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Abstract

We address the mechanism design problem of an exchange setting suitable make-

take fees to attract liquidity on its platform. Using a principal-agent approach,

we provide the optimal compensation scheme of a market maker in quasi-explicit

form. This contract depends essentially on the market maker inventory trajectory

and on the volatility of the asset. We also provide the optimal quotes that should

be displayed by the market maker. The simplicity of our formulas allows us to

analyze in details the effects of optimal contracting with an exchange, compared

to a situation without contract. We show in particular that it improves liquidity

and reduces trading costs for investors. We extend our study to an oligopoly of

symmetric exchanges and we study the impact of such common agency policy on

the system.

Keywords: Make-take fees, market making, financial regulation, high-frequency trading,

principal-agent problem, stochastic control.

1 Introduction

Due to the fragmentation of financial markets, exchanges are nowadays in competition.

The traditional international exchanges are challenged by alternative trading venues, see
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[19]. Consequently, they have to find innovative ways to attract liquidity on their plat-

forms. One solution is to use a maker-taker fees system, that is a rule enabling them to

charge in an asymmetric way liquidity provision and liquidity consumption. The most

classical setting, used by many exchanges (such as Nasdaq, Euronext, BATS Chi-X...), is

of course to subsidize the former while taxing the latter. In practice, this means associat-

ing a fee rebate to executed limit orders and applying a transaction cost for market orders.

In the recent years, the topic of make-take fees has been quite controversial. Make-take

fees policies are seen as a major facilitating factor to the emergence of a new type of

market makers aiming at collecting fee rebates: the high frequency traders. As stated by

the Securities and Exchanges commission in [31]: “Highly automated exchange systems

and liquidity rebates have helped establish a business model for a new type of profes-

sional liquidity provider that is distinct from the more traditional exchange specialist and

over-the-counter market maker.” The concern with high frequency traders becoming the

new liquidity providers is two-fold. First, their presence implies that slower traders no

longer have access to the limit order book, or only in unfavorable situations when high

frequency traders do not wish to support liquidity. This leads to the second classical

criticism against high frequency market makers: they tend to leave the market in time of

stress, see [4, 24, 25, 28] for detailed investigations about high frequency market making

activity.

From an academic viewpoint, studies of make-take fees structures and their impact on

the welfare of the markets have been mostly empirical, or carried out in rather stylized

models. An interesting theory, suggested in [2] and developed in [6] is that make-take

fees have actually no impact on trading costs in the sense that the cum fee bid-ask spread

should not depend on the make-take fees policy. This result is consistent with the em-

pirical findings in [20, 22]. Nevertheless, it is clearly shown in these works that many

important trading parameters such as depths, volumes or price impact do depend on the

make-take fees structure, see also [14]. Furthermore, the idea of the neutrality of the

make-take fees schedule is also tempered in [12] where the authors show theoretically that

make-take fees may increase welfare of markets provided the tick size is not equal to zero,

see also [5]. More importantly, the results above are obtained in tractable but rather

simple discrete-time models that one may want to revisit to be closer to market reality.

In this work, our goal is to provide a quantitative and operational answer to the question

of relevant make-take fees. To do so, we take the position of an exchange (or of the regu-
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lator) aiming at attracting liquidity. The exchange is looking for the best make-take fees

policy to offer to market makers in order to maximize its utility. In other words, it wants

to design an optimal contract with the market marker to create an incentive to increase

liquidity. We solve the problem the exchange is facing and we do not consider the more

involved question of global social welfare. Nevertheless, we have in mind that increasing

the liquidity (what the exchange is aiming at) should be beneficial for the welfare of all

the agents, what is confirmed in our empirical results. This paper is to our knowledge

the first addressing the issue of make-take fees in a realistic continuous-time framework.

As a first step, we consider a single market maker in a non-fragmented market, such as

for example many fixed income markets which represent some of the most liquid assets in

the world. We next consider the case of multiple symmetric exchanges.

Incentive theory has emerged in the 1970s in economics to model how a financial agent can

delegate the management of an output process to another agent. Let us recall the formal-

ism of principal-agent problems from the seminal works of Mirrlees [26] and Holmström

[15]. A principal aims at contracting with an agent who provides efforts to manage an

output process impacting the wealth of the principal. The principal is not able to control

directly the output process since she cannot decide the efforts made by the agent. In our

case, the principal is the exchange, the agent is the market maker, the effort corresponds

to the quality of the liquidity provided by the market maker (essentially the size of the

bid-ask spread proposed by the market maker), the output process is the transactions

flow on the platform and the contract depends on the realized transactions flow. Several

economics papers have investigated this kind of problems by identifying it with a Stack-

elberg equilibrium between the two parties. More precisely, since the principal cannot

control the work of the agent, she anticipates his best response to a given compensation.

We follow the stream of literature initiated in [16]. Then in [30], the author recasts such

issue into a stochastic control problem which has been further developed using backward

stochastic differential equation theory in [8]. See also [9] for related literature.

This paper provides a quasi-explicit expression for the optimal contract between the ex-

change and the market maker, and for the market maker optimal quotes. The optimal

contract depends essentially on the market maker inventory trajectory and on the volatil-

ity of the market. These simple formulas enable us to analyze in details the effects for the

welfare of the market of optimal contracting with an exchange, compared to a situation

without contract as in [3, 13]. We show that such contracts lead to reduced spreads and

lower trading costs for investors. We also propose an extension of this work to an oligopoly
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of symmetric exchanges aiming et hiring a single market marker. We show in particular

that there exists a unique Markovian symmetric Nash equilibrium for the exchanges.

The paper is organized as follows. Our modeling approach is presented in Section 2. In

particular, we define the market maker’s as well as the exchange’s optimization framework.

In Section 3, we compute the best response of the market maker for a given contract.

Optimal contracts are designed in Section 4 where we solve the exchange’s problem. Then,

in Section 5, we assess the benefits for market quality of the presence of an exchange

contracting optimally with a market maker. In Section 6, we extend our study to an

oligopoly of symmetric exchanges. Finally, useful technical results are gathered in an

appendix together with the so-called first best case (see Appendix A.7) which provides

different solutions.

2 The model

Our starting point is the seminal work of Avellaneda & Stoikov [3]. Our objective is to

derive optimal make-take fees in order to monitor the behavior of a market maker on a

platform acting according to the optimal market making model of [3].

2.1 Contractible and observable variables

Let T > 0 be a final horizon time, Ωc the set of continuous functions from [0, T ] into R, Ωd

the set of piecewise constant càdlàg functions from [0, T ] into N, and Ω = Ωc× (Ωd)
2 with

corresponding Borel algebra F . The observable state is the canonical process (χt)t∈[0,T ] =

(St, N
a
t , N

b
t )t∈[0,T ] of the measurable space (Ω,F):

St(ω) := s(t), Na
t (ω) := na(t), N b

t (ω) := nb(t), for all t ∈ [0, T ], ω = (s, na, nb) ∈ Ω,

with canonical completed filtration F = (Ft)t∈[0,T ] = (F ct ⊗ (Fdt )⊗2)t∈[0,T ].

The trading activity is reduced to a single risky asset S with observable efficient price S

defined by:1

St := S0 + σWt, t ∈ [0, T ], (1)

for some Brownian motion W , initial price S0 > 0, and constant volatility σ > 0. The

market maker chooses processes denoted by δb and δa respectively so as to fix publicly

1In practice, the efficient price can be thought of as the mid-price of the asset, see [29, 11].
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available bid and ask offer prices:

P b
t := St − δbt and P a

t := St + δat , t ∈ [0, T ].

The arrival of bid and ask market orders is modeled by a counting process (N b, Na) with

unit jumps, so that no more than one market order can occur at each time. We introduce

the inventory process of the market maker Q:

Qt := N b
t −Na

t ∈ N ∩
[
− q̄, q̄

]
, t ∈ [0, T ],

where N b
0 = Na

0 = 0 and, as in [13], we impose a critical absolute inventory q̄ ∈ N above

which the market maker stops quoting on the ask or bid side.

Let c > 0 be the fee collected by the exchange, see Section 2.3 below. In order to

illustrate the impact of the posted prices on the transactions arrival process (N b, Na), the

corresponding intensity process depends on the departure of the transaction price from

the efficient price, i.e. c+ δit, i ∈ {b, a}, as follows:

λi,δt := λ(δit)1I{εiQt>−q̄}, i ∈ {b, a}, (εb, εa) = (−1, 1), with λ(x) := Ae−k
(x+c)
σ , (2)

for some fixed positive constants A and k, and with dependence on the volatility param-

eter σ so as to reproduce the stylized fact that the average number of trades per unit

of time is a decreasing function of the ratio between the spread and the volatility, see

[10, 21, 33].

Our canonical variables being S, Na and N b, the contracts are allowed to depend on the

trajectories of these quantities only: these are our three contractible variables. This is

actually very reasonable: the efficient price is a quantity any market participant is used

to, whether the chosen proxy for it is the midprice, the last traded price or some volume

weighted price. The processes Na and N b encode the arrivals of market orders and there-

fore actual transactions, which are clearly recorded on any exchange and accessible to

most participants. So the contracts will be designed on standard, unarguable and easily

obtained financial variables.

Note that the spreads δa and δb are here observable by market takers, but not contractible.

From the exchange viewpoint, it would not be reasonable to introduce the spread variable

in a contract. First, quotes are typically not recorded with the same degree of accuracy as

transactions since they are evolving on a much higher frequency, which can sometimes be of
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the order of the millisecond. Second, quoted prices do not in general lead to transactions

and it would be probably hard to justify taxing or subsidizing agents based on offer

prices having no tangible counterparts. Finally, a quote based contract would certainly

encourage high frequency traders to attempt exploiting possible flaws in the contract,

using for example a very high rate of cancellations of their orders, leading to possible

market disruptions, see [1, 24] for studies about high frequency traders behavior.

2.2 Admissible controls and market maker’s problem

The set of admissible controls A is the collection of all predictable processes δ = (δa, δb)

uniformly bounded by δ∞, some sufficiently large positive constant to be fixed later.

Controlling δ is equivalent to control the arrival intensity of market orders since it is a

deterministic function of the spread. Viewing the market maker optimization problem this

way, we see that the intensity plays the very same role as the drift in standard principal-

agent problems where the agent controls the drift of a diffusion process, this drift being

unobserved by the principal, see [30, 8]. A particular feature of our modelling is that

the intensity is observable (although non-contractible) because of its connexion with the

spread. However, the spread is in some sense an artificial variable here enabling us to fit

with market reality (the market maker has access in practice to the spread but not to the

intensity of market takers arrivals). Each control process δ induces

– the market maker profit and loss process:

PLδt := Xδ
t +QtSt, where Xδ

t :=

∫ t

0

P a
r dN

a
r −

∫ t

0

P b
r dN

b
r , t ∈ [0, T ], (3)

as the sum of the cash flow Xδ and the inventory risk2 QS,

– and a probability measure Pδ under which S is driven by (1), and

Ñ i,δ
t := N i

t −
∫ t

0

λi,δr dr, t ∈ [0, T ], i ∈ {b, a}, are martingales.

