectively, if the 

solution is in the ideal regime. If not, equation (1) has to be 

replaced by a more complicated relationship. However, any 

change in equation (1) does not affect the model described 

below.  Let    and    denote arbitrary values of densities in 

the liquid and the gas when the system is not in equilibrium. 

In these conditions, the liquid phase injects   molecules per 

unit time and unit area into the gas. According to the Henry 

law,  

 

 
Fig. 2. Convection – diffusion transfer mechanism inside the overlapping 

meandering channels. 
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  stands for a sort of evaporation/condensation coefficient. 

On the other hand, the flux of the gas phase molecules 

condensing (trapped) onto the liquid phase is  

g

RT
J σ n=

2π

                                 (3) 

Hence, the total net solute molecules flux across the 

interface is: 
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   , when    and    obey the Henry Law. It is assumed 

that advection is negligible within nano-pores and the 

diffusion is the main mechanism. Also, the diffusion will be 

considered quasi-steady inside a pore: 
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It should be noted that equation (8) allows computing J 

knowing the solute densities,       and       in the gas 

channel and the liquid channel. It is worth noting that D in 

the above equations has to be considered an effective 

diffusion coefficient because the diffusion of the solute 

through the carrier gas may not be the only mechanism and 

the rarefaction effects affect the diffusion process in the 

carrier gas. It will be assumed that the advection-diffusion 

equation governs the flow of the solute in the channels, 

separated by the porous membrane. The liquid channel is 

now considered and the following assumption is made, 

where       is a sink term due to the chemical reaction:  

  2, =L L
x L L r L

n n
V y z D n n

t x


 
  

              

(9) 

 The average of    over a channel section is considered. 

 
1

,L Lx t dydzn
S

   S = Ly × Lz              (10) 

Substituting in equation (9) and integrating, it yields: 
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 ̅ is the average flow velocity across the channel section 

and    is the fraction of permeable membrane area. 

Applying the same assumptions for the gas layer, it results a 

similar equation. 
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(12) 

The above-described model can be used for the 

characterization of the trapping efficiency of the gas-liquid 

contactor and, furthermore, to conduct a parameterization 

study once the effective diffusion coefficient is measured 

from experimental assays, in order to determine optimal 

dimensional characteristics for achieving the desired limit of 

detection. 

 

III. GAS-LIQUID MICRO-REACTOR 

This part of the work aims to study the feasibility of 

developing cheap, efficient, and disposable gas-liquid 

contacting chips from polymer materials, such as poly 

methyl methacrylate (PMMA). The gas-liquid contacting 

chip is integrated in between two upper and lower holders 

(Fig. 3). The holders are micro-machined in polyether ether 

ketone (PEEK) which is used due to its low thermal 

conductivity       
 

   
 . They host fluidic leakage-free 

connections for gas (Swagelok, SS-100-1-1, 1/16) and liquid 

(N-333, Idex-HS) streams, the flat copper foils thermally 

controlled by cartridge heaters (Watlow, C1A-9602, 30 W 

power, 24V voltage), in order to heat up the fluid streams 

inside the chip to 65°C, and O-rings (Parker, 6-1735 E540-

80, 0.7  × 0.5 mm ) – one for each fluidic inlet/outlet – that 

assure the leakage-free condition when the chip is clamped 

in between the holders. 

 

 
Fig. 3. (a) (1) – Holder. (2) – Copper layer. (3) – Cartridge heater. (4) – 

Gas-liquid contacting chip. (5) – O-ring. (b) Gas-liquid polymer contactor: 

exploded view. 

 

Double-sided commercial-available hydrophobic ePTFE 

membranes (Aspire® QP955 and Aspire® QL217) were 

considered for being on-chip integrated and further tested 

(Fig. 4). They have a reference pore diameter of 200 nm and 

the contact angle is 120° [9]. The polymer chip hosts a 

network of two overlapping meandering micro-channels, 

one channel being assigned to the liquid stream and the 

other one to the gas stream. They are milled with good 

precision on two 1 mm thick PMMA sheets (Fig. 5).  

A vacuum chunk was used to maintain the horizontality 

of the PMMA sheets, in order to avoid its wavy form and 

assure a constant depth of the channel over the length.  The 

two meter overlapping channels have: (a) 400 µm × 200 µm 

cross section dimension for the gas carrying channel and (b) 

Gas inlet Gas outlet 

Reagent inlet Reagent outlet 

 (a)  (b) 
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100 µm × 200 µm for the liquid carrying channel, 

respectively. A hot embossing procedure was used to bond 

the two PMMA sheets (Fig. 5 (c)) embedding the 

hydrophobic membrane that was precisely cut by a CO2 

laser (Fig. 5 (a)) to fit the pocket on the PMMA gas sheet. 

Two interior strips were provided on the PMMA gas sheet, 

in order to prevail swelling behavior.  

Experiments were conducted to test the leakage of the 

system for a flow rate of 20 µL/min. After six minutes of 

continuous liquid pumping, leakage could be observed 

around the connectors, the pumping being stopped. When 

the chip was verified it could be observed that the PMMA 

bonding did not last as well, water filling in the micro- 

channels for only one third out of the total two meter length. 

In conclusion, for the next chip contactor prototype the 

micro-channel length will be reduced according to the 

experimental observations. This is a compromise that surely 

will be diminishing the uptake concentration of 

formaldehyde molecules per unit time from the gas phase to 

the liquid phase, since the contacting area will be reduced. 
 

