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Abstract

In this paper, a variational mesh h-adaption approach is presented for strongly coupled
thermo-mechanical problems. The mesh is adapted by local subdivision controlled by an en-
ergy criterion. Thermal and thermo-mechanical problems are of interest here. In particular,
steady and transient purely thermal problems, transient strongly coupled thermo-elasticity and
thermo-plasticity problems are investigated. Different test cases are performed to test the ro-
bustness of the algorithm for the problems listed above. Since the algorithm is based on a set
of tolerance parameters, parametric analyses and a study of their respective influence on the
mesh adaption is carried out. This detailed analysis is performed on uni-dimensional problems,
and a final example is provided in two dimensions.

Keywords mesh adaption, variational approach, thermo-mechanics, nonlinear coupled prob-
lems, multi-physics

1 Introduction
In a number of transient problems (purely thermal, mechanical or thermo-mechanical), zones of
high gradients of fields of interest evolve with time and loading. It is therefore interesting to
use a dynamical mesh adaption algorithm to capture the solution in zones of high gradients in
order to maintain the required precision. Many methods of mesh adaption have been proposed
in the literature based on error-estimation. In these methods, the strategy is to adapt the mesh
to minimize an error estimate, typically an upper bound, among all meshes of fixed size; or by
recursive application of local refinement steps (Verfürth 1996) (Ainsworth and Oden 2000). But
these methods have certain limitations. Rigorous estimates can be derived for linear constitutive
models (for example elasticity), but it becomes more complex when non-linear constitutive models
are used. Moreover, admissible fields need to be reconstructed (Ladeveze, Pelle, and Rougeot
1991)(Zienkiewicz and Zhu 1987). In addition, standard error bounds require a certain regularity
of the solution for their validity (Ciarlet 1988). Therefore, it can be difficult and costly to use this
approach for complex problems involving non-linear constitutive models and/or large deformation.
In addition, methods based on global remeshing of the domain of interest require to transfer internal
variables between meshes, which can lead to artificial diffusion of the latter unless specific methods
are used (Barthold, Schmidt, and Stein 1998)(Brancherie, Villon, and Ibrahimbegovic 2008).

Variational formulations allow us to express finite element problems as problems of minimization
(or maximization) of an energy-like potential. This holds true for non-linear problems as well
(Dacorogna 1989). In some cases, the energy functional is evident, whereas, in some cases it
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needs careful formulation. For instance, in inelastic problems and dynamical problems, minimum
principles can be obtained by careful time discretization (Radovitzky and Ortiz 1999)(Ortiz and
Stainier 1999)(Yang, Stainier, and Ortiz 2006)(Ortiz and Repetto 1999). In these cases, the energy-
like functional is incremental and incorporates the free energy, inertia and kinetics of material.

An alternative approach of mesh adaption for purely mechanical problems was recently proposed
(Mosler and Ortiz 2007)(Mosler and Ortiz 2009), based on the variational approach of (Ortiz and
Stainier 1999). This technique uses an error indicator rather than an error estimator. In a varia-
tional approach, an energy-like potential is to be minimized (or maximized), and the gain in this
scalar value associated to a given mesh adaption indicates the level of approximation, following the
minimum (or maximum) criterion. No error estimates are then used at any stage of the algorithm.
It allows mesh adaption in presence of large deformations and non-linear constitutive behavior. In
addition, it was shown in (Mosler and Ortiz 2007) that variational h-adaption could be combined
with variational r-adaption, at least for hyperelastic behavior. Indeed, r-adaption would involve
remapping in the presence of internal variables, and was not considered by these authors for dis-
sipative behaviors. Recently, hp−adaptive energy minimisation has also been treated in (Houston
and Wihler 2016) for linear problems, the h− part of the adaptive process being close to former
ones (Mosler and Ortiz 2007)(Mosler and Ortiz 2009). In these, the authors addressed isothermal,
steady state mechanical problems. The extension of the algorithm to thermo-mechanical problems
raises some additional difficulties, which are addressed in the present work.

In this work, an h-adaption algorithm for problems in multi-physics is developed. The variational
energy-like potential value is used to construct an error indicator and the variational principle
itself drives mesh refinement and coarsening. Similar to (Mosler and Ortiz 2007), the algorithm
presented is also based on a variational approach (Ortiz and Stainier 1999) but with an extended
functional that admits a saddle point (Yang, Stainier, and Ortiz 2006; Stainier 2013). This algorithm
now accounts for heat conduction, transient thermal and thermo-mechanical coupling effects. For
problems in multiphysics, the different physics have different temporal and spatial scales. Different
meshes are used for each physics in order to account for its own spatial scale, these multiple
meshes are adapted sequentially, the solution scheme relying on staggered algorithms (Farhat,
Park, and Y. 1991)(Armero and Simo 1992). This permits to accurately capture the different
spatial scales associated with each physics while maintaining the cost effectiveness of the approach.
For constitutive behaviors involving internal variables, these are stored at integration points of each
mesh, and no transfer (remapping) is necessary. Transfers between meshes only involve interpolation
of external fields (displacement and temperature in this case). Though this paper focuses on 1-D
problems in order to better illustrate and analyze the method, this algorithm can easily be extended
to 2-D and 3-D problems using different subdivision schemes such as longest edge propagation path
(LEPP) bisection algorithm of Rivara (Rivara 1991)(Rivara and Levin 1992)(Bänsch 1991)(Rivara
and Inostroza 1997)(Rivara 1997). In order to demonstrate this, first results from our ongoing work
in 2-D is shown on a transient thermal test case. The edge bisection technique is used for refinement
and coarsening the mesh. It enables to keep the same mesh topology so that a simple interpolation
can be used between data located at integration points of the two meshes, avoiding a costly and
diffusive projection of fields.