Then, Pδ is defined by the density dPδ
dP0

∣∣
FT

= LδT , induced by the Doléans-Dade exponential

2As in [3], for sake of simplicity, we assume that the market maker estimates his inventory risk using
the efficient price S.
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martingale dLδt = Lδt−
∑

i=b,a 1I{εiQt−>−q̄}
λ(δit)−A

A
dÑ i,0

t , i.e.3 again with (εb, εa) = (−1, 1),

Lδt := exp
∑
i=b,a

∫ t

0

1I{εiQr−>−q̄}

[
log
(λ(δir)

A

)
dN i

r − (λ(δir)− A)dr
]
, t ∈ [0, T ]. (4)

In particular, all probability measures Pδ are equivalent. We therefore use the notation

a.s for almost surely without ambiguity. We shall write Eδt for the conditional expectation

with respect to Ft with probability measure Pδ.
The exchange aims at encouraging the market maker to reduce his spread so as to enhance

market liquidity on the platform. This is achieved by setting the terms of an incentive con-

tract defined by an FT -measurable random variable ξ. In other words, the compensation

ξ may depend on the whole paths of the contractible variables Na, N b and S. Given this

additional revenue, the market maker’s objective is defined by the utility maximization

problem

VMM(ξ) := sup
δ∈A

JMM(δ, ξ), where JMM(δ, ξ) := Eδ
[
− e−γ(ξ+PLδT )

]
(5)

= Eδ
[
− e−γ(ξ+

∫ T
0 δat dN

a
t +δbtdN

b
t+QtdSt)

]
.

Here, γ > 0 is the absolute risk aversion parameter of the CARA market maker. For

each compensation ξ, we shall prove below that there exists a unique optimal response

δ̂(ξ) = (δ̂b(ξ), δ̂a(ξ)) ∈ A of the market marker, i.e. VMM(ξ) = JMM

(
δ̂(ξ), ξ

)
.

Remark 2.1. When there is no incentive payment ξ = 0, the utility maximization problem

(5) reduces to the Avellaneda & Stoikov [3, 13] optimal market making problem.

2.3 The exchange optimal contracting problem

The exchange receives a fixed fee c > 0 for each market order that occurs in the market4,

and then collects at time T the total revenue c(Na
T +N b

T )− ξ. The choice of the contract

ξ is dictated by the utility maximization problem

V E
0 := sup

ξ∈C
Eδ̂(ξ)

[
− e−η(c(Na

T+Nb
T )−ξ)

]
, (6)

3see e.g. Theorem III.3.11 in [18]; the uniform boundedness of δ guarantees that Lδ is a martingale,
see [32].

4In practice, some exchanges add to this fixed fee a component which is proportional to the traded
cash amount. Our analysis can be extended to more elaborated fee schedules. Our choice of a constant
fee is motivated by the induced simplicity which will be crucial to derive our quasi-explicit solution.
Furthermore, we will in fact see that when using the optimal contract, the exchange is somehow indifferent
to the value of c, see Section 4.2.3.
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where η > 0 is the exchange’s absolute risk aversion parameter, and the set of admissible

contracts C is the collection of all contracts satisfying

– the participation constraint VMM(ξ) ≥ R, where the reservation level R < 0 may be

chosen to be the utility level without contract,

– together with the integrability conditions:

sup
δ∈A

Eδ
[
eη
′ξ
]
<∞ and sup

δ∈A
Eδ
[
e−γ

′ξ
]
<∞, for some η′ > η, γ′ > γ. (7)

Since Na and N b are point processes with bounded intensities, and the inventory pro-

cess Q is bounded, it follows from an easy application of the Hölder inequality that the

expectations in both problems (5) and (6) are finite.

We assume throughout this paper that the participation level R is so that the set of

admissible contracts is non-empty:

C =
{
ξ, FT -measurable such that VMM(ξ) ≥ R and (7) is satisfied

}
6= ∅.

3 Solving the market maker’s problem

We start by solving the problem (5) of the market maker facing an arbitrary contract

ξ ∈ C proposed by the exchange.

3.1 Market maker’s optimal response

For (δ, z, q) ∈ [−δ∞, δ∞]2 × R3 × Z, with δ = (δa, δb) and z = (zS, za, zb), we define

h(δ, z, q) :=
∑
i=b,a

1− e−γ(zi+δi)

γ
λ(δi)1I{εiq>−q̄} and H(z, q) := sup

|δa|∨|δb|≤δ∞
h(δ, z, q).

with (εb, εa) = (−1, 1). For an arbitrary constant Y0 ∈ R and predictable processes

Z = (ZS, Za, Zb), with
∫ T

0

(
|ZS

t |2 + |H(Zt, Qt)|
)
dt <∞, we introduce the process

Y Y0,Z
t = Y0 +

∫ t

0

Za
r dN

a
r + Zb

rdN
b
r + ZS

r dSr +
(1

2
γσ2(ZS

r +Qr)
2 −H(Zr, Qr)

)
dr, (8)

and we denote by Z the collection of all such processes Z such that the first integrability

condition in (7) is satisfied with ξ = Y 0,Z
T and

sup
δ∈A

sup
t∈[0,T ]

Eδ[e−γ′Y
0,Z
t ] <∞, for some γ′ > γ. (9)
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Clearly, Z 6= ∅ as it contains all bounded predictable processes and

C ⊃ Ξ :=
{
Y Y0,Z
T : Y0 ∈ R, Z ∈ Z, and VMM(Y Y0,Z

T ) ≥ R
}
.

The next result shows that these sets are in fact equal, and identifies the market maker

utility value and the corresponding optimal response. To prove equality of these sets, we

are reduced to the problem of representing any contract ξ ∈ C as ξ = Y Y0,Z
T for some

(Y0, Z) ∈ R × Z, which is known in the literature as a problem of backward stochastic

differential equation. We refrain from using this terminology, as our analysis does not

require any result from this literature.

Theorem 3.1. (i) Any contract ξ ∈ C has a unique representation as ξ = Y Y0,Z
T , for some

(Y0, Z) ∈ R×Z. In particular, C = Ξ.

(ii) Under this representation, the market maker utility value is

VMM

(
ξ
)

= −e−γY0 , so that Ξ =
{
Y Y0,Z
T : Z ∈ Z, and Y0 ≥ Ŷ0

}
, Ŷ0 := −1

γ
log(−R),

with the following optimal bid-ask policy

δ̂it(ξ) = ∆(Zi
t), i ∈ {b, a}, where ∆(z) := (−δ∞) ∨

{
− z +

1

γ
log
(

1 +
σγ

k

)}
∧ δ∞. (10)

The proof of Part (i) is reported in Section A.4, and is obtained by using the dynamic

continuation utility process of the market maker, following the approach of Sannikov [30].

Proof of Theorem 3.1 (ii) Let ξ = Y Y0,Z
T with (Y0, Z) ∈ R × Z. We first prove that

JMM(δ, ξ) ≤ −e−γY0 for all δ ∈ A. Denote Y t := Y Y0,Z
t +

∑
i=a,b

∫ t
0
δitdN

i
t +QtdSt. Setting

hδ := h(δ, .), it follows from Itô’s formula that

de−γY t = γe−γY t−
[
− (Qt + ZS

t )dSt −
∑
i=b,a

1− e−γ(Zit+δ
i
t)

γ
dÑ i,δ

t +
(
H − hδt

)
(Zt, Qt)dt

]
,

implying that e−γY is a Pδ-local submartingale. By Condition (9), the uniform bound-

edness of the intensities of Na and N b and Hölder inequality, (e−γY t)t∈[0,T ] is uniformly

integrable. By Doob-Meyer decomposition theorem, we conclude that
∫ ·

0
γe−γY t−

(
−(Qt+

ZS
t )dSt −

∑
i=b,a

1−e−γ(Zit+δ
i
t)

γ
dÑ i,δ

t

)
, is a martingale. It follows that

JMM(δ, ξ) = Eδ
[
−e−γY T

]
= −e−γY0−Eδ

[ ∫ T

0

γe−γY t
(
H(Zt, Qt)−h(δt, Zt, Qt)

)
dt
]
≤ −e−γY0 .
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On the other hand, equality holds in the last inequality if and only if δ is chosen as the

maximizer of the Hamiltonian H (dt × dP0−a.e.), thus leading to the unique maximizer

δ̂(ξ) given by (10), which then induces JMM(δ̂(ξ), ξ) = −e−γY0 . This completes the proof

that VMM(ξ) = −e−γY0 with optimal response δ̂(ξ).

4 Designing the optimal contract

4.1 Risk-neutral exchange as a toy example.

To understand the shape of the optimal contract, we first study the case where the ex-

change is risk neutral, corresponding to the limit where η goes to 0 for which we can

derive the optimal compensation with explicit computations. In the present setting, we

set q = +∞, thus relaxing the boundedness restriction on the inventory. By Theorem

3.1, the problem of the exchange reduces to

V E
0 = sup

Y0≥Ŷ0

sup
Z∈Z

Eδ̂(Y
Y0,Z
T )

[
c(Na

T +N b
T )− Y Y0,Z

T

]
= sup

Z∈Z
Eδ̂(Y

Ŷ0,Z
T )

[
c(Na

T +N b
T )− Y Ŷ0,Z

T

]
,(11)

with δ̂it = ∆(Zi
t), t ∈ [0, T ], i ∈ {a, b}, and where the maximization over Y0 is achieved at

Ŷ0, due to the fact that the market maker optimal response δ̂(Y Y0,Z
T ), given by (10), does

not depend on Y0 so that the objective function is decreasing in Y0.

Theorem 4.1. Consider the risk neutral exchange case η ↘ 0, and assume δ∞ ≥ σ
k
−

σ
k+σγ

+ 1
γ

log(1 + σγ
k

)− c. Then the optimal contract for the exchange problem (11) is:

ξ̂ = Ŷ0 + c(Na
T +N b

T )−
∫ T

0

QrdSr −
σT

k + σγ
, (12)

with optimal market maker effort:

δ̂at (ξ̂) = δ̂bt (ξ̂) =
σ

k
− σ

k + σγ
+

1

γ
log(1 +

σγ

k
)− c.

Proof. By setting c̃ = c+ σ
k+σγ

, note that

Eδ̂(Y
Ŷ0,Z
T )

[
c
∑
i=b,a

N i
T−Y

Ŷ0,Z
T

]
= Eδ̂(Y

Ŷ0,Z
T )

[ ∫ T

0

∑
i=b,a

λ(δ̂it)(c̃−Zi
t)dt−Ŷ0−

∫ T

0

(1

2
γσ2(ZS

r +Qr)
2
)
dr
]
,

so that the optimizer in (11) are given by ZS,?
r = −Qr, Z

a,?
r = Zb,?

r = c̃− σ
k
.
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Note that the optimal contract given by (12) emphasizes a risk transfer between the payoff

of the market maker and that of the exchange through the term
∫ T

0
QrdSr.

4.2 Exponential risk averse exchange

By Theorem 3.1, and solving the maximization with respect to Y0 ≥ Ŷ0 as in the previous

subsection, the exchange problem (6) reduces to

V E
0 = eηŶ0 vE0 , where vE0 := sup

Z∈Z
Eδ̂(Y

Ŷ0,Z
T )

[
− e−η

(
c(Na

T+Nb
T )−Y 0,Z

T

)]
. (13)

4.2.1 The HJB equation for the reduced exchange problem

Our approach for the control problem vE0 of (13) is to derive a solution v of the correspond-

ing HJB equation, and to proceed by the standard verification argument in stochastic

control to prove that the proposed solution v coincides with the value function vE0 .

