SUPPORTING INFORMATION

for

Imidazoporphyrins as supramolecular tectons: synthesis and self-assembling of zinc 2-(4pyridyl)-1*H*-imidazo[4,5-*b*]porphyrinate

Inna A. Abdulaeva,^{a,b} Kirill P. Birin,^a Anna A. Sinelshchikova,^a Mikhail S. Grigoriev,^a Konstantin A. Lyssenko,^c Yulia G. Gorbunova,^{a,d} Aslan Yu. Tsivadze,^{a,d} Alla Bessmertnykh-Lemeune^b

^a A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 119071, Leninsky pr., 31, building 4, Moscow, Russian Federation

^b Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, 21078 Dijon, France.

- ^c Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russian Federation
- ^d N.S. Kurnakov Institute of General and Inorganic Chemistry RAS, 119991, Leninsky pr., 31, Moscow, Russian Federation

CONTENTS

Table	S1.	Crystal	data	and	structi	ure ref	inement	for	com	nplex
<mark>PyPorZ</mark>	n [·] 2C ₆ H ₅	С Н 3	2							
Table	S	2.	Selected		bond	leng	gths	(Å)		for
<mark>PyPorZ</mark>	'n					2				
Table S	3. Selecte	d bond ang	gles (deg)	for PyPo	rZn					3
Table S	4. Select	ed intermo	olecular co	ntacts in	the crys	tals PyPoi	<mark>Zn⁻2C₆H</mark>	<mark>5CH</mark> 3, tl	he bour	<mark>ıdary</mark>
surfaces	$S(A^2),$	center t	o center	distanc	es betwe	en conta	cted porp	ohyrins	D(Å)	and
supramo	olecular								assen	nbles
formed.									<mark>.5</mark>	
Table S	5. Mean	ingful cor	ntacts(Å)	between	adjacent	polymer of	chains and	<mark>l porph</mark>	<mark>ıyrin-tol</mark>	luene
contacts		i	n		the		crystals			of
<mark>PyPorZ</mark>	n [·] 2C ₆ H ₅	С Н 3					<mark>6</mark>			
Table S	6. Total	energy of	TPPZn-F	y as the	function	of the C _{pa}	_{ra} –N _{Py} –Zn	angle	and sele	ected
bond	lengths	(Å)	and	angles	(deg)	accordin	g to	PBE0	<mark>)/def2-T</mark>	'ZVP
calculat	ion		8							
Table S	7. Topolo	ogical para	meters of	electron	density f	or critical	points (3,	-1) of 2	Zn–N b	onds
and	energy	(E _{int})	of	Zn–N	bonds	estima	ited b	y n	neans	of
CEML.				<mark>9</mark>						
Figure S	S1. Moleo	cular struc	ture of Py	PorZn						11
Figure S	S2. Histo	gram of C	para-N _{Py} -Z	Zn angle	in zinc(II	I) porphyri	nates			11
Figure S	53. Examj	ples of con	npounds ir	which th	he C _{para} –N	√ _{Py} –Zn ang	le			
deviates	from 18	0°						· · · · · · · · · · · · · · · · · · ·		11
Figure S	S4. Molec	ular graph	of TPPZ	n–py			· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • •		12
Figure S	S5. ¹ H N	MR specti	um of Py	Por in C	CDCl ₃					13

Figure S6. ¹ H NMR spectrum of PyPorNi in CDCl ₃	13
Figure S7. UV-Vis spectra of PyPor and PyPorNi upon variation of the temperature	14
References	15

Crystallographic data, experiment and refinement details are given in Table S 1. The atomic coordinates and thermal parameters in the crystal structure are filled at the Cambridge Crystallographic Data Center, no. CCDC 1871295.