The structure of the article is as follows. In the second section, the variational formulation which
is the base for our mesh adaption strategies is first presented. Then the mesh adaption algorithm is
introduced. For the sake of clarity, the algorithm is first explained for steady state (thermal) prob-
lems followed by transient (thermal) problems and finally for strongly coupled (thermo-mechanical)
problems. In the third section, studies on different test cases are presented. For each test case, cost
and parametric analyses of the variational mesh adaption algorithm are carried out and comparison
is made with respect to a uniform refinement mesh technique. At the end of this section, first results
of a 2-D test case are presented to emphasize the extendability of the presented approach to 2D
(and 3D) problems.
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2 Formulations and methods
In this section, we recall the outlines of the variational formulation of coupled thermo-mechanical
problems initially proposed in (Yang, Stainier, and Ortiz 2006) (see also (Stainier 2013)). The
presentation is specialized to the 1D case for simplicity, but the framework is actually very general,
and is not limited to this case.

2.1 Steady state thermal problem
Assuming homogeneous properties, the local uni-dimensional thermal equilibrium reads

k
d2T

dx2
+ r = 0 ∀x ∈]0, L[, (1)

where k is the thermal conductivity, r is some external heat source and T is the temperature field.
In addition, let us consider the Dirichlet boundary conditions:

T (x = 0) = T0

T (x = L) = T1

(2)

This can be reformulated as a variational problem. The solution of the steady thermal problem is
then found by minimizing the following convex potential:

φ(T (x)) =
1

2

∫ L

0

k

(
dT

dx

)2

dx−
∫ L

0

rTdx (3)

Indeed, the first variation of equation (3) yields

< DΦ, δT >=

∫ L

0

k
dT

dx

d(δT )

dx
dx−

∫ L

0

rδTdx = 0 ∀δT : δT (0) = δT (L) = 0, (4)

which is the weak form of equation (1). Since Φ is convex, any approximated, discretized temper-
ature field Th will lead to the following inequality:

Φ(Th) ≥ Φ(Tanalytical) (5)

The variational mesh adaption algorithm presented here exploits directly this property plus the fact
that, as a scalar energy, Φ is the sum of all the elementary contributions Φ(Th) =

∑
e Φe(T

e
h) in a

finite element discretisation framework. Indeed, the latter property allows us to define local patches
of elements, refine them to decrease their values of Φe, then add them to those of other patches.
One local patch of elements may be isolated of the rest of the mesh by fixing the known temperature
field on its boundary during the refinement procedure. Assuming a 1D thermal problem and patch
made of one linear element, the mesh refinement procedure consists first in fixing the temperature at
its end nodes, and in adding an additional node at the middle of this element. The procedure then
amounts to minimize the value of energy-like potential Φe over the patch. If the local improvement
in the potential is considered as significant, the node is added to the global mesh. Otherwise, the
mesh (in the local patch) is kept unchanged. This procedure is shown in figure 1. After looping
over all the elements, a new global mesh is defined. However, since the boundary temperature of all
the patches has been fixed for the refinement procedure based on the previous known temperature
field, a global thermal problem needs to be solved on the refined mesh. This defines an iterative
refinement procedure until the required precision is obtained.
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Figure 1: Mesh adaption algorithm on 1D problem.

Thus, a given local patch may be refined or derefined, depending on the energy difference asso-
ciated with mesh subdivision, the energy being itself related to the local regularity of the solution.
Two tolerance parameters Tolr and Told associated with the refinement and derefinement bounds
respectively are then introduced in the variational mesh adaption algorithm. A third tolerance
parameter Tol0 enables to stop the overall iterative procedure of adapted meshes. In one iteration
of the procedure, two successive loops on patches are carried out in the sequence for the refinement
and derefinement, followed by a new solution on the new mesh.

1: We begin with an arbitrary coarse mesh and solve our problem on that mesh. Get energy-
like potential φG1

.
2: while φG2

−φG1

φG1
≤ Tol0 do

3: φG1
= φG2

4: Division of our full geometry Ω into different patches Ωi.
5: for Ωi = First Patch to Ωi = Last Patch do
6: Refine the current patch locally and solve a local problem on this small patch with

the temperature field on the boundary of the patch imposed (given by the complete
solution we calculated in earlier iteration).

7: Calculate the local energy-like potential φL2
.

8: if φL2
−φL1

φL1
< Tolr then

9: Add patch to list of unrefined patches.
10: else
11: Refine the patch in global mesh.
12: Add the patch to the set of refined patches.
13: end if
14: end for
15: for first unrefined patch to last unrefined patch do
16: Locally derefine the mesh on the patch or locally merge the patch with adjacent unre-

fined patch.
17: Calculate the values of fields on deleted nodes by interpolation.
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18: Calculate local values of energy-like potentials with interpolated values φL2
and cal-

culated values φL1
.