By the standard dynamic programming approach, the HJB equation for (13) is

∂tv(t, q)+HE

(
q, v(t, q), v(t, q+1), v(t, q−1)

)
= 0, q ∈ {−q̄, · · · , q̄}, t ∈ [0, T ), (14)

with boundary condition v
∣∣
t=T

= −1, with Hamiltonian HE : [−q̄, q̄]× (−∞, 0]3 → R:

HE(q, y, y+, y−) = H1
E(q, y) + 1I{q>−q̄}H

0
E(y, y−) + 1I{q<q̄}H

0
E(y, y+), (15)

and

H1
E(q, y) = sup

zs∈R
h1
E(q, y, zs), and h1

E(q, y, zs) =
ησ2

2
y
(
γ(zs + q)2 + ηz2

s

)
,

H0
E(y, y′) = sup

ζ∈R
h0
E(y, y′, ζ) and h0

E(y, y′, ζ) = λ
(
∆(ζ)

)[
y′eη(ζ−c) − y

(
1 + η

1− e−γ(ζ+∆(ζ))

γ

)]
.

By Lemma A.2 below, the maximizers ẑ = (ẑs, ẑa, ẑb) of HE are given by:

ẑs(t, q) = − γ
γ+η

q, ẑa(t, q) = ζ̂
(
v(t, q), v(t, q − 1)

)
, ẑb(t, q) = ζ̂

(
v(t, q), v(t, q + 1)

)
, (16)

with ζ̂(y, y′) = ζ0 +
1

η
log
( y
y′

)
, ζ0 = c+

1

η
log
(

1− σ2γη

(k + σγ)(k + ση)

)
.

Here, δ∞ is sufficiently large so that Condition (38) of Lemma A.2 is always met, namely

δ∞ ≥ C∞ +
1

η
sup
t∈[0,T ]

sup
q∈[−q̄,q̄−1]

∣∣∣∣log

(
v(t, q)

v(t, q + 1)

)∣∣∣∣ , (17)
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with C∞ given in Lemma A.2, and we shall check in our verification argument that our

candidate solution of the HJB equation will verify it. Using again the calculation reported

in Lemma A.2, we rewrite the HJB equation (14) as

∂tv(t, q)+
γη2σ2

2(γ + η)
q2v(t, q)−C0v(t, q)

[
1I{q>−q̄}

( v(t, q)

v(t, q − 1)

) k
ση+1I{q<q̄}

( v(t, q)

v(t, q + 1)

) k
ση

]
= 0,

(18)

with boundary condition v
∣∣
t=T

= −1, where the constant C0 is given by

C0 = C0(
σγ

k
,
ση

k
), with C0(α, β) := Aβ(1 + α)−

1
α

(
1− αβ

(1 + α)(1 + β)

)1+ 1
β
.

Inspired by [13], we now make the key observation that this equation can be reduced to

a linear equation by introducing u := (−v)−
k
ση . By direct substitution, we obtain the

following linear differential equation

u
∣∣
t=T

= 1, and ∂tu(t, q)−FC1,C′1
(q, u(t, q), u(t, q+1), u(t, q−1)) = 0, t < T, |q| ≤ q̄, (19)

Fm,m′(q, y, y
′, y′′) := mq2y −m′

(
y′1I{q<q̄} + y′′1I{q>−q̄}

)
, C1 :=

kγησ

2(γ + η)
, C ′1 :=

kC0

ση
.

This equation can be written in terms of the R2q̄+1−valued function u(t) =
(
u(t, q)

)
q∈{−q̄,...,q̄},

of the variable t only, as the linear ordinary differential equation

∂tu = −Bu, where B =


−C1q̄

2 C′
1

.
.
.

.
.
.

.
.
.

C′
1 −C1q

2 C′
1

.
.
.

.
.
.

.
.
.

C′
1 −C1q̄

2

← q-th line,

is a tri-diagonal matrix with lines labelled −q̄, . . . , q̄. Denote by bq the vector of R2q̄+1

with zeros everywhere except at the position q, i.e. bq,j = 1I{j=q} for j ∈ {−q̄, . . . , q̄}, and

1 =
∑q̄

q=−q̄ bq. Then, this ODE has a unique solution

u(t) = e(T−t)B1, so that u(t, q) = bq ·e(T−t)B1, and v(t, q) = −
(
bq ·e(T−t)B1

)−ση
k . (20)

In the next section, we shall prove that this solution v of the HJB equation (14) coincides

with the value function of the reduced exchange problem (13), with optimal controls ẑ(t, q)

given in (16), thus inducing the optimal contract Y Ŷ0,Ẑ
T with Ẑt = ẑ(t, Qt−).

12



Let us notice that we may provide a more explicit expression of the above function u:

u(t, q) =
∑
p≥0

[C ′1(T − t)]p

p!

∑
j≥0

[C ′1(T − t)]j

j!
e−C1(T−t)(q+j−p)2

1I{|q+j−p|≤q̄}, (21)

see Appendix A.3 for the more general case ofN symmetric exchanges in Nash equilibrium.

We conclude this section by an (yet one more) alternative representation of the function

u, which is convenient for the derivation of some useful properties.

Proposition 4.1. Let u and v be defined by (20). The function u can be represented as

u(t, q) = E
[
e
∫ T
t (−C1(Qt,qs )2+λs+λs)ds

]
,

where Qt,q
s = q +

∫ s
t
d(Nu − Nu), and (N,N) is a two-dimensional point process with

intensity (λs, λs) = C ′1(1I{Qs−<q̄}, 1I{Qs−>−q̄}). In particular, we have e−C1q̄2T ≤ u ≤ e2C′1T ,

and Condition (17) is verified whenever

δ∞ ≥ ∆∞ := C∞ +
σ

k
(2C ′1 + C1q̄

2)T. (22)

Proof. Notice that u is a smooth bounded function. Denote f(x) = −C1x
2 +C ′1(1I{x>−q̄}+

1I{x<q̄}), and Ms = e
∫ s
t f(Qt,qu )duu(s,Qt,q

s ), t ≤ s ≤ T . We now show that M is a martingale,

so that u(t, q) = Mt = E[MT ] = E
[
e−

∫ T
t f(Qt,qs )ds

]
, as u(T, .) = 1. To see that M is a

martingale, we compute by Itô’s formula that

dMs =
[
u(s,Qt,q

s )f(Qt,q
s ) + ∂tu(s,Qt,q

s )
]
ds

+C ′1
[
u(s,Qt,q

s− + 1)− u(s,Qt,q
s−)
]
dN s + C ′1

[
u(s,Qt,q

s− − 1)− u(s,Qt,q
s−)
]
dN s.

Since u is solution of (19), we get

dMs = C ′1
[
u(s,Qt,q

s− + 1)− u(s,Qt,q
s−)
]
dM s + C ′1

[
u(s,Qt,q

s− − 1)− u(s,Qt,q
s−)
]
dM s,

where (M,M) = (N −
∫ ·

0
λsds,N −

∫ ·
0
λsds) is a martingale. The martingale property of

M now follows from the boundedness of u as it can be verified from the expression (20).

Finally, the bound |Qt,q
s | ≤ q̄ induces directly the announced bounds on u, which in turn

imply Condition (17) when (22) is satisfied because v = −u−σηk .

13



4.2.2 Main result

We now verify that the function v derived in the previous section is the value function of

the exchange, with optimal feedback controls (ẑs, ẑa, ẑb) as given in (16), thus identifying

a unique optimal contract to be proposed by the exchange to the market maker.

Theorem 4.2. Assume that δ∞ ≥ ∆∞, with ∆∞ given by (22) and define u and v by

(20). Then the optimal contract for the problem of the exchange (6) is given by

ξ̂ = Ŷ0 +

∫ T

0

Ẑa
r dN

a
r + Ẑb

rdN
b
r + ẐS

r dSr +
(1

2
γσ2
(
ẐS
r +Qr

)2 −H
(
Ẑr, Qr

))
dr, (23)

with ẐS
r = ẑs(r,Qr−), Ẑa

r = ẑa(r,Qr−), and Ẑb
r = ẑb(r,Qr−) as defined in (16). The

market maker’s optimal effort is given by

δ̂at = δ̂at (ξ̂) = −Ẑa
t +

1

γ
log(1 +

σγ

k
), δ̂bt = δ̂bt (ξ̂) = −Ẑb

t +
1

γ
log(1 +

σγ

k
). (24)

Remark 4.1. Notice that, in our model the exchange observes the spread set by the

market maker. However, as explained above, the spread cannot be part of the contract.

Consequently, the second best exchange problem in Theorem 4.2 does not coincide with

the first best where the exchange could use the observe bid-ask policy δ in the contract

ξ, under the market maker participation constraint. The corresponding computations are

reported in Appendix A.7 below.

4.2.3 Discussions and interpretations

The processes Ẑa, Ẑb and ẐS defining the optimal contract have natural interpretations.

Based on Proposition 4.1, we can get the intuition that (at least for large inventories)

Ẑi = ξ0 +
1

η
log
( u(t, Qt−)

u(t, Qt− − εi)

)
∼

|q|→+∞
ξ0 +

εi
η

C1

k
Qt−, i ∈ {a, b}, (25)

recalling that (εb, εa) = (−1, 1). This is confirmed in our Figure 4 below at time t = 0

(since Ẑb and Ẑa are the opposite of the optimal bid and ask spreads respectively). This is

in fact shown for any time in the numerical simulations and asymptotic expansion in [13,

Section 4] and [3, Section 3.2] where same type of PDE as ours is considered. Thus, when

the inventory is highly positive, the exchange provides incentives to the market-maker so

that it attracts buy market orders and discourage him from more sell market orders, and

vice versa for a negative inventory. The integral
∫ T

0
ẐS
r dSr can be understood as a risk

sharing term. More precisely,
∫ t

0
QrdSr corresponds to the price driven component of the

14



inventory risk QtSt. Hence, the exchange supports the proportion γ
γ+η

of this risk so that

the market maker maintains reasonable quotes despite some inventory.

Notice that for a highly risk averse exchange, i.e. η ↗∞,∫ T

0

Ẑa
r dN

a
r + Ẑb

rdN
b
r ≈ c(Na

T +N b
T ), ẐS

r ≈ 0,

meaning that the exchange transfers to the market maker the total fee. This is the so-

called selling the firm effect, as the exchange delegates all benefit to the market maker.5

Until now, we have focused on the maker part of the make-take fees problem since we

have considered that the taker cost c is fixed. Nevertheless, our approach also enables

us to suggest the exchange a relevant value for c. Actually, we see that when acting

optimally, the exchange transfers the totality of the fixed taker fee c to the market maker.

It is therefore neutral to the value of c as its optimal utility function vE0 = v(0, Q0) is

independent of the taker cost, see (18). However, c plays an important role in the optimal

spread offered by the market maker given by

−2c+
σ

k
log
( u(t, Qt−)2

u(t, Qt− − 1)u(t, Qt− + 1)

)
− 2

η
log
(

1− σ2γη

(k + σγ)(k + ση)

)
+

2

γ
log(1+

σγ

k
).