Parameter	PyPorZn
CCDC number	1871295
Chemical formula	C ₇₆ H ₇₁ N ₇ Zn
Chemical formula moiety	$C_{62}H_{55}N_7Zn, 2(C_7H_8)$
Crystal system, space group, Z	Monoclinic, $P2_1/c$, 4
Unit cell dimensions	a = 13.1788(9) Å,
	b = 21.4947(16) Å,
	c = 22.2362(18) Å,
	$\beta = 106.952(2)^{\circ}$
Volume, Å ³	6025.3(8)
Density (calculated), g/cm ³	1.265
Radiation, λ, Å	ΜοΚα, 0.71073
μ, mm ⁻¹	0.459
Temperature, K	100(2)
Crystal size, mm	0.3 imes 0.2 imes 0.08
Data collection range, θ , °	4.095 – 27.974
Interval of reflection indices	$-17 \le h \le 17$,
	$-27 \le k \le 28,$
	$-29 \le l \le 29$
Reflections collected	48812
Unique reflections/R _{int}	14387/0.0876
Reflections with $I > 2\sigma(I)$	8746
Refinement method	Least-squares on F^2
Data/restraints/parameters	14387/42/771
Weight scheme	$w = 1/[\sigma^2(F_0^2) + (0.0695P)^2 + 3.3075P]$ where
	$P = (F_o^2 + 2F_c^2)/3$
Final R indexes [I>= 2σ (I)]	R1 = 0.0599, wR2 = 0.1343
Final R indexes [all data]	R1 = 0.1195, wR2 = 0.1594
Goodness-of-fit on F^2	1.017
Largest diff. peak/ hole, e/Å ³	1.21/-0.71

Table S1. Crystal data and structure refinement for complex **PyPorZn**²C₆H₅CH₃.

Table S2. Selected bond lengths (Å) for **PyPorZn**. **Bond lengths (Å)**

Zn(1)-N(1)	2.048(2)	N(3)-C(14)	1.373(4)
Zn(1)-N(2)	2.073(2)	N(4)-C(16)	1.375(4)
Zn(1)-N(3)	2.067(3)	N(4)-C(19)	1.376(4)
Zn(1) - N(4)	2.078(3)	N(5)-C(2)	1.386(4)
$Zn(1) - N(7)^{1}$	2.183(3)	N(5)-C(21)	1.341(4)
N(1)-C(1)	1.385(4)	N(6)-C(3)	1.368(4)
N(1)-C(4)	1.379(4)	N(6)-C(21)	1.366(4)
N(2)-C(6)	1.363(4)	N(7)-C(24)	1.346(4)

N(2)-C(9)	1.378(4)	N(7)-C(25)	1.342(4)
N(3)-C(11)	1.374(4)		

¹2-X,-1/2+Y,3/2-Z

Table S3. Selected bond angles (deg) for **PyPorZn**.

Bond angles (deg)

N(1)-Zn(1)-N(2)	91.45(9)	C(6)-N(2)-C(9)	106.3(2)
N(1)-Zn(1)-N(3)	162.88(10)	C(9)-N(2)-Zn(1)	128.2(2)
N(1)-Zn(1)-N(4)	88.01(9)	C(11)-N(3)-Zn(1)	127.3(2)
$N(1)-Zn(1)-N(7)^{1}$	104.35(10)	C(14) - N(3) - Zn(1)	125.1(2)
N(2)-Zn(1)-N(4)	165.19(10)	C(14)-N(3)-C(11)	106.2(2)
$N(2)-Zn(1)-N(7)^{1}$	99.02(10)	C(16) - N(4) - Zn(1)	126.3(2)
N(3)-Zn(1)-N(2)	87.35(10)	C(16)-N(4)-C(19)	106.3(2)
N(3)-Zn(1)-N(4)	88.82(10)	C(19)-N(4)-Zn(1)	126.9(2)
$N(3)-Zn(1)-N(7)^{1}$	92.70(10)	C(21)-N(5)-C(2)	103.2(2)
$N(4)-Zn(1)-N(7)^{1}$	95.44(10)	C(21)-N(6)-C(3)	105.5(3)
C(1) - N(1) - Zn(1)	127.9(2)	$C(24)-N(7)-Zn(1)^{2}$	116.6(2)
C(4) - N(1) - Zn(1)	122.66(19)	$C(25)-N(7)-Zn(1)^{2}$	118.5(2)
C(4) - N(1) - C(1)	109.3(2)	C(25)-N(7)-C(24)	117.0(3)
C(6) - N(2) - Zn(1)	125.16(19)		