19: if φL2
−φL1

φL1
< Told then

20: Derefine the patch in the global mesh (or merge two unrefined patches in global
mesh).

21: end if
22: end for
23: Solve the problem again on the new mesh thus obtained and calculate φG2 .
24: end while

2.2 Transient thermal problem
Transient thermal problems are governed by the heat equation, written in 1D as

c
∂T

∂t
+

∂

∂x

(
−k∂T

∂x

)
= r ∀x ∈]0, L[ ∀t ∈ [0, tend], (6)

plus a set of initial and boundary conditions. Here, c is the heat capacity per unit volume, k is the
thermal conductivity, r is internal heat source density, and T is the temperature field. Assuming
that k is homogeneous in Ω, we get

c
∂T

∂t
− k∂

2T

∂x2
= r. (7)

The above equation can be written in a discretized time setting (backward-Euler) as follows

c
∆T

∆t
− k∂

2Tn+1

∂x2
= rn+1. (8)

Let’s now define Tref as the reference temperature, and θ as the variation around it so that T =
Tref + θ. Putting this in above equation, one gets

c

Tref

∆θ

∆t
− k

Tref

∂2θ

∂x2
=

r

Tref
. (9)

The Helmholtz free energy can be defined as

W (θ) = − c

Tref

θ2

2
, (10)

so that the entropy reads

η(θ) = −dW
dθ

= c
θ

Tref
. (11)

Introducing equations (10) and (11) in equation (9), one gets

∆η

∆t
− k

Tref

∂2θ

∂x2
=

r

Tref
. (12)

Let’s now define the following incremental energy-like potential:

Φ(θn+1) =

∫ L

0

(W (θn+1)−W (θn) + ηn(θn+1 − θn))dx

−∆t

∫ L

0

1

2

k

Tref

(
∂θn+1

∂x

)2

dx+ ∆t

∫ L

0

r

Tref
(θn+1 − θn)dx

(13)
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It is important to note that the first variation of equation (13) gives the weak form of equation
(12). The incremental variational principle reads:

θn+1 = arg sup
θ

Φ(θn+1) (14)

Although presented here in a heuristic fashion, it can easily be verified that this variational principle
is a specific case of the more general variational formulation derived in (Yang, Stainier, and Ortiz
2006).

In the case of transient problems, the mesh is adapted at the first time step as explained in
section 2.1. From the second time step onward, the mesh adaption procedure is started with the
final adapted mesh obtained at the previous time step as an initial mesh. This avoids a complete
re-meshing of the domain at each time step. Two techniques may also be used in order to maintain
a low cost of the algorithm without compromising the precision of the solution obtained.

The first one is to avoid to adapt the mesh at every time step. If domains of high gradients
of fields of interest do not change much between two time steps, the mesh does not need to be
adapted. After the refinement loop over the patches of the procedure, if no major changes have
been found in the mesh, adaption at that time step can be bypassed.

The second technique pertains to the values of tolerance parameters in our algorithm. The
current solution uses the final adapted mesh from the previous time step as initial mesh. Therefore,
well-adapted meshes are required at the early time steps. Accordingly, small values of all of our
parameters (Tolr,Told,Tol0 and Tolu) are hence used at the first time steps. Then, these values
can increase with time steps till a given time, after which the values can be set constant.

2.3 Thermo-elasticity problem
2.3.1 Time discretization

Following (Armero and Simo 1992), the thermoelasticity coupled equations read:

ρ
∂2u

∂t2
=

∂

∂x
(E(ε− αθ)) + ρb (15)

c̃
∂θ

∂t
=

∂

∂x

(
k̃
∂θ

∂x

)
− αE∂ε

∂t
+

r

Tref
(16)

where ρ is the mass density, u denotes the displacement field, E is the Young’s modulus, ε is the
linearized strain tensor, α is the coefficient of thermal expansion, θ is the temperature variation
such that T = Tref + θ. External loads ρb and r represent the body force vector and the external
heat source density respectively. One also sets c̃ = c

Tref
and k̃ = k

Tref
, where c is the heat capacity

and k is the thermal conductivity. An incremental energy-like potential, convex with respect to the
displacement u and concave with respect to the temperature θ, defined at time step n+ 1 is by:

Φ(un+1, θn+1) =

∫ L

0

{
ρ

2β

(
∆u

∆t

)2

− ρ

β

(
vn +

(
1

2
− β

)
∆tan

)
∆u

∆t

+W (εn+1, θn+1)−W (εn, θn) + η(θn+1 − θn)−∆tψ(θn+1)

+∆t
r(tn+1)

Tref
(θn+1 − θn)− b(tn+1)(un+1 − un)

}
dx

−
(
f̄(tn+1)(un+1 − un)

)∣∣
x∈Γt

−∆t

(
q̄(tn+1)

θn+1 − θn
Tref

)∣∣∣∣
x∈Γq

(17)
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as proposed in (Yang, Stainier, and Ortiz 2006) and (Radovitzky and Ortiz 1999). The incremental
problem then amounts to solving the saddle-point problem

un+1, θn+1 = arg inf
u

sup
θ

Φ(u, θ) . (18)