Furthermore, from numerical computations6 or the asymptotic development (25), we re-

mark that u(t,q)2

u(t,q−1)u(t,q+1)
is close to unity for any t and q. Hence if for example the exchange

targets a spread close to one tick (see [10, 17] for details on optimal tick sizes and spreads),

it can be obtained by setting

c ≈ −1

2
Tick− 1

η
log
(

1− σ2γη

(k + σγ)(k + ση)

)
+

1

γ
log(1 +

σγ

k
).

For σγ/k small enough, this equation reduces to

c ≈ σ

k
− 1

2
Tick. (26)

This is a particularly simple formula for setting the taker constant fee c, as the parameters

σ and k can be easily estimated from market data. We see that the higher the volatility,

the larger the taker cost should be. The decrease in k is also natural: If k is large, the

liquidity vanishes rapidly when the spread becomes wide, meaning that market takers are

sensitive to extra costs relative to the efficient price. Therefore, the taker cost has to be

5We would like to thank an anonymous referee for suggesting this interpretation.
6See indeed Figure 2 by noting that u does not depend on the fee c.
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small if the exchange wants to maintain a reasonable market order flow.

5 Exchange impact on market quality

In this section, we compare our setting with the situation without incentive policy from an

exchange towards market making activities which corresponds to the problem of optimal

market making considered in [3, 13]. The results in [3] are taken as benchmark for our

investigation to emphasize the impact of the incentive policy on market quality. We will

refer to this case as the neutral exchange case.

Let us first recall the results in [3, 13]. The optimal controls of the market maker denoted

by δ̃a and δ̃b are given as a function of the inventory Qt by

δ̃it =
σ

k
log
( ũ(t, Qt−)

ũ(t, Qt− − εi)

)
+

1

γ
log(1 +

σγ

k
), i ∈ {b, a}, (εb, εa) = (−1, 1),

where ũ is the unique solution of the linear differential equation

ũ
∣∣
t=T

= 1 and ∂tũ(t, q)− F
C̃1,C̃′1

(q, ũ(t, q), ũ(t, q + 1), ũ(t, q − 1)) = 0, t < T, |q| ≤ q̄,

with C̃1 = σγk
2

and C̃ ′1 = A(1 + σγ
k

)−(1+σγ
k

). In our case, the optimal quotes δ̂a and δ̂b are

obtained from Theorem 4.2 and satisfy for i ∈ {b, a}, and (εb, εa) = (−1, 1):

δ̂it =
σ

k
log
( u(t, Qt−)

u(t, Qt− − εi)

)
+

1

γ
log(1 +

σγ

k
)− c− 1

η
log
(

1− σ2γη

(k + σγ)(k + ση)

)
.

where u is solution of the linear equation (19).

Numerical experiments show that u and ũ decrease quickly to zero when q becomes large,

inducing numerical instabilities in the computation of

v+(t, q) = log
(u(t, q + 1)

u(t, q)

)
, ṽ+(t, q) = log

( ũ(t, q + 1)

ũ(t, q)

)
, q ∈ {−q̄, · · · , q̄ − 1},

which are crucial in the expressions of optimal quotes. To circumvent this numerical

difficulty, we remark that v+ and ṽ+ are solution of the following integro-differential

equations

v+

∣∣
t=T

= 0 and ∂tv+(t, q) + FC1,C′1
(q, v+(t, q), v+(t, q + 1), v−(t, q + 1)) = 0, (27)

ṽ+

∣∣
t=T

= 0 and ∂tṽ+(t, q) + F
C̃1,C̃′1

(q, ṽ+(t, q), ṽ+(t, q + 1), ṽ+(t, q − 1)) = 0, (28)
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where, again with (εb, εa) = (−1, 1),

Fα,β(q, y, y+, y−) = α(2q + 1)− β
∑
i∈{a,b}

εie
εiv+(t,q−εi)1I{εiq<q̄−1} − εieεiv+(t,q).

We thus rather apply classical finite difference schemes to (27) and (28).

In the following numerical illustrations, in the spirit of [13, Section 6], we take T = 600s

for an asset with volatility σ = 0.3 Tick.s−1/2 (unless specified differently). Market orders

arrive according to the intensities (2) with A = 1.5s−1 and k = 0.3s−1/2. We assume that

the threshold inventory of the market maker is q̄ = 50 units and we set his risk aversion

parameter to γ = 0.01. The exchange is taken more risk averse with η = 1. Finally, we

assume that the taker cost c = 0.5 Tick7.

5.1 Impact of the exchange on the spread and market liquidity

We start by comparing the optimal spread δ̂a0 + δ̂b0 at time 0 obtained when contracting

optimally with the optimal spread δ̃a0 + δ̃b0 without contracting. The optimal spreads are

plotted in Figure 1 for different initial inventory values Q0 ∈ {−q̄, · · · , q̄}.

Figure 1: Comparison of optimal initial spreads with/without incentive policy from the exchange.

We observe in Figure 1 that the initial spread does not depend a lot on the initial inven-

tory (because the considered time interval [0, T ] is not too small) and that it is reduced

thanks to the optimal contract between the market maker and the exchange. This is not

surprising since in our case the exchange aims at increasing the market order flow by

proposing an incentive contract to the market maker inducing a spread reduction. Actu-

ally this phenomenon occurs over the whole trading period [0, T ]. To see this, we generate

7Remark that the taker cost is chosen according to Criteria (26). We expect the optimal spread to be
close to one tick. Note also that here the tick is just a unit and not a true market parameter.
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5000 paths of market scenarios and compute the average spread over [0, T ] for an initial

inventory Q0 = 0. The results are given in Figure 2.

Figure 2: Average spread on [0, T ] with 95% confidence interval, with/without incentive.

Since the spread is tighter during the trading period under an incentive policy from the

exchange, the arrival intensity of market orders is more important and hence the market

is more liquid as shown in Figure 3.

Figure 3: Average order flow on [0, T ] with 95% confidence interval, with/without incentive.

We now consider in Figure 4 the bid and ask sides separately. We see that when the

inventory is positive and very large, δ̂a and δ̃a are negative, meaning that the market

maker is ready to sell at prices lower than the efficient price in order to attract market

orders and reduce his inventory risk. On the contrary, if the inventory is negative and

very large, in both situations, its ask quotes are well above the efficient price in order to

repulse the arrival of buy market orders. However, since in our case the exchange remu-

nerates the market maker for each arrival of market order, we get that the ask spread with

contract δ̂a is smaller than δ̃a. A symmetric conclusion holds for the bid part of the spread.
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Figure 4: Optimal ask and bid spreads, with/without incentive policy.

We now turn to the impact of the volatility on the spread. The optimal contract obtained

in (23) induces an inventory risk sharing phenomenon through the term ẐS. Hence, when

the volatility increases, the spread difference between situations with/without incentive

policy becomes less important, see Figure 5 in which we consider the optimal initial spread

difference when the initial inventory is set to zero between both situations with/without

incentive policy from the exchange to the market maker for different values of the volatility.

Figure 5: Initial optimal spread difference between the situations with and without incentive.

5.2 Impact on the P&L of the exchange and the market maker

We assume that Q0 = 0. Recall that PLδ defined in (3) denotes the trading part of

the profit and loss (P&L) of the market maker for a given strategy δ. In our case, the

underlying total P&L at time t of a market maker acting optimally, denoted by PL?t , is:

PL?t = PLδ̂t + Y Ŷ0,Ẑ
t ,
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where Y Ŷ0,Ẑ
t corresponds to the quantity on the right hand side of (23) with T replaced

by t. We now compare this quantity to the benchmark PLδ̃t which corresponds to the

optimal profit and loss without intervention of the exchange.

To make PL?t and PLδ̃t comparable, we choose Ŷ0 in (23) so that the market maker gets

the same utility in both situations, that is Ŷ0 = k
σ

log(ũ(0, Q0)). Thus, the market maker

is indifferent between the situation with or without exchange intervention. We generate

5000 paths of market scenarios and compare the average of both P&L in Figure 6 with

and without incentive policy.

Figure 6: Average P&L of market maker with/without incentive, with 95% confidence interval.

Since Ŷ0 is set to obtain the same utility in both cases, the two average P&L are very

close at the end of the trading period. The variance of the P&L also seems to be the same

in both situations. The only difference from the market maker viewpoint here is that in

the case of a contract, the P&L is already made at time 0 thanks to the compensation of

the exchange and then fluctuates slightly. This is because he is earning the spread but

paying continuous “coupons”
(
H(Ẑt, Qt) − σ2γ

2
(ẐS

t + Qt)
2
)
dt from the contract. In the

case without exchange intervention, the market maker increases his P&L over the whole

trading period thanks to the spread.

We now compare the profit and loss of the exchange in the two considered cases. When it

applies an incentive policy towards the market maker, the P&L of the exchange is given

by c(Na
t +N b

t )−Y
Ŷ0,Ẑ
t . When the exchange is neutral, its P&L is simply c(Na

t +N b
t ). We

compare these two quantities in Figure 7.
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Figure 7: Average P&L of the exchange with/without incentive, with 95% confidence interval.

We see that the initial P&L of the contracting exchange is negative because of the initial

payment Ŷ0. However it finally exceeds, with a smaller standard deviation, the P&L in the

situation without incentive policy from the exchange. Hence the incentive policy of the

exchange proves to be successful. Both configurations are indeed equivalent for market

makers but the exchange obtains more revenues when contracting optimally. This is due

to the fact that the contract triggers more market orders.

Finally, we plot the aggregated average P&L of the market maker and the exchange

(independent of the choice of the initial payment). We observe that it is always greater

in the optimal contract case.

Figure 8: P&L of exchange and market maker with/without incentive, 95% confidence interval.

5.3 Impact of the incentive policy on the trading cost

We consider one single market taker. In the case without exchange, with the specified

parameters and under optimal reaction of the market maker, this investor buys on average

200 shares over [0, T ]. To make the comparison with the case with exchange intervention,
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we modify the parameter A appearing in the intensity (2) when simulating a market with

optimal contract. This new value is chosen so that the investor buys on average the same

number of assets (200) over the time period. This amounts to take A = 0.9s−1. We

confirm in Figure 9 that the average ask order flows agree in both situations.

Figure 9: Setting similar average ask order flows on [0, T ] by taking different intensity basis A
in the case with and in the case without incentive policy; 95% confidence interval.

Finally, Figure 10 compares the average cost of trading for the market taker Eδ
[ ∫ T

0
δat dN

a
t

]
,

with and without incentive, and shows that the reduced spreads lead to significantly

smaller trading costs for investors.

Figure 10: Average trading cost on [0, T ] with 95% confidence interval, with/without incentive.

6 Extension: symmetric exchanges competition

In this section we extend the previous study by considering a first step towards the

investigation of the case of several exchanges in competition.
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6.1 Symmetric exchanges in Nash equilibrium

We assume here that N identical exchanges display the quotes of one market maker and

that the trading flows are split equally between the exchanges. More precisely, each

time the market taker acts on the market, his trade of size one is split into N trades of

size 1/N distributed across all exchanges. This is equivalent to modify the market taker

fee received by each exchange from c to c/N . This situation is of course quite stylized

but understanding it is obviously a very important preliminary to the study of the case

of different exchanges with various market makers. Furthermore, as we will see below,

the situation considered here is already significantly more intricate than the case of one

exchange treated in the previous sections.