¹2-X,-1/2+Y,3/2-Z; ²2-X,1/2+Y,3/2-Z

Table S4. Selected intermolecular contacts in the crystals **PyPorZn** $^{2}C_{6}H_{5}CH_{3}$, the boundary surfaces S(Å²), center to center distances between contacted porphyrins D(Å) and supramolecular assembles formed.

Table S5. Meaningful contacts(Å) between adjacent polymer chains and porphyrin-toluene contacts in the crystals of **PyPorZn** $^{2}C_{6}H_{5}CH_{3}$. The standard van der Waals radius (VDW) are taken from A. Bondi.¹

$C(32)C(49)^{1}$	3.457
$C(29)H(18)^{1}$	2.928
$C(41)H(2S)^{1}$	2.944
$C(30)H(17)^{1}$	2.932

$C(13)H(48)^2$	2.689
$C(48)H(47B)^2$	2.911
$C(5S)H(50C)^2$	2.876
$C(49)H(32C)^{3}$	2.726
$C(51)H(32C)^{3}$	2.832
$C(40)H(35B)^4$	2.911
$C(35)H(12)^4$	2.832

¹+X, 3/2-Y, 1/2+Z ²1-X, 1-Y, 1-Z ³+X, 3/2-Y, -1/2+Z ⁴1-X, 1/2+Y, 3/2-Z

Table S6. Total energy of **TPPZn–Py** as the function of the C_{para} – N_{Py} –Zn angle and selected bond lengths (Å) and angles (deg) according to PBE0/def2-TZVP calculation.

The general view of $\mathbf{TPPZn}-\mathbf{Py}$ with numbering scheme according PBE0/def2-TZVP calculation.

C _{para} -N _{Py} -Zn	E _{total} , au	Zn-N _{Py}	Zn1-N2	Zn1-N3	Zn1-N4	Zn1-N5	Zn-N _{Por} aver.	CN _{Py} C
180.0	-3938.448967	2.187	2.068	2.068	2.07	2.07	2.069	119.0
170.0	-3938.448638	2.192	2.070	2.070	2.070	2.065	2.069	118.9
165.0	-3938.448271	2.198	2.069	2.070	2.069	2.064	2.068	118.8
160.0	-3938.447788	2.207	2.069	2.071	2.069	2.062	2.068	118.8
155.0	-3938.447195	2.218	2.069	2.071	2.069	2.061	2.067	118.7
150.0	-3938.446511	2.234	2.068	2.071	2.068	2.059	2.066	118.5
145.0	-3938.445754	2.254	2.067	2.070	2.067	2.057	2.065	118.4
140.0	-3938.444929	2.278	2.066	2.069	2.066	2.056	2.064	118.3
135.0	-3938.444023	2.308	2.064	2.067	2.064	2.054	2.062	118.1
130.0	-3938.443072	2.346	2.063	2.065	2.063	2.052	2.061	118.0
125.0	-3938.442103	2.397	2.060	2.063	2.060	2.050	2.058	117.9
120.0	-3938.441149	2.457	2.058	2.060	2.058	2.048	2.056	117.8

Table S7. Topological parameters of electron density for critical points (3, -1) of Zn–N bonds and energy (E_{int}) of Zn–N bonds estimated by means of CEML.