Fig. 4. Scanning Electron Microscopy analysis of the double-sided 

membrane. (a) Pore distribution on the Teflon side. (b) Cross-section 

thickness distribution with 40 µm Teflon and 150 µm backer material 

(polypropylene for Aspire QP955 and polyester for Aspire QL217). 
 

This aspect shifts the focus on the optofluidic system that 

has to compensate through a very low limit of detection 

capability. If the limit of detection to be achieved by the 

optofluidic system is lower enough, reducing the length of 

the micro-channel might be an advantage in the end, the 

final aim being detection of formaldehyde concentrations at 

1 ppb.  

 

 
Fig. 5. Fabrication steps of the gas-liquid chip contactor. (a) CO2 membrane 

cut. (b) Meandering channels micro-milling process. (c) PMMA sheets 

bonding using hot embossing method. 

 

After re-fabrication of the chip contactor, a further 

experimental work is currently envisaged for the 

determination of the formaldehyde diffusion coefficient in 

different flow conditions. This coefficient could be used to 

conduct an optimization study, in order to identify the 

optimal dimensions and working parameters. The 

description and the results of these steps will be further 

published in a separate paper. 
 

IV. OPTOFLUIDIC DETECTION SYSTEM 

The optical detection sub-system combines the contact 

sensing and the time-resolved CMOS fluorescence sensing 

in low interrogation volumes (600 nL - 5 μL), in order to 

develop a robust, low-power, and sensitive micro-detector.  

Fluorescence is the property of a molecule to absorb light 

at a specific wavelength and emit it at a longer wavelength, 

a phenomenon known as the Stoke shift (Fig. 6). 

Consequently, its quantification involves a light emission 

source and a light detector. The amount of fluid involved in 

the microfluidic systems is by definition reduced and hence 

the emitted fluorescence signal is weak.  The lifetime of the 

DDL molecule in methanol solution was determined in [10] 

to be           .  The quantum yield of the DDL 

molecule in aqueous solution is               [10]. The 

three orders of magnitude difference between excitation 

light intensity and emitted fluorescence intensity makes the 

implementation of a complex optical path usually necessary, 

involving a system of lenses to focus the fluorescence onto a 

photon detector.  

 

  
Fig. 6. General fluorescence detection scheme (orthogonal). 

 

In contact sensing, the samples are placed in close 

proximity of the sensor surface without intermediate optics. 

Due to the short distance between the sensor and the sample, 

the optical loss can be small. The CMOS technology enables 

on-chip detection and signal processing, significantly 

reducing size and power consumption. CMOS time-resolved 

contact sensing microsystems are emerging today as sound 

technologies for application specific, low-cost and time-

resolved detection devices. Time-gating the excitation time 

and the reading-out time, by carefully considering the rise 

Backer 

material 

ePTFE  

 (a)  (b) 

 1µm  100 µm

 

 (a)  (b)  (c) 

International Journal of Chemical Engineering and Applications, Vol. 11, No. 1, February 2020

26



  

and falling time of the LED or the laser diode, the 

fluorescence signal and the noise could be discriminated in 

time. Falling time of the laser diode is a crucial parameter. It 

is important that the emission time of the molecule to be 

larger than the falling time, in order to be able to implement 

the time-resolved methodology. A smart integration of the 

concepts above-mentioned should provide a promising and 

cheap miniaturized sensing prototype [4]. 

For this first sub-device (Fig. 7), commercial-available 

laser-diode (typ. 415 nm) (Roithner Lasertechnik GmbH, 

RLT415-200PMG, typ. 200 mW (max. 1 W)) and CMOS 

image sensors (Anitoa® USL24) are used. Anitoa® USL24 

CMOS image sensor was specifically developed for 

spectroscopic measurements and possesses a signal-to-noise 

ratio larger than 13 dB at its 3.0 x 10-6 lux detection 

threshold. The upper and the lower holders are 3D printed 

and the fluidic interrogation cell is fabricated in quartz and 

SU-8, the fabrication process being described in [11].  The 

linearity of the CMOS image sensor over the integration 

time (y = 247.82x - 348.26, R² = 0.9848) and over the light 

intensity (y = 16.209x + 106.38, R² = 0.9968) were 

determined experimentally for a 520 nm wavelength light 

beam.  

 

 
Fig. 7. (a) Longitudinal cross-section: (1) – laser diode, (2) – CMOS sensor, 

(3) – disposable fluidic cell, (4) – upper holder, (5) – lower holder. (b) 

Exploded view. (c) Fluidic cell. (d) – Anitoa ULS 24. 

 

The description of the experimental results will be further 

published in a separate paper.  
 

V. CONCLUSION 

Successful development of a micro-total-analysis system 

for the continuous detection of the low-limits gaseous 

formaldehyde is highly desired since this carcinogenic 

substance largely used in the fabrication of household 

products is continually released indoors. This project aims to 

study the possible paths towards on-chip real-time detection 

of low-limits indoor formaldehyde concentrations, a 

laboratory prototype being today developed based on the 

Hantzsch reaction coupled to the optical fluorescence 

detection method. The gas-liquid micro-reactor relies on a 

disposable PMMA gas-liquid contacting chip that uses as 

separation medium a hydrophobic polymer membrane. The 

fluorescence optical detection system combines the contact 

sensing of a disposable quartz/SU-8 interrogation fluidic cell 

with the CMOS time-resolved spectroscopy. After the 

successful fabrication of the sub-systems, further results are 

expected in order to experimentally prove the concept. 
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