The market maker receives the aggregation of the compensation given by the N exchanges

denoted by ξ = ξ + ξ̃, where ξ and ξ̃ are repsectively the remuneration given by a

representative exchange and the aggregation of the N −1 others. Hence, ξ inherits all the

technical assumptions made previously on ξ (for only one exchange), since the problem

of the market maker is similar by considering ξ for his compensation. Consequently, the

market maker’s problem returns an optimal spread δ̂(ξ) so that Theorem 3.1 holds by

considering ξ. In view of the symmetry assumption made on the exchanges, any exchange

aims at solving

V E
0 (ξ̃) = sup

ξ∈C
Eδ̂(ξ+ξ̃)

[
− e−η( c

N
(Na

T+Nb
T )−ξ)

]
, (29)

where ξ̃ is fixed, and η > 0 is the common risk aversion parameter of the N exchanges.

Definition 6.1 (Nash equilibrium and symmetric Nash equilibrium). A N-tuple (ξe)1≤e≤N

is a Nash equilibrium if for any e ∈ {1, . . . , N} we have

V E
0 (ξe) = Eδ̂(

∑N
j=1 ξ

j

)
[
− e−η( c

N
(Na

T+Nb
T )−ξe)

]
.

A N-tuple of contracts (ξe)1≤e≤N is a symmetric Nash equilibrium if (ξe)1≤e≤N is a Nash

equilibrium such that ξ1 = · · · = ξN . We denote by SN :=
{
ξ0 : (ξ0, . . . , ξ0) ∈ CN

}
the

collection of all such symmetric Nash equilibria.

From Theorem 3.1, it follows that any symmetric Nash equilibrium ξ0 ∈ SN is induced
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by a pair (ỹ0, Z̃) ∈ [Ŷ0,+∞)×Z such that

ξ0 =
1

N
Y ỹ0,Z̃
T =

ỹ0

N
+

∫ T

0

1

N
Z̃rdχr +

γσ2

2N
(Z̃S

r +Qr)
2dr − 1

N

∑
i = a,b

H i(Z̃i
r, Qr)dr,

=
ỹ0

N
+

∫ T

0

ζ0
rdχr +

γσ2

2N
(NζS,0r +Qr)

2dr − 1

N

∑
i=a,b

H i(Nζ i,0r , Qr)dr, (30)

with ζ0 = Z̃
N

, and

H i(z, q) = λ(δ̂(z))
σ

k + σγ
1εiq<Q, with (εb, εa) = (−1, 1).

We now denote by ξ0,N−1 the (N − 1)-tuple of identical contracts ξ0 defined by (30), and

we set Ỹ0 := N−1
N
ỹ0. As ξ+ (N −1)ξ0 = Y Y0+Ỹ0,Z

T , by setting ζ := Z− (N −1)ζ0, for some

(Y0, Z) ∈ [Ŷ0,+∞)×Z the problem of each exchange reduces to

V E
0 (ξ0,N−1) = sup

Y0,ζ
Eδ̂(ζ+(N−1)ζ0)

[
− e

−η(
∫ T
0 (

∑
i=a,b

( c
N
−ζit)dN i

t−ζSt dSt)−Y0−
∫ T
0 G(ζt,ζ0

t ,Qt)−α0
tdt)
]
,

where Y0 ranges in [Ŷ0 − Ỹ0,+∞), ζ ∈ Z, and

G(ζ, ζ0, q) = 1
2
γσ2(ζS + (N − 1)ζS,0 + q)2 −

∑
i=a,b

H i(ζ i + (N − 1)ζ i,0, q),

α0
t = N−1

N

(
1
2
γσ2(NζS,0t +Qt)

2 −
∑
i=a,b

H i(Nζ i,0t , Qt)
)
.

The optimization over Y0 is immediately solved, leading to

V E
0 (ξ0,N−1) = sup

ζ∈Z
Eδ̂(ζ+(N−1)ζ0)

[
−e
−η(

∫ T
0 (

∑
i=a,b

( c
N
−ζit)dN i

t−ζSt dSt)−Y ?0 −
∫ T
0 G(ζt,ζ0

t ,Qt)−α0
tdt)
]
, (31)

with Y ?
0 = Ŷ0 − Ỹ0.

Definition 6.2 (Markovian Nash equilibrium). A symmetric Nash equilibrium ξ0 ∈ SN

is Markovian if the coefficients ζ0 appearing in (30) is given by ζ0
t = ζ0(t, Qt) for some

deterministic function ζ0.

Remark 6.1. Note that if ξ0 is a symmetric Nash equilibrium with decomposition (30),

we necessarily have ỹ0 = Ŷ0, ζ̂(ζ0) = ζ0, where ζ̂(ζ0) denotes an optimizer of (31). This

allows to characterize any symmetric Nash equilibrium if there exists at least one.
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6.2 The main result

Similarly to the one exchange problem studied previously, we introduce the HJB equation

v
∣∣
t=T

= −1 and ∂tv(t, q)− ηv(t, q)F̂ (t, q, v(t, q), v(t, q + 1), v(t, q − 1)) = 0, (32)

with

F̂ (t, q, y, y+, y−) = sup
ζS

F S(t, q, ζS) + sup
ζ
F 0(t, q, y, y+, ζ)1q<q + sup

ζ
F 0(t, q, y, y−, ζ)1q>−q,

and

F S(t, q, z) = −ĤS(q, ζS,0(q), z)− η

2
σ2|z|2,

F 0(t, q, y, y′, z) = −λ
(
δ̂(z + (N − 1)ζ̃0(y, y′))

)(y′
y

eη(z− c
N

)

η
− 1

η
− σ

k + σγ

)
−λ
(
δ̂(Nζ̃0(y, y′))

) (N − 1)σ

N(k + σγ)
,

ĤS(q, z̃, z) =
1

2
σ2γ
[
(z + (N − 1)z̃ + q)2 − N − 1

N
(Nz̃ + q)2

]
,

ζS,0(q) = − γ

η +Nγ
q, ζ̃0(y, y′) = ζ̂(y, y′) +

1−N
N

c.

Hence, by denoting ζ̂S, ζ̂N the optimizers of F S and F 0 respectively, we get

ζ̂S(q) = ζS,0(q), ζ̂N(y, y′) = ζ̃0(y, y′).

Consequently, the HJB equation (32) reduces to

∂tv(t, q)+
γη2σ2

2N(Nγ + η)
q2v(t, q)−ĈNv(t, q)

[
1I{q>−q̄}

( v(t, q)

v(t, q − 1)

)Nk
ση +1I{q<q̄}

( v(t, q)

v(t, q + 1)

)Nk
ση

]
= 0,

(33)

with boundary condition v
∣∣
t=T

= −1, where

ĈN = C0e
(N−1)k
ση

σγ + 1
N

(ση + k)

σγ + (ση + k)
.

We now set u = (−v)−
kN
ση . By direct substitution, we obtain the following linear equation

u
∣∣
t=T

= 1 and ∂tu(t, q)− FCN ,C′N (q, u(t, q), u(t, q + 1), u(t, q − 1)) = 0, t ∈ [0, T ), (34)
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with

CN =
kγησ

2(Nγ + η)
and C ′N = ĈN

kN

ση
.

Similarly to Section 4, we deduce that

v(t, q) = −
(
u(t, q)

)− ση
kN where u(t, q) = bq ·e(T−t)BN1,

and

BN =


−CN q̄

2 C′
N

.
.
.

.
.
.

.
.
.

C′
N −CN q

2 C′
N

. .
.

. .
.

. .
.

C′
N −CN q̄

2

← q-th line,

Direct calculations reported in Appendix A.3 provide an other form for the function u:

u(t, q) =
∑
p≥0

[C ′N(T − t)]p

p!

∑
j≥0

[C ′N(T − t)]j

j!
e−CN (T−t)(q+j−p)2

1I{|q+j−p|≤q̄}. (35)

The following result establishes the existence of a unique symmetric Nash equilibrium

which is moreover Markovian. The proof is postponed to Appendix A.6.

Theorem 6.1. There is a unique symmetric Nash equilibrium ξ0 ∈ SN defined by

ξ0 =
Ŷ0

N
+

∫ T

0

ζ0
rdχr +

γσ2

2N
(NζS,0r +Qr)

2dr − 1

N

∑
i=a,b

H i(Nζ i,0r , Qr)dr, (36)

where, for i ∈ {a, b} and (εb, εa) = (−1, 1),

ζS,0r = − γ

η +Nγ
Qr, ζ i,0r =

c

N
+

1

η

(
log
( v(r,Qr)

v(r,Qr − εi)
)

+ log
(
1− σ2γη

(ση + k)(σγ + k)

))
.

In particular, this unique symmetric Nash equilibrium is Markovian.

Remark 6.2. There exists infinitely many (non symmetric) Nash equilibria. For instance,

by the contract (ξe)e≤N defined by

ξe = Y j
0 +

∫ T

0

ζ0
rdχr +

γσ2

N
(NζS,0r +Qr)

2dr − 1

N

∑
i=a,b

H i(Nζ i,0r , Qr)dr,

is a (non symmetric) Nash equilibrium for any Y j
0 satisfying

∑N
j=1 Y

j
0 = Ŷ0.
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Remark 6.3. The symmetry of the problem allows us to find a natural candidate for

the equilibrium and by using a verification procedure (see the first step of the proof) we

prove that it is indeed a (symmetric) Nash equilibrium. This follows from the fact that

the integro-differential equation under consideration admits a smooth solution. If now one

wants to extend this study to an heterogeneous oligopoly of exchanges hiring one market

maker, the solution will be strongly linked to a system of fully coupled HJB equation has

explained in [23]. However, the existence of a smooth solution for such a system is not

clear.

6.3 Economic insights

Notice that the total compensationNξ0 obtained by the market maker in theN−symmetric

exchanges situation differs from the optimal contract ξ̂ of the one-exchange situation in

(36). Hence, our result is not trivial and worth of interest even in the simple symmetric

exchanges setting in symmetric Nash equilibrium.

Notice that we also have a similar representation of u as in Proposition 4.1:

u(t, q) = E
[
e
∫ T
t (−CN (Qt,qs )2+λs+λs)ds

]
, (37)

where Qt,q
s = q+

∫ s
t
d(Nu−Nu), and (N,N) is a two-dimensional point process with inten-

sity (λs, λs) = C ′N(1I{Qs−<q̄}, 1I{Qs−>−q̄}). By using the same arguments than those in Sec-

tion 4.2.3 (and based on the asymptotic expansion in [3, 13]) we note that Nζbt ∼ −CN
k
Qt

and Nζat ∼ CN
k
Qt. Again, when the inventory is highly positive, the exchanges provide

incentives to the market-maker to attract buy market orders and discourage additional

sell market orders, and vice versa for a negative inventory. As CN is decreasing with re-

spect to N , this effect is reduced when the number of platforms increases. Consequently,

from the market maker point of view, the observed spread is reduced when the number

of exchange grows.