V(r) – local potential energy density, g(r) – Lagrangian Form of Kinetic Energy Density, kinetic energy density, K(r) - Hamiltonian Form of Kinetic Energy Density that is equal to negative electron energy density (he(r)), Ellip - bond Ellipticity = (HessRho_EigVal(1) / HessRho_EigVal(2)) – 1

Bond	Rho,	v(r),	g(r),	Kau	L,	Filin	Eint,	
Donu	e∙Å-3	a.u.	a.u.	к, a.u.	e∙Å-5	Emp	kcal/mol	
			\mathbf{C}_{para}	NZn=180				
N2 Zn1	0.50	-0.107	0.094	0.013	7.79	0.06	-33.496	
Zn1 N3	0.51	-0.108	0.095	0.013	7.86	0.05	-33.878	
Zn1 N4	0.50	-0.107	0.094	0.013	7.79	0.06	-33.496	
N5 Zn1	0.51	-0.108	0.095	0.013	7.86	0.05	-33.878	
Zn1 N6	0.38	-0.072	0.065	0.006	5.71	0.04	-22.476	
	$C_{para}NZn=170.00$							
N2 Zn1	0.50	-0.107	0.094	0.013	7.79	0.06	-33.534	
Zn1 N3	0.50	-0.107	0.094	0.013	7.82	0.05	-33.669	
Zn1 N4	0.50	-0.107	0.094	0.013	7.79	0.06	-33.494	
N5 Zn1	0.51	-0.109	0.096	0.013	7.91	0.05	-34.181	
N6 Zn1	0.38	-0.070	0.064	0.006	5.61	0.04	-22.019	
			C _{para} NZ	Zn =165.00)			
N2 Zn1	0.50	-0.107	0.094	0.013	7.80	0.06	-33.544	
Zn1 N3	0.50	-0.107	0.094	0.013	7.81	0.05	-33.624	
Zn1 N4	0.50	-0.107	0.094	0.013	7.79	0.06	-33.536	
N5 Zn1	0.51	-0.109	0.096	0.014	7.94	0.05	-34.327	
N6 Zn1	0.37	-0.068	0.063	0.006	5.49	0.04	-21.448	
			C _{para} NZ	Zn= 160.00)			
Zn1 N2	0.50	-0.107	0.094	0.013	7.80	0.06	-33.585	
Zn1 N3	0.50	-0.107	0.094	0.013	7.80	0.05	-33.568	
N4 Zn1	0.50	-0.107	0.094	0.013	7.80	0.06	-33.579	
N5 Zn1	0.51	-0.110	0.096	0.014	7.97	0.05	-34.522	
N6 Zn1	0.36	-0.066	0.061	0.005	5.32	0.04	-20.667	
			C _{para} NZ	Zn =155.00)			
Zn1 N2	0.50	-0.107	0.094	0.013	7.81	0.06	-33.633	
Zn1 N3	0.50	-0.107	0.094	0.013	7.79	0.05	-33.564	
N4 Zn1	0.50	-0.107	0.094	0.013	7.81	0.06	-33.641	
N5 Zn1	0.51	-0.111	0.097	0.014	8.00	0.05	-34.717	
N6 Zn1	0.35	-0.063	0.058	0.005	5.10	0.05	-19.695	
			C _{para} N2	Zn =150.00)			
N2 Zn1	0.51	-0.107	0.094	0.013	7.82	0.06	-33.723	
N3 Zn1	0.50	-0.107	0.094	0.013	7.79	0.05	-33.583	
Zn1 N4	0.51	-0.107	0.094	0.013	7.82	0.06	-33.723	
Zn1 N5	0.52	-0.111	0.097	0.014	8.04	0.05	-34.932	
N6 Zn1	0.34	-0.059	0.054	0.004	4.83	0.05	-18.482	