Here, β and γ are the Newmark time integration parameters, u, v, a are the displacement, velocity
and acceleration fields respectively, ψ(∇θ) is the heat conduction (Biot) potential, η the entropy,
and W (ε, θ) the Helmholtz free energy. The boundary on which external forces f̄ are applied is Γt,
whereas, Γq is the boundary on which the heat flux q̄ is imposed. The acceleration a and velocity
v fields can be obtained from the displacement field u using Newmark’s formulas:

an+1 =
un+1 − un
β∆t2

− vn
β∆t

−
1
2 − β
β

an

vn+1 = vn + (1− γ)∆tan + γ∆tan+1

(19)

The Newmark’s parameters are set at β = 1
4 and γ = 1

2 so that scheme can be unconditionally
stable with respect to the time step size ∆t. The Helmholtz free energy can be given as follows:

W (ε, θ) =
1

2
Eε2 − αEεθ − 1

2

c

Tref
θ2 (20)

so that, the entropy η reads

η = −∂W
∂θ

=
cθ

Tref
+ εEα. (21)

In addition, the heat conduction potential can be given as

ψ(∇θ) =
1

2

k

Tref

(
∂θ

∂x

)2

. (22)

2.3.2 Algorithm

An adiabatic staggered algorithm is used to solve the problem. This partition of the thermo-
mechanical operator is known to preserve numerical stability (Armero and Simo 1992).The me-
chanical part is solved by

un+1 = arg inf
u

sup
θad

Φad(u, θad), (23)

where Φad is built from the potential Φ, defined by equation (17), by removing the conduction
(ψ(∇θ)) and the prescribed heat flux (

∫
Γq
) terms. The stationary condition of u leads to the

following system of equations[ 1
β∆t2 [M ] + [E] [B]

[B]T −[C̃]

]{
{un+1}
{θad}

}
=

{
[M ]
β∆t2 {un}+ [M ]

β∆t

{
{vn}+ ( 1

2 − β)∆t{an}
}

+ {b}+ {f̄}
−[C̃]{θn}+ [B]T {un}

}
(24)

Here, [M ], [E], [B], [C̃] and [k̃] are the classical mass, elastic stiffness, coupling, normalized capacity
and normalized conduction matrices respectively. Similarly, the thermal part is solved by

θn+1 = arg sup
θ

Φ(un+1, θ). (25)
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Therefore, one gets

[
−[C̃]−∆t[k̃]

]
{θn+1} =

{
−[C̃]{θn}+ [B]T {un} −

{r}
Tref

+
∆t

Tref
{q̄} − [B]T {un+1}

}
(26)

This staggered algorithm consists first in solving the mechanical problem by equation (24) assuming
adiabatic conditions. Then, a thermal step at constant geometry is performed solving equation (26).
It has been shown (Armero and Simo 1992) that this staggered algorithm is unconditionally stable,
provided a fixed time step (Adam 2003). This separation into two steps also allows us to use
different meshes for the mechanical and the thermal fields.

Therefore, in one time step, first, the mechanical mesh is adapted according to the adaption
procedure explained in section 2.2 to get the mesh that best describes the displacement solution
field using a minimum number of elements. During this, thermal fields are interpolated onto the
mechanical mesh. Second, the thermal mesh is also adapted to get a mesh that best describes
temperature field using a minimum number of elements. During this, the mechanical fields are
interpolated on the thermal mesh. The adapted mechanical and thermal meshes at a given time
step serve as initial meshes for the mechanical and thermal steps for the next time step.

For unidimentional problems, doing interpolation or projection of fields associated with one
mesh onto another mesh won’t make big difference in terms of cost and precision. However, doing
interpolation rather than projection becomes important for 2D problems (and even more for 3D
ones) since the gain of computational cost is significant, while it preserves a good accuracy.

3 Mathematical analysis
The variational functional Φ in equation (17) is equivalent to an H1 norm. This is shown below for
transient purely thermal problem for simplicity. Equation (13) can first be rewritten as follows

Φ(θn+1) =

∫ L

0

{
− c

Tref

θ2
n+1

2
+
cθn+1θn
Tref

− cθ2
n

2Tref
−∆t

k

2Tref
∇θ ·∇θ

}
dx. (27)

Defining the following dimensionless field and variable θ̄ = θ
Tref

, x̄ = x∆tk
c , and the functional

J = − Φ(θ̄)
cTref

, one gets

J(θ̄) = − Φ(θ̄)

cTref
=

∫ L̄

0

{
1

2
(θ̄ − θ̄n)2 +

1

2
∇θ̄ ·∇θ̄

}
dx̄. (28)

The functional J(θ̄) can be put on the form

J(θ̄) =
1

2
a(θ̄, θ̄)− l(θ̄) + c1, (29)

where

a(θ̄, θ̄) = ‖θ̄‖21 =

∫
Ω̄

(θ̄2 + ‖∇θ̄‖2)dΩ (30)

l(θ̄) =

∫
Ω̄

θ̄θ̄ndΩ (31)

c1 =

∫
Ω̄

1

2
θ̄2
ndΩ (32)
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denote the H1 (squared) norm, a linear form and a constant depending on the solution at the
previous time step, respectively. The associated weak form is obtained by minimizing the functional
J(θ̄):

a(θ̄, δθ̄)− l(δθ̄) = 0 ∀δθ̄ ∈ V, (33)

where V is the space of continuous real valued functions in the domain Ω, satisfying homogeneous
Dirichlet boundary conditions. Let θ̄h be the finite element solution and θ̄ the exact one. The error
in the potential J(θ̄) due to the finite element discretization reads

J(θ̄)− J(θ̄h) =
1

2

(
a(θ̄, θ̄)− a(θ̄h, θ̄h)

)
+ l(θ̄h)− l(θ̄). (34)

Provided the H1 (squared) norm of the error reads

1

2
||θ̄ − θ̄h||21 =

1

2
a(θ̄, θ̄) +

1

2
a(θ̄h, θ̄h)− a(θ̄, θ̄h), (35)

the combination of equations (35), (34) and (33) yields:

1

2
||θ̄ − θ̄h||1 = J(θ̄h)− J(θ̄). (36)

The difference in the variational potential is directly related to the H1 (squared) norm of the inter-
polation error. This result is also found in (Houston and Wihler 2016), although shown differently.