Note now that when N becomes large, NζS,0r ∼ −Qr. In other words, for a large number

of platforms, the inventory risk is transferred to the oligopoly of exchanges.

A Appendix

A.1 Predictable representation

The following result is probably well-known, we report it for completeness as we could

not find a precise reference.
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Lemma A.1. Let (Ω,F ,P,F) be a filtered probability space where F = FW∨FN is the right

continuous completed filtration of a Brownian motion W and a d-dimensional integrable

point process N = (N1, · · · , Nd) with compensator A = (A1, · · · , Ad). Then, for any

F−martingale X there exists a predictable process Z = (ZW , Z1, · · · , Zd) such that

Xt = X0 +

∫ t

0

ZW
s dWs +

d∑
i=1

∫ t

0

Zi
s(dN

i
s − dAis).

Proof. For sake of simplicity, we take d = 1. Let P be a solution of the martingale problem

associated to Mt = Nt − At and Wt. By Theorem III.4.29 in [18], to prove Lemma A.1

we need to establish the uniqueness of P.

We denote by PW the law P conditional on W . We first show that M is still a martingale

under PW . To do so we consider Bs ∈ Fs and want to prove that

EPW [1IBs(Mt −Ms)
]

= 0,

for 0 ≤ s ≤ t ≤ T . Let C ∈ FWT . We aim at showing that

E
[
1CEPW [1IBs(Mt −Ms)

]]
= E

[
1IC1IBs(Mt −Ms)

]
= 0.

By the martingale representation theorem for Brownian martingales, we can write 1IC =

αs +
∫ T
s
φudWu, where αs = E[1IC |FWs ] and (φu)u≥0 is FW predictable process. Using the

martingale property of M , we obtain

E
[
αs1IBs(Mt −Ms)

]
= 0.

Then W and M being orthogonal martingales, we deduce

E
[ ∫ T

s

φudWu1IBs(Mt −Ms)
]

= 0,

Consequently, using Theorem III.1.21 in [18], PW is the unique probability measure such

that M is an F-martingale conditional on W . Finally, by integration, the uniqueness of

PW implies that of P.

A.2 Exchange Hamiltonian maximization

The following result follows from (tedious) direct calculations.
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Lemma A.2. For all v1, v2 < 0, define

ϕ(z) := Ae−k
∆(z)+c

σ

[
v1e

η(z−c) − v2

(η
γ

(
1− e−γ(z+∆(z))

)
+ 1
)]
, z ∈ R,

with ∆(z) := (−δ∞) ∨∆0(z) ∧ δ∞ and ∆0(z) := −z + log(1 + σγ
k

)
1
γ , for some parameter

δ∞ satisfying

δ∞ ≥ C∞ +
∣∣ log

(v2

v1

) 1
η ∣∣, with C∞ := c+ log

(1 + σγ
k

)
1
η

+ 1
γ(

1− σ2γη
(k+σγ)(k+ση)

) 1
η

. (38)

Then, ϕ has a maximum point z? given by:

z? = c+
1

η
log
( v2

v1

1− σ2γη
(k+σγ)(k+ση)

)
with ϕ(z?) = −Cv2

(v2

v1

) k
ση
,
∣∣∆0(z?)

∣∣ ≤ δ∞,

and C = Aση
k

(
1 + σγ

k

)− k
σγ
(
1− σ2γη

(k+σγ)(k+ση)

)1+ k
ση .

A.3 Justification of (21) and (35)

Denote by D and J the matrices defined by the entries Dq,r = q21q=r and Jq,r = 1Ir=q+1 +

1Ir=q+1, −q ≤ p, r ≤ q. Notice that the calculations reported in (21) and (35) reduce to:

U(q) := bq ·
∑
|`|≤q̄

eαJ−βD b`, |q| ≤ q̄, for −q ≤ q ≤ q,

We first compute that

eαJ−βD =
∑
k≥0

(αJ− βD)k

k!
=
∑
k≥0

1

k!

k∑
j=0

(
k

j

)
αj(−β)k−j`2(k−j)Jj

As Jj · b` =
∑j

p=0

(
j
p

)
b`−j+2p, and bq · bq′ = 1I{q=q′}, this provides

bq · eαJ−βDb` =
∑
k≥0

1

k!

k∑
j=0

(
k

j

)
αj(−β)k−j`2(k−j)

j∑
p=0

(
j

p

)
1I{`−j+2p=q}

=
∑
k≥0

k∑
j=0

j∑
p=0

αj(−β`2)k−j

p!(k − j)!(j − p)!
1I{`−j+2p=q}

=
∑
p≥0

∑
j≥p

αj

p!(j − p)!
e−β`

2

1I{`=q+j−2p} =
∑
p≥0

∑
j≥0

αj+p

p!j!
e−β`

2

1I{`=q+j−p},
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and we finally conclude that

U(q) =
∑
p≥0

∑
j≥0

αj+p

p!j!
e−β(q+j−p)2

1I{|q+j−p|≤q̄}, for |q| ≤ q̄.

A.4 Dynamic programming principle and representation

For all F-stopping time τ with values in [t, T ] and for any µ ∈ Aτ , we define8

JT (τ, µ) = Eµτ
[
−e−γ

∫ T
τ (µaudN

a
u+µbudN

b
u+QudSu)e−γξ

]
, and Jτ,T = (JT (τ, µ))µ∈Aτ ,

where Aτ denotes the restriction of A to controls on [τ, T ]. The continuation utility of

the market maker is defined for all F-stopping time τ by

Vτ = ess sup
µ∈Aτ

JT (τ, µ).

Lemma A.3. Let τ be an F-stopping time with values in [t, T ]. Then, there exists a

non-decreasing sequence (µn)n∈N in Aτ such that Vτ = lim
n→+∞

↑ JT (τ, µn).

Proof. For µ and µ′ inAτ , define µ̂ = µ1I{JT (τ,µ)≥JT (τ,µ′)}+µ
′1I{JT (τ,µ)<JT (τ,µ′)}. Then µ̂ ∈ Aτ

and by definition of µ̂, we have JT (τ, µ̂) ≥ max (JT (τ, µ), JT (τ, µ′)) . This shows that Jτ,T
is directly upwards, and the required result folows from [27, Proposition VI.I.I p121].

Lemma A.4. Let t ∈ [0, T ] and τ be an F-stopping time with values in [t, T ]. Then,

Vt = ess sup
δ∈A

Eδt
[
e−γ

∫ τ
t (δu·dNu+QudSu)Vτ

]
.

Proof. We follow the same argument as in [7, Proof of Proposition 6.2]. Denote Ṽt the

right hand side of the required equality. First, by the tower property,

Vt = ess sup
δ∈A

Eδt
[
e−γ

∫ τ
t (δu·dNu+QudSu)Eδτ

[
−e−γ(

∫ T
τ (δu·dNu+QudSu)+ξ)

] ]
.

For all δ ∈ A, the quotient
LδT
Lδτ

does not depend on the values of δ before time τ . Then,

Eδτ
[
−e−γ(

∫ T
τ (δu·dNu+QudSu)+ξ)

]
= E0

τ

[
−L

δ
T

Lδτ
e−γ(

∫ T
τ (δu·dNu+QudSu)+ξ)

]
≤ ess sup

µ∈Aτ
Eµτ
[
−e−γ(

∫ T
τ (µu·dNu+QudSu)+ξ)

]
= Vτ ,

8From (4), notice that for any δ ∈ A, the conditional expectation Eδτ depends only on the restriction
of δ on [τ, T ]. Hence Eµτ is defined without ambiguity for µ ∈ Aτ .
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which implies that Vt ≤ Ṽt.

We next prove the reverse inequality. Let δ ∈ A and µ ∈ Aτ . We define (δ ⊗τ µ)u =

δu10≤u<τ + µu1τ≤u≤T . Then δ ⊗τ µ ∈ A and

Vt ≥ Eδ⊗τµt

[
−e−γ

( ∫ τ
t (δu·dNu+QudSu)+

∫ T
τ (µu·dNu+QudSu)

)
e−γξ

]
= Eδ⊗τµt

[
e−γ

∫ τ
t (δu·dNu+QudSu)Eδ⊗τµτ

[
− e−γ

∫ T
τ (µu·dNu+QudSu)e−γξ

]]
. (39)

From Bayes’ Formula and by noticing that
Lδ⊗τµT

Lδ⊗τµτ
=

LµT
Lµτ

, we get

Eδ⊗τµτ

[
−e−γ

∫ T
τ (µu·dNu+QudSu)e−γξ

]
= E0

τ

[
Lδ⊗τµT

Lδ⊗τµτ

(
−e−γ

∫ T
τ (µu·dNu+QudSu)e−γξ

)]
= JT (τ, µ).

Thus, Inequality (39) becomes Vt ≥ Eδ⊗τµt

[
e−γ

∫ τ
t (δu·dNu+QudSu)JT (τ, µ)

]
, and by using

again Bayes’ Formula and by noticing that Lδ⊗τµτ

Lδ⊗τµt

= Lδτ
Lδt

, we have

Vt ≥
E0
t

[
Lδ⊗τµT e−γ

∫ τ
t (δu·dNu+QudSu)JT (τ, µ)

]
Lδ⊗τµt

= E0
t

[
E0
τ

[Lδ⊗τµT

Lδ⊗τµτ

Lδ⊗τµτ

Lδ⊗τµt

e−γ
∫ τ
t (δu·dNu+QudSu)JT (τ, µ)

]]

= E0
t

[
E0
τ

[Lδ⊗τµT

Lδ⊗τµτ

]Lδ⊗τµτ

Lδ⊗τµt

e−γ
∫ τ
t (δu·dNu+QudSu)JT (τ, µ)

]

= E0
t

[
Lδ⊗τµτ

Lδ⊗τµt

e−γ
∫ τ
t (δu·dNu+QudSu)JT (τ, µ)

]
= Eδt

[
e−γ

∫ τ
t (δu·dNu+QudSu)JT (τ, µ)

]
.

Since the previous inequality holds for all µ ∈ Aτ we deduce from monotone convergence

Theorem together with Lemma A.3 that there exists a sequence (µn)n∈N in Aτ such that

Vt ≥ lim
n→+∞

↑ Eδt
[
e−γ

∫ τ
t (δu·dNu+QudSu)JT (τ, µn)

]
= Eδt

[
e−γ

∫ τ
t (δu·dNu+QudSu) lim

n→+∞
↑ JT (τ, µn)

]
= Eδt

[
e−γ

∫ τ
t (δu·dNu+QudSu)Vτ

]
,

thus concluding the proof.

Proof of Theorem 3.1 (i) We proceed in several steps.