	C _{para} NZn=145.00									
Zn1 N2	0.51	-0.108	0.095	0.013	7.84	0.06	-33.835			
Zn1 N3	0.50	-0.107	0.094	0.013	7.80	0.05	-33.670			
N4 Zn1	0.51	-0.108	0.095	0.013	7.84	0.06	-33.817			
N5 Zn1	0.52	-0.112	0.098	0.014	8.07	0.05	-35.117			
N6 Zn1	0.32	-0.055	0.051	0.004	4.51	0.05	-17.126			
			C _{para} N ²	Zn= 140.00	0					
Zn1 N2	0.51	-0.108	0.095	0.013	7.86	0.06	-33.957			
Zn1 N3	0.51	-0.108	0.094	0.013	7.82	0.05	-33.781			
N4 Zn1	0.51	-0.108	0.095	0.013	7.86	0.06	-33.969			
N5 Zn1	0.52	-0.113	0.098	0.014	8.10	0.05	-35.317			
N6 Zn1	0.30	-0.050	0.047	0.003	4.16	0.05	-15.662			
			C _{para} NZ	Zn =135.0	0					
N2 Zn1	0.51	-0.109	0.095	0.013	7.89	0.06	-34.125			
N3 Zn1	0.51	-0.108	0.095	0.013	7.85	0.05	-33.982			
Zn1 N4	0.51	-0.109	0.095	0.013	7.89	0.06	-34.133			
Zn1 N5	0.52	-0.113	0.099	0.014	8.13	0.05	-35.506			
N6 Zn1	0.28	-0.045	0.042	0.003	3.76	0.05	-14.050			
			C _{para} N7	Zn =130.0	0					
Zn1 N2	0.51	-0.109	0.096	0.014	7.92	0.06	-34.347			
Zn1 N3	0.51	-0.109	0.095	0.014	7.88	0.05	-34.195			
N4 Zn1	0.51	-0.109	0.096	0.014	7.92	0.06	-34.347			
N5 Zn1	0.53	-0.114	0.099	0.015	8.16	0.05	-35.739			
N6 Zn1	0.26	-0.039	0.037	0.002	3.32	0.05	-12.307			
$C_{para}NZn = 125.00$										
N2 Zn1	0.51	-0.110	0.096	0.014	7.96	0.06	-34.619			
N3 Zn1	0.51	-0.110	0.096	0.014	7.93	0.05	-34.514			
Zn1 N4	0.52	-0.110	0.096	0.014	7.96	0.06	-34.628			
Zn1 N5	0.53	-0.115	0.100	0.015	8.20	0.05	-35.991			
N6 Zn1	0.23	-0.033	0.031	0.002	2.82	0.05	-10.424			

Figure S1. Molecular structure of in **PyPorZn**²**C**₆**H**₅**CH**₃. Thermal ellipsoids are drawn at the 50% probability level.

Figure S2. Histogram of C_{para} -N_{Py}-Zn angle in zinc porphyrinates according CSD analysis.

Figure S3. Schematic representation of porphyrins in which the C_{para}–N–Zn angle significantly deviates from 180° (CSD refcodes BIBVUE, BABBEM, BURJEE). C_{para}–N–Zn angle is equal to 148.2° (a) ², 154.5° (b) ³ and 153.3° (c) ⁴.

Figure S4. The molecular graph of **TPPZn–py**. The hydrogen atoms of porphyrin and corresponding CP (3,-1) for C–H bonds as well as CP (3,+1) are omitted for clarity. The CP (3,-1) are shown by red spheres.

Figure S6. ¹H NMR spectrum of **PyPorNi** in CDCl₃.

Figure S7. UV-Vis spectra of **PyPor** and **PyPorNi** upon variation of the temperature.

REFERENCES

- 1 A. Bondi, J. Phys. Chem., 1964, 68, 441–451.
- 2 D. V Konarev, A. L. Litvinov, I. S. Neretin, N. V Drichko, Y. L. Slovokhotov, R. N. Lyubovskaya, J. A. K. Howard and D. S. Yufit, *Cryst. Growth Des.*, 2004, **4**, 643–646.
- 3 Y. Diskin-Posner, G. K. Patra and I. Goldberg, *Dalt. Trans.*, 2001, **2**, 2775–2782.
- 4 R. W. Seidel, R. Goddard, K. Föcker and I. M. Oppel, *CrystEngComm*, 2010, **12**, 387–394.