4 Results and discussion

4.1 Steady state
4.1.1 Analytical solution

Consider the following particular boundary conditions and heat source density:

r = xm

T0 = 0

T1 = 0

(37)

where m is a constant. Therefore, the analytical solution of the problem for a bar of length L reads

T =
Lm+1x

(m+ 1)(m+ 2)
− xm+2

(m+ 1)(m+ 2)
. (38)

The energy potential is given by:

Φ(T ) =
k

2
L2m+3

[
1

(m+ 1)2(2m+ 3)
− 1

(m+ 1)2(m+ 2)2

]
− L2m+3

[
1

(m+ 1)(m+ 2)2
− 1

(m+ 1)(m+ 2)(2m+ 3)

]
.

(39)
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4.1.2 Numerical solution

The algorithm is started with a coarse initial mesh of two elements. Figure 2 shows the analytical
solution as well as the variationally adapted temperature solutions on each iterated mesh, computed
with P1-finite elements. These solutions are obtained with m = 51, L = 10 m, the thermal
conductivity and the cross-section area are set to unity. After few iterations and with less than
50 elements, the sharp temperature gradient generated by the large value of m is well captured.
Refined elements have been introduced close to that sharp gradient, and few elements are sufficient
to represent the remaining part of the solution.
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Figure 2: Analytical solution and variationally adapted temperature fields.

4.1.3 Cost Analysis

In order to assess the usefulness of this algorithm, the error between the computed solution and
the analytical one can be plotted as a function of the number of nodes of the mesh. Three cases
are considered. In the first case, the plot is made for uniform refinement of the mesh. This can
be used as a reference. In the second case, the error at each refinement iteration in the variational
adaptive mesh algorithm is plotted with respect to the number of nodes of the mesh. However,
since the mesh adaption is done in several iterations, a consistent comparison between a uniform
refinement and the variational one should account for path of refinement followed during mesh
adaption. One way to accomplish this is to account for a cumulated number of nodes associated
with all the calculations performed during the mesh adaption process. Therefore, the error at each
refinement iteration is also plotted with respect to the cumulative number of nodes. In the third
case, a comparison is performed with the Superconvergent Patch Recovery method (Zienkiewicz
and Zhu 1992a; Zienkiewicz and Zhu 1992b) (also denoted ZZ2 ). The above method provides the
global error estimator

‖eq‖2 =

N∑
i=1

‖eq‖2i , (40)

computed from elementary contributions defined in 1D as

‖eq‖2i =

∫
Ωi

e2
q

k
dx, (41)
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provided
eq = q∗ − qh, (42)

where qh = −k dTh

dx is the finite element reconstruction of the heat flux vector, which is here constant
elementwise, and q∗ is the nodally reconstructed ZZ2 solution from patches (see (Zienkiewicz and
Zhu 1992a)). Elements are split into two if the relative value of the local estimator ‖eq‖2i /‖qh‖2i is
lower than some tolerance, set here identical to that of the variational mesh adaption algorithm.

Figure 3 shows the adapted temperature solutions on each iterated mesh adapted with the ZZ2
error estimator as well as the analytical solution. A close path of mesh adaption is observed between
the variational (figure 2) and the ZZ2 (figure 3) ones, though the final meshes differ.
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Figure 3: Analytical solution and adapted temperature fields with the ZZ2 error estimator.

Figure 4a shows the L2 norm of the error on the temperature field, and figure 4b shows some
energy norm of the error. More precisely, the potential energy Φ (3) is computed with the difference
between the approximated and the analytical temperature fields. From figures 4a and 4b, several
points can be emphasized. First, the curves of adaptive meshing algorithms are below that linked
to uniform mesh refinement, which is quite expectable. Second, the curves of adaptive meshing
techniques plotted as a function of the cumulated number of nodes cross from above the uniform
mesh one, showing as expected that there is a number of nodes beyond which adaptive remeshing
techniques are more performant and more cost effective than a uniform mesh technique. At last,
the variational mesh adaption technique appears slightly more performant than the ZZ2 one on the
range of error computed, both for cumulated and non-cumulated nodes, and both for L2 error and
the energy norm.
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Figure 4: Error norms of the energy-like potential as a function of the number of nodes.

Remark 1. In the variational mesh adaption approach, the cost of the refinement step of the mesh
essentially consists of the computation of local solutions on refined patches. These problems are
very small and cheap ones, because they consist in evaluating the solution at a single node. For
thermal analysis, it yields one linear equation per patch to be solved since the temperature is fixed
on the patch boundary. The computation of the error indicator for the whole domain thus have a
complexity of O(N), where N is the number of nodes. Once the mesh has been adapted, a new
solution is computed on the updated mesh, whose complexity is O(N3) if a direct solver is used.
Hence, the cost of the refinement step remains far smaller than the computation of the solution.

Remark 2. The nodally reconstructed heat flux vector q∗ in the ZZ2 approach requires the solution
of a small system of linear equations on each patch, whose dimension equals that of the polynomial
basis used for the reconstruction. Though the dimension of the basis is usually small, the solution
of a linear system on each patch yields a higher complexity of the refinement step than that achieved
by the variational mesh adaption approach.

4.1.4 Parametric Analysis

The algorithm explained in section 2 exploits the additive property of the energy-like potential Φ
by summing its local values over all elements. Improving the local value of Φ on a patch allows
to reduce its global value on the mesh, and hence leads to a reduction of error. Three toler-
ance parameters have been introduced in the algorithm which influence its performance. However,
the parameters Tol0,Tolr and Told are not independent. In order to study the sole effect of each
parameter, others are set to a constant value. The results of this parametric study are shown below.

Effect of Tol0: Figures 5 and 6 show the influence of the tolerance parameter Tol0, while fixing
Tolr and Told to a particular value.

12



100 101 102 103 10410-5

10-4

10-3

10-2

10-1

100

101

102

103
Tol0 =1.00E-04
Tol0 =5.00E-04
Tol0 =1.00E-03
Tol0 =5.00E-03
Tol0 =1.00E-02
Tol0 =5.00E-02
Tol0 =1.00E-01
Tol0 =5.00E-01
Uniform Refinement 

Figure 5: Effect of the parameter Tol0, Tolr and
Told being fixed to 10−4 (figure shows
L2 error vs. the number of nodes).
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Figure 6: Effect of the parameter Tol0, Tolr and
Told being fixed to 0.5 (figure shows L2

error vs. the number of nodes).

The parameter Tol0 allows to decide when to stop the algorithm. It doesn’t have any effect
on the path followed. Therefore, one can observe that, as it decreases, the number of iterations
increases. Therefore, the parameter Tol0 should be selected such that the algorithm stops when a
solution of a required precision (with respect to the current Tolr) has been obtained. For example
as shown in figure 6, since the Tolr and Told parameters are set at 0.5, a value of Tol0 ranging
between 103 and 102 is enough.

Effect of Tolr: Figures 7 and 8 show the influence of the tolerance parameter Tolr, while fixing
Tol0 and Told to a particular value.
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Figure 7: Effect of the parameter Tolr, Tol0
is set at 10−2 and Told at 10−4

(figure shows L2 error vs. the number
of nodes).
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Figure 8: Effect of the parameter Tolr,
Tol0 and Told being fixed to 10−2

(figure shows L2 error vs. the number
of nodes).

The parameter Tolr drives the precision of the converged solution. As shown in figure 7, when
the Tolr ranges between 5 × 10−3 and 10−2 the error of the converged solution is of the order of
10−3. In the graphs, one can observe that the algorithm carries out a few more iterations after con-
vergence. This occurs because the value of Tol0 has been set to a constant value in order to study
the sole effect of Tolr. Whereas in normal circumstances, the value of Tol0 is changed according to
that of Tolr, so that the algorithm stops immediately after reaching convergence.
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Effect of Told: The results are shown in figures 9 and 10. Convergence and stability of the
algorithm depend on the parameter Told. The latter should be less than or equal to Tolr, otherwise
the algorithm will keep on refining and derefining the same patch entering in an unending loop. For
example in figure 10, Tolr is fixed to 102. All the curves that correspond to the values of Told less
than or equal to 102 converge to the solution, whereas all the other curves diverge. This effect can
also be observed in one of the curves in figure 8.

4.1.5 Improved Algorithm

In problems involving sharp gradients of the main field, many iterations of this iterative adaption
process may be performed before convergence occurs, particularly if the initial mesh is coarse.
Hence, it could be interesting to accelerate the refinement procedure by dividing an element in
more than two elements. An application of this idea is shown in figures 11 and 12. The refinement
procedure is so that:

1: if φL2
−φL1

φL1
> Tolu then

2: Subdivide 1 element in 4 elements, where Tolu > Tolr.
3: else if Tolu >

φL2
−φL1

φL1
> Tolr then

4: Subdivide 1 element in 2 elements.
5: else if φL2

−φL1

φL1
< Told then

6: Consider derefinement.
7: end if
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Figure 9: Effect of the parameter Told, Tol0
is set at 10−2 and Tolr at 10−3

(figure shows L2 error vs. the number
of nodes).
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Figure 10: Effect of the parameter Told, Tol0
is set at 10−2 and Tolr at 10−2

(figure shows L2 error vs. the num-
ber of nodes).

Parametric Analysis: Figures 13 and 14 show the results of a parametric analysis carried out
for the parameter Tolu while keeping Tolr constant at 104. All algorithms give equivalent results
after convergence and at the beginning. However, there is a big difference in the path followed to
reach the converged state.
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Figure 11: Comparison of the L2 error of the
temperature field between the original
and improved algorithms.
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Figure 12: Comparison of the energy error be-
tween the original and improved algo-
rithms.
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Figure 13: Parametric analysis of the parameter
Tolu, represented in terms of the L2

error of the temperature.

100 101 102 103 104

Cumulative number of nodes
10-5
10-4
10-3
10-2
10-1
100
101
102
103
104
105

En
er

gy
 E

rr
or

Tolu  = 1.00E-04
Tolu  = 1.00E-03
Tolu  = 1.00E-02
Tolu  = 1.00E-01
Tolu  = 1.00E+00
Uniform Refinement

Figure 14: Parametric analysis of the parameter
Tolu, represented in terms of the en-
ergy error.

4.2 Thermo-elasticity
Consider a bar with homogeneous Dirichlet thermal and mechanical boundary conditions at its two
ends:

T (0, t) = T (L, t) = 0; u(0, t) = u(L, t) = 0 ∀t (43)

along with a sinusoidal initial velocity:

u(x, 0) = 0; v(x, 0) = sin
(πx
L

)
; T (x, 0) = 0 ∀x ∈]0, L[ (44)

This test case has been introduced in (Armero and Simo 1992). With these conditions, the bar is
expected to vibrate, though damped through thermal dissipation.

4.2.1 Numerical solution fields

An adiabatic staggered scheme is used for the solution, as well as the algorithm of mesh adaption
explained in section 2.3.2. The time step is set at 1 second in this test case. The problem is solved
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on a very fine mesh (4097 nodes) to obtain a reference solution, which has also been compared with
the results obtained in (Armero and Simo 1992) to ensure correctness.
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(a) Displacement field at time = 1 second.
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(b) Temperature field at time = 1 second.

0 20 40 60 80 100
X

5

0

5

10

15

20

Di
sp

la
ce

m
en

t f
ie

ld

Displacement field on adapted mesh
Reference displacement field

(c) Displacement field at time = 50 seconds.
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(d) Temperature field at time = 50 seconds.
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(e) Displacement field at time = 301 seconds.
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(f) Temperature field at time = 301 seconds.

Figure 15: Displacement and temperature fields at different times.

Figures 15a, 15b, 15c, 15d, 15e and 15f show the displacement and temperature fields at times
1, 50 and 301 seconds respectively. In some parts of the bar, the algorithm has instroduced more
nodes even where the solution field does not vary much. Two items may explain this behavior.
First, our criterion for the mesh refinement is not directly related to the smoothness of the solution
profile, but to the value of the energy-like potential. Recall that its value also allows to account for
the variation of the solution field with respect to time, hence in a sense it generalizes the quasi-static
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approach of the ZZ2 error estimator. Second as explained in section 2.2, the mesh is not adapted
at each time step in order to achieve a better cost effectiveness. Therefore, more nodes are required
to capture the solution at different time steps for which the same mesh is used. This maintains the
accuracy of the solution field and also the cost-effectiveness of the algorithm. However, it is evident
from these figures that a very good solution field is captured at all the time steps.

4.2.2 Cost analysis

A cost analysis is performed on both thermal and mechanical meshes. The L2 error of the displace-
ment field and of the temperature field are computed on the mechanical and the thermal meshes
respectively. The results are shown in figures 16a, 16b, 16c, 16d, 16e, and 16f. It is evident that the
introduced mesh adaption algorithm is almost always more cost-effective with respect to a simple
uniform mesh for both thermal and mechanical meshes.
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(a) Cost analysis of the mechanical mesh at time=1
second.
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(b) Cost analysis of the thermal mesh at time=1 sec-
ond.
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(c) Cost analysis of the mechanical mesh at time=50
seconds.
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(d) Cost analysis of the thermal mesh at time=50
seconds.

102 103 104 105 106

cumulative number of nodes on displacement mesh
10-4

10-3

10-2

10-1

100

101

102

L
2
 e

rr
or

 in
 d

is
pl

ac
em

en
t

Cumulated
Non-cumulated
uniform

(e) Cost analysis of the mechanical mesh at
time=301 seconds.

102 103 104 105 106

cumulative number of nodes on a temperature mesh
10-4

10-3

10-2

10-1

100

101

L
2
 e

rr
or

 in
 te

m
pe

ra
tu

re

Cumulated
Non-cumulated
uniform

(f) Cost analysis of the thermal mesh at time=301
seconds.

Figure 16: Cost analysis of the mechanical and thermal meshes different times

Recall that obtaining cost-effectiveness and a good accuracy of the solution at the first time step
of the calculation is crucial, because the following adapted meshes directly depend on the previous
ones. For example, at time steps 50 and 301, no mesh adaption is carried out because the meshes
used at the previous time steps are good enough to represent the solution.

In this test case, the solution fields do not vary sharply with respect to time and space. Therefore,
the algorithm drives the mesh adaption at quite few time steps, from time 1 to 301 seconds. The
mechanical mesh is adapted at only 4 time steps, whereas the thermal mesh is adapted only at 3
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time steps.

4.3 Thermo-elasto-plasticity
4.3.1 Numerical solution fields
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Figure 17: Geometry of the test case (Heuzé et al. 2014).

Heuzé et al. (Heuzé et al. 2014) have extended the well-known viscometer test case to thermo-
elastic-plastic solid behaviors in small and large strains. In this test case, the sole mechanical part
acts on the thermal part, so that the mechanical problem is solved independently of the thermal
problem. The mechanical problem is first solved, followed by the thermal one taking into account
the effect of the mechanical solution. The geometry of the problem is shown in figure 17. The
gap between the two cylinders is discretized by a radial 1D mesh. Zero displacement is prescribed
on the inner cylinder while a driven rotation is prescribed on the outer cylinder. Temperature of
external and internal cylinders are fixed to zero. Therefore, the boundary conditions of the problem
can be stated as:

uθ(r = a) = 0

uθ(r = b) = uθ(b)

T (r = a) = 0

T (r = b) = 0

(45)

where a and b denote the inner and outer radii respectively, and uθ the curved arc length swept
since the finite strain framework is assumed. However the following differences arise between the
test case given in (ibid.) and the present one. A hyperelastic-plastic constitutive law is considered
here, whereas a hypo-elastic-plastic constitutive law was used in (ibid.). The analytical solution
developed in (ibid.) relies on certain assumptions, that is: dilatation effects are neglected, thermal
and mechanical parameters are fixed independently of the temperature and additional terms linked
to the objective derivative are neglected. The solution developed in small strains is extended to the
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large strains in a straightforward manner, but its validity remains bounded from above when the
rotations and hence the objective derivative become important. We solve the problem on a very
fine mesh (5000 elements) with the numerical data of (Heuzé et al. 2014) and use that solution as
a reference one.
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Figure 18: Displacement solution (Heuzé et al.
2014).
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Figure 19: Equivalent plastic strain reference so-
lution (Heuzé et al. 2014).

The reference solutions in displacement and equivalent plastic strains are plotted in figures
18 and 19 respectively. According to (ibid.), the thermal solution is valid once the viscometer is
completely elastic-plastic. As seen in figure 19, at rotation of θ = 3◦ of the outer cylinder, the
viscometer is completely elastic-plastic. Therefore, a coupled mechanical problem is solved starting
at a rotation of outer cylinder of 3 degrees, provided the initial temperature being given by the
analytical solution at that rotation, and a rotation evolution of the outer cylinder prescribed so that
the plastic crown radius varies exponentially in time (eq.(35) of (ibid.)), consistently with eq.(24)
of (ibid.). The reference solution in temperature is shown in figure 20. As seen from figure 18,
the displacement field does not vary much but the thermal field presents the interest of a strong
temperature gradient close to the inner cylinder. Therefore, it will not be very interesting to use
adaptive meshing technique on the displacement mesh. Therefore, we solve our problem by adapting
only the thermal mesh and keeping the mechanical mesh constant.
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Figure 20: Temperature reference solution.
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(a) Rotation of θ = 4◦ of the outer cylinder.
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(b) Rotation of θ = 5◦ of the outer cylinder.
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(c) Rotation of θ = 6◦ of the outer cylinder.
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(d) Rotation of θ = 9◦ of the outer cylinder.

Figure 22: Solution on the adapted mesh for different rotations θ of the outer cylinder.

Figures 22a, 22b, 22c and 22d show solutions on adapted mesh at rotations θ = 4◦, 5◦, 6◦, 9◦ of
the outer cylinder respectively. Figure 21 shows analytical and numerical plastic strain distributions.
One can observe that the numerical solution is very close to the analytical solution. The small
differences between the numerical solution and the analytical one can be attributed to the different
formulations of the mechanical constitutive models in large strains adopted in these two solutions.
However, it is harmless for the mesh adaption purpose we are interested in here.

4.3.2 Analysis

As seen in figure 20, the domains of interest of the solutions field (domains with high gradients of
temperature) do not evolve much in time. Therefore, our algorithm adapts the mesh only at the
first time step, and then decides to use the same mesh for the following time steps.
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(a) Rotation of θ = 4◦ of the outer cylinder.
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(b) Rotation of θ = 5◦ of the outer cylinder.
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(c) Rotation of θ = 6◦ of the outer cylinder.
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(d) Rotation of θ = 9◦ of the outer cylinder.

Figure 23: L2 error analysis at different rotations θ of the outer cylinder.

Figures 23a, 23b, 23c, and 23d show the L2 error of the adapted meshes. One can observe that
mesh adaption has taken place only at a rotation of 4 degrees, all other time steps use the same
mesh. The adaptive meshing still appears more economical than a uniform mesh.

4.4 Bidimensional transient thermal test case
In order to demonstrate the extendibility of this algorithm to 2D problems, the results of one test
case obtained from our ongoing work in 2D is here presented. Let’s consider a rectangular geometry
whose boundary temperature is prescribed to zero. An external heat source is introduced in the
domain, which follows a circular path in time centered within the rectangle. The heating area at
one instant is generated by an arc length of 1 degree and a length of 1m in the radial direction.
Figures 24a, 24b, 24c, 24d, 24e and 24f show the solution fields on the adapted meshes at different
time steps. A strong mesh adaption is performed in this test case because the location of strong
temperature gradients moves with the prescribed heat source. The mesh coarsening upstream from
the heat source appears as efficient as the mesh refinement where the heat source is located. It
is therefore evident that this adaption strategy works well and is more cost effective than using a
simple uniform mesh.
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(a) Time step 1. (b) Time step 8.

(c) Time step 24. (d) Time step 40.

(e) Time step 48. (f) Time step 60.

Figure 24: Temperature field at different time steps.

5 Conclusion
In this paper, a strategy for mesh adaption based on a variational approach for multiphysics prob-
lems has been