Step 1. For δ ∈ A, it follows from the dynamic programming principle of Lemma A.4 that
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the process U δ
t := Vt e

−γ
∫ t
0 (δaudN

a
u+δbudN

b
u+QudSu), t ∈ [0, T ], defines a Pδ-supermartingale9 for

all δ ∈ A. By standard analysis10, we may then consider it in its càdlàg version (by taking

right limits along rationals). By the Doob-Meyer decomposition, we write

U δ
t = M δ

t − A
δ,c
t − A

δ,d
t , (40)

where M δ is a Pδ-martingale and Aδ = Aδ,c + Aδ,d is an integrable non-decreasing pre-

dictable process such that Aδ,c0 = Aδ,d0 = 0, with pathwise continuous component Aδ,c, and

a piecewise constant predictable process Aδ,d. By the martingale representation theorem

under Pδ, see Lemma A.1, we have

M δ
t = V0 +

∫ t

0

Z̃δ
r .dχr −

∫ t

0

Z̃δ,a
r λ(δar )1I{Qr>−q̄}dr −

∫ t

0

Z̃δ,b
r λ(δbr)1I{Qr<q̄}dr, (41)

predictable process Z̃δ = (Z̃δ,S, Z̃δ,a, Z̃δ,b), where we recall that χ = (S,Na, N b).

Step 2. We show that V is a negative process. In fact, thanks to the uniform boundedness

of δ ∈ A, we show that

LδT
Lδt
≥ αt,T = e−

kδ∞
σ

(Na
T−N

a
t +Nb

T−N
b
t )−2Ae−

kc
σ (e

kδ∞
σ +1)(T−t) > 0, (42)

which implies that Vt ≤ E0

[
−αt,T e−γ

(
δ∞(Na

T−N
a
t +Nb

T−N
b
t )+

∫ T
t QudSu

)
e−γξ

]
< 0.

Step 3. Let Y be the process defined by Vt = −e−γYt for all t ∈ [0, T ]. As Aδ,d is

a predictable point process and the jumps of (Na, N b) are totally inaccessible stopping

times under P0, we have [Na, Aδ,d] = 0 and [N b, Aδ,d] = 0 a.s, see Proposition I.2.24 in

[18]. Using Itô’s formula, we obtain from (40) and (41) that

YT = ξ, and dYt = Za
t dN

a
t + Zb

t dN
b
t + ZS

t dSt − dIt − dÃdt ,

where Za, Zb, ZS, I, Ãd are independent of δ, as they may be expressed as Zi
tdN

i
t =

9Note that Eδ[UδT ] = JT (0, δ) > −∞ using Hölder inequality together with (7) and the uniform
boundedness of the intensities of Na and N b. Hence the process Uδ is integrable.

10In view of the class of contracts considered we know that the principal proposes a contract such that

there exists at least one optimal bid-ask spread for the agent denoted by δ̃. Hence, U δ̃t is a Pδ̃-martingale

and according to Doob regularization result, we know that we can find a càdlàg version of U δ̃t under Pδ̃.
Thus Vt admits a càdlàg version under Pδ̃, and since all the measure Pδ for δ ∈ A are equivalent, Uδt
admits a càdlàg version.
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d[Y,N i]t, i ∈ {a, b}, ZS
t σ

2dt = d〈Yt, St〉t, Ãd the predictable pure jumps of Y . More-

over, Itô’s Formula yields

Za
t = −1

γ
log(1 +

Z̃δ,a
t

U δ
t−

)− δat , Zb
t = −1

γ
log(1 +

Z̃δ,b
t

U δ
t−

)− δbt , ZS
t = − Z̃δ,b

t

γU δ
t−
−Qt−,

and

It =

∫ t

0

(
h(δr, Zr, Qr)dr −

1

γU δ
r

dAδ,cr

)
, Ãdt =

1

γ

∑
s≤t

log
(

1− ∆Aδ,dt
U δ
t−

)
,

with h(δ, z, q) = h(δ, z, q) − 1
2
γσ2(zs)2. In particular, the last relation between Ãd and

Aδ,d shows that ∆at =
−∆Aδ,dt
Uδt−

≥ 0 is independent of δ ∈ A; recall that U δ < 0.

In the subsequent steps, we argue that Z = (ZS, Za, Zb) ∈ Z, and

Aδ,dt = −
∑
s≤t

U δ
s−∆as = 0, (so that Ãdt = 0), and It =

∫ t

0

H(Zr, Qr)dr, t ∈ [0, T ],(43)

where H(z, q) = H(z, q)− 1
2
γσ2(zs)2.

Step 4. Since VT = −1, notice that

0 = sup
δ∈A

Eδ[U δ
T ]− V0 = sup

δ∈A
Eδ[U δ

T −M δ
T ]

= γ sup
δ∈A

E0
[
LδT

∫ T

0

U δ
r−
(
dIr − h(δr, Zr, Qr)dr +

dar
γ

)]
. (44)

Moreover, since the controls are uniformly bounded, we have

U δ
t ≤ −βt := Vte

−γδ∞(Na
t −Na

0 +Nb
t−Nb

0)−γ
∫ t
0 QrdSr < 0. (45)

Then, since Aδ,d ≥ 0, U δ ≤ 0, and dIt − h(δt, Zt, Qt) ≥ 0, it follows from (44) together

with the inequalities (42) and (45) that

0 ≤ sup
δ∈A

E0
[
α0,T

∫ T

0

−βr−
(
dIr − h(δr, Zr, Qr)dr +

dar
γ

)]
= −E0

[
α0,T

∫ T

0

βr−
(
dIr −H(Zr, Qr)dr +

dar
γ

)]
.

As α0,T

∫ T
0
βr−
(
dIr −H(Zr, Qr)dr) ≥ 0 and α0,T

∫ T
0
βrdar ≥ 0, this implies (43).
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Step 5. We now prove that Z ∈ Z by showing that

sup
δ∈A

sup
t∈[0,T ]

Eδ[e−γ(p+1)Yt ] <∞ for some p > 0. (46)

Using Hölder inequality together with Condition (7) and the boundedness of the intensities

of Na and N b, we have that supδ∈A Eδ[|U δ
T |p
′+1] <∞ for some p′ > 0. Hence

sup
δ∈A

sup
t∈[0,T ]

Eδ[|U δ
t |p
′+1] = sup

δ∈A
Eδ[|U δ

T |p
′+1] <∞,

because U δ is a negative P δ-supermartingale. This leads to (46) using Hölder inequality,

the uniform boundedness of the intensities ofNa andN b and that e−γY = U δeγ
∫ ·
0(δaudN

a
u+δbudN

b
u+QudSu).

Step 6. We finally prove uniqueness of the representation. Let (Y0, Z), (Y ′0 , Z
′) ∈ R × Z

be such that ξ = Y Y0,Z
T = Y

Y ′0 ,Z
′

T . By following the line of the verification argument in the

proof of Theorem 3.1 (ii), we obtain the equality Y Y0,Z
t = Y

Y ′0 ,Z
′

t by considering the value

of the continuation utility of the market maker

− exp(−γY Y0,Z
t ) = − exp(−γY Y ′0 ,Z

′

t ) = ess sup
δ∈A

Eδt [−e−γ(PLδT− PLδt+ξ)], t ∈ [0, T ].

This in turn implies that Zi
tdN

i
t = Z ′itdN

i
t = d[Y Y0,Z , N i]t, i ∈ {a, b}, and ZS

t σ
2dt =

Z ′St σ
2dt = d〈Y, S〉t, t ∈ [0, T ]. Hence (Y0, Z) = (Y ′0 , Z

′).

A.5 Proof of Theorem 4.2

The proof of the main result of Theorem 4.2 requires the following technical result. We

observe that this is the place where the first integrability condition in (7) is needed.

Lemma A.5. Let Z ∈ Z. There exists C > 0 and ε > 0 such that

sup
t∈[0,T ]

Eδ̂(Y
Ŷ0,Z
T )[|KZ

t |1+ε] ≤ C.

Proof. We use again the notation KZ
t := e−η(c(Na

t +Nb
t )−Y 0,Z

t ), t ∈ [0, T ], for all Z ∈ Z. Let

p > 1. By using Hölder’s inequality and the uniform boundedness of the intensities of Na

and N b, we deduce that there exists C ′ > 0 such that

Eδ̂(Y
Ŷ0,Z
T )[|KZ

t |p] ≤ C ′E0[(e−γY
0,Z
t )−

p′η
γ ]

p
p′ ,
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with any p′ > p. Thus,

Eδ̂(Y
Ŷ0,Z
T )[|KZ

t |p] ≤ C ′
(

1 + E0
[
(e−γY

0,Z
t )−

p′η
γ

])
= C ′

(
1 + E0

[(
− sup

δ∈A
Eδt
[
− e−γ(Y 0,Z

T +PLδT−PL
δ
t )
])− p′η

γ

])
.

By Jensen’s inequality and Hölder’s inequality, we deduce for any p′′ > p′ that

Eδ̂(Y
Ŷ0,Z
T )[|KZ

t |p] ≤ C ′
(

1 + E0

[
sup
δ∈A

Eδt [ep
′η(Y 0,Z

T +PLδT−PL
δ
t )]

])
≤ C ′

(
1 + E0

[
sup
δ∈A

Eδt [ep
′′ηY 0,Z

T ]
])

.

By using a dynamic programming principle, similarly to the proof of Lemma A.4 by

noticing that the family
(
J̃(µ, δ) = Eδτ [ep

′′ηY 0,Z
T ]
)
µ∈Aτ

is directly upwards, we get

Eδ̂(Y
Ŷ0,Z
T )[|KZ

t |p] ≤ C ′
(

1 + sup
δ∈A

Eδ
[
ep
′′ηY 0,Z

T

])
.

By setting ε = η′−η
3

, if we take p = 1 + ε, then p′ = p+ ε and p′′ = p′ + ε, we obtain

Eδ̂(Y
Ŷ0,Z
T )[|KZ

t |1+ε] ≤ C ′
(

1 + sup
δ∈A

Eδ
[
eη
′Y 0,Z
T

])
.

From the definition of Z (involving the first integrability condition in (7)), we get

Eδ̂(Y
Ŷ0,Z
T )[|KZ

t |1+ε] ≤ C, t ∈ [0, T ], with C = C ′
(

1 + sup
δ∈A

Eδ
[
eη
′Y 0,Z
T

])
< +∞.

Proof of Theorem 4.2 In order to prove the theorem, we verify that the function v

introduced in (20) coincides at (0, Q0) with the value function of the reduced exchange

problem (13), with maximum achieved at the optimal control Ẑ.

The function v is negative bounded and has bounded gradient. Moreover, since δ∞ ≥ ∆∞,

it follows that v is a solution of the HJB equation (14) of the exchange reduced problem,

see Lemma A.2. For Z ∈ Z, denote

KZ
t = e−η

(
c(Na

t −Na
0 +Nb

t−Nb
0)−Y 0,Z

t

)
, t ∈ [0, T ].

By direct application of Itô’s formula, and substitution of ∂tv from the HJB equation
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satisfied by v, we see that

d
[
v(t, Qt)K

Z
t

]
= KZ

t−

(
(hZt −Ht)dt+ ηv(t, Qt)Z

s
t dSt

+
∑
i=a,b

[
v(t, Qt− + ∆Qt)e

−η(c−Zit) − v(t, Qt−)
]
dÑ

δ̂(Y Ŷ0,Z),i
t

)
, (47)

where, using the notations of (15) and the subsequent equations,

Ht := HE

(
Qt, v(t, Qt), v(t, Qt + 1), v(t, Qt − 1)

)
,

hZt := h1
E

(
Qt, v(t, Qt), Z

S
t ) + 1I{Qt>−q̄}h

0
E

(
v(t, Qt), v(t, Qt − 1), Za

t

)
+1I{Qt<q̄}h

0
E

(
v(t, Qt), v(t, Qt + 1), Zb

t

)
.

Exploiting the fact that v is bounded and that KZ is uniformly integrable, see Lemma

A.5, we get that
(
v(t, Qt)K

Z
t

)
t∈[0,T ]

is a Pδ̂(Y
Ŷ0,Z
T )-supermartingale and by Doob-Meyer

decomposition theorem, the local martingale term in (47) is a true martingale. Hence

v(0, Q0) = Eδ̂(Y
Ŷ0,Z
T )

[
v(T,QT )KZ

T +

∫ T

0

KZ
t (Ht − hZt )dt

]
≥ Eδ̂(Y

Ŷ0,Z
T )

[
v(T,QT )KZ

T

]
= Eδ̂(Y

Ŷ0,Z
T )[−KZ

T ],

by the boundary condition v(T, .) = −1. By arbitrariness of Z ∈ Z, this provides the

inequality v(0, Q0) ≥ supZ∈Z Eδ̂(Y
Ŷ 0,Z
T )[−KZ

T ] = vE0 .

On the other hand, consider the maximizer Ẑ of the reduced exchange problem, induced

by the feedback controls ẑ in (16). As Ẑ is bounded, it follows that Ẑ ∈ Z. Moreover,

hẐ − H = 0, by definition, so that the last argument leads to the equality v(0, Q0) =

Eδ̂(Y
Ŷ0,Ẑ
T )

[
−KẐ

T

]
, instead of the inequality. This shows that v(0, Q0) = vE0 , the reduced

exchange problem of (13), with optimal control Ẑ. From Theorem 3.1, the corresponding

optimal market maker response of the market maker is given by (10) with ξ = Y Ŷ0,Ẑ
T .

Moreover, Condition (17) implies that | − Zi
t + 1

γ
log(1 + σk

k
)| ≤ δ∞, i = a, b. Hence the

optimal effort can be reduced to (24).

A.6 Proof of Theorem 6.1

The proof of Theorem 6.1 is divided in two steps. First we show that there exists a sym-

metric and Markovian Nash equilibrium for the problem (29). Then, we show that this

Nash equilibrium is unique among the class of symmetric Nash equilibria.
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Existence of a symmetric Markovian Nash equilibrium. We denote by v a smooth

solution to (32) or equivalently (33). Note that ζ0 as defined in Theorem 6.1 is a deter-

ministic function of t, Qt. Denote by Kζt the process defined for any ζ ∈ Z by

Kζt := eη
{ ∫ T

0

∑
i=a,b(ζ

i
t−

c
N

)dN i
t+ζ

S
t dSt+[ĤS(Qt,ζ

S,0
t ,ζSt )−

∑
i=a,b Ĥ

i(Qt,ζ
i,0
t ,ζit)

)
dt
}
,

with

Ĥ i(q, z̃, z) = H i(z + (N − 1)z̃, q)− N − 1

N
H i(Nz̃, q). (48)

Note that

dKζt = ηKζt ζSt dSt +
∑
i=a,b

Kζt−(eη(ζit−
c
N

) − 1)dN i
t

+ηKζ
t

(
ĤS(Qt, ζ

S,0
t , ζSt )−

∑
i=a,b

Ĥ i(Qt, ζ
i,0
t , ζ

i
t) +

η

2
σ2|ζSt |2

)
dt.

Applying Ito’s Formula, we obtain

d(v(t, Qt)Kζt ) = Kζt ∂tv(t, Qt)dt

+Kζt
(
ηv(t, Qt)

(
ĤS(Qt, ζ

S,0(Qt), ζ
S
t )−

∑
i=a,b

Ĥ i(Qt, ζ
i,0
t , ζ

i
t) +

η

2
σ2|ζSt |2)

)
dt

+ηKζt v(t, Qt)ζ
S
t dSt +Kζt−

∑
i=a,b

(v(t, Qt + ∆Qt)− v(t, Qt))e
η(ζit−

c
N

)dN i
t

= Kζt
(
∂tv(t, Qt) + ηv(t, Qt)F

ζ
t

)
dt+ ηKζt v(t, Qt)ζ

S
t dSt

+Kζt−
∑
i=a,b

(v(t, Qt + ∆Qt)− v(t, Qt))e
η(ζit−

c
N

)dÑ i
t ,

where

F ζ
t = F S(t, Qt, ζ

S
t ) + F 0(t, Qt, v(t, Qt), v(t, Qt + 1), ζbt )1Qt<Q

+F 0(t, Qt, v(t, Qt), v(t, Qt − 1), ζat )1Qt>−Q.

Since v satisfies HJB equation (32), we deduce that Eδ̂(ζ+(N−1)ζ0)[−KζT ] ≤ v(0, Q0), with

equality for ζS = ζS,0 and ζ i = ζ i,0.

Uniqueness among the set of general symmetric Nash equilibria. We now prove

that if there exists a symmetric Nash equilibrium, it is unique and given by the Markovian

equilibrium ξ0 defined by (36). Let ξ0 characterized by (30) for general ζ0. We consider

the dynamic value function of any exchange given ξ0 fixed by the other, denoted by Vt(ξ
0)
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and defined in view of Remark 6.1 by

Vt(ξ
0) = eηŶ0ess sup

ζ∈Z
Eδ̂(ζ+(N−1)ζ0)
t

[
− e

−η
( ∫ T

t

∑
i=a,b

( c
N
−ζir)dN i

r−
∫ T
t ζSr dSr−

∫ T
t ĤS

r (ζSr )−
∑
i=a,b

Ĥi
r(ζ

i
r)dr
)]
,

with ĤS
r (z) = ĤS

r (Qr, ζ
S,0
r , z) and Ĥ i

r(z) = Ĥ i
r(Qr, ζ

i,0
r , z). By using a DPP similarly

to A.4, we prove that (Vt(ξ
0)Kζt )t∈[0,T ] is a Pζ+(N−1)ζ0

-super martingale. The martingale

condition thus provides the optimal ζ played by the representative exchange given that

the others choose ζ0. By using a Doob-Meyer decomposition, the martingale property

leads to the solution of the following BSDE

dRt = US
t dSt +

∑
i=a,b

U i
tdÑ

i
t − Ft(Ut, Qt)dt, RT = 0 (49)

with

Ft(u, q) := sup
ζS

(
− ĤS

t (ζS)− σ2η

2
|ζS − uS|2)

)
+
∑
i=a,b

sup
ζi

(
Ĥ i
t(ζ

i)− λi,ζt
(
ui +

1− e−η(ui−ζi+ c
N

)

η

))
,

with λi,ζt = λ(δ̂(ζ i + (N − 1)ζ i,0)).We directly derive the maximizers

ζS,?t = −γ(N − 1)

η + γ
ζS,0t −

γ

η + γ
Qt −

η

η + γ
US
t ,

ζ i,?t = U i
t +

c

N
+

1

η
log
( k(k + σ(γ − η))

(k + ση)(k + σγ)
+

U i
tkη

k + ση

)
.

Since ζ0 is assumed to be a symmetric Nash equilibrium, we obtain from Definition 6.1

that ζS,0t and ζ i,0t are necessarily uniquely determined as function of Qt and Ut by

ζS,0t = − γ

η +Nγ
Qt −

η

η +Nγ
US
t ,

and

ζ i,0t = U i
t +

c

N
+

1

η
log
( k(k + σ(γ − η))

(k + ση)(k + σγ)
+

U i
tkη

k + ση

)
.

Hence, we note that the BSDE (49) is Markovian. The integro-partial differential equation

associated with this BSDE remains to solve (32) for which we know that there exists a

continuous solution given by v(t, q). We thus deduce that if there is a symmetric Nash
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equilibrium, it is Markovian in the sense of Definition 6.2 and the first step of the proof

shows that it is unique.

A.7 First best exchange problem

In this section, we analyze the first best problem of the exchange. In this setting the

exchange optimally chooses the contract ξ and the optimal bid-ask posting policy of the

market maker under her participation constraint. Introducing a Lagrange multiplier λ > 0

to penalize for this constraint, we reduced the first best exchange value function to the

unconstrained problem:

V FB
0 = inf

λ>0
sup

ξ∈C,δ∈A
EPδ[− e−η(c(Na

T−N
b
T )−ξ) − λe−γ(ξ+XT+QTST ) − λR

]
,

with C =
{
ξ, FT -measurable such that (7) is satisfied

}
.

We first compute the supremum on ξ by fixing λ, δ. The first order condition in ξ is

e−η(c(Na
T−N

b
T )−ξ?λ) = λγ

η
e−γ(ξ?λ+XT+QTST ), implying

ξ?λ =
1

η + γ

(
log(

λγ

η
)− γ(XT +QTST ) + ηc(Na

T +N b
T )
)
.

Substituting this expression, we see that

V FB
0 = inf

λ>0
sup
δ∈A

EPδ[− λη + γ

η
e−γ(ξ?λ+XT+QTST ) − λR

]
= inf

λ>0
sup
δ∈A

EPδ[− λη + γ

η

( η
λγ

) γ
η+γ e−

γη
γ+η

(XT+QTST+c(Na
T+Nb

T )) − λR
]

= inf
λ>0

λ
[η + γ

η

( η
λγ

) γ
η+γ Ṽ0 −R

]
, with Ṽ0 = sup

δ∈A
EPδ[− e− γη

γ+η
(XT+QTST+c(Na

T+Nb
T ))
]
.

As Ṽ0 is independent of λ, we obtain the optimal Lagrange multiplier λ? = η
γ

(
Ṽ0

R

)1+ η
γ
,

and we deduce the optimal first best contract:

ξ? = ξ?λ∗ =
1

η + γ

(
log(

λ?γ

η
)− γ(XT +QTST ) + ηc(Na

T +N b
T )
)
.

We finally solve the problem Ṽ0. Note that by setting δ̃ := δ + c in view of the definition

of Pδ given by (4) together with (2) we get

Ṽ0 = sup
δ̃∈Ã

EPδ̃−c[− e−Γ(XT+QTST )
]
, with Γ =

γη

γ + η
,
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and where Ã is defined similarly to A with bound δ∞ + c. We are then reduced to the

framework of [3, 13] so that the optimal bid-ask spreads are given by

δ̃it = −c+
1

Γ
log(1 +

σΓ

k
) +

σ

k
log
( ũFB(t, Qt−)

ũFB(t, Qt− + εi)

)
, i ∈ {b, a}, (εa, εb) = (−1, 1).

where ũFB is the unique solution of the linear differential equation

ũFB
∣∣
t=T

= 1, ∂tũ
FB(t, q)− F

CFB1 ,C̃1
FB(q, ũFB(t, q), ũFB(t, q + 1), ũFB(t, q − 1)) = 0, (50)

with constants CFB
1 = σΓk

2
and C̃1

FB
= A

(
1 + σΓ

k

)−(1+σΓ
k

)
, and so that

vFB(0, 0) = Ṽ0

FB
, with ũFB = (−ṽFB)−

k
ση .

Since the solution of PDE (50) is different from the solution of (19), we deduce that

the value function of the exchange in the first best case does not coincide with his value

function in the second best model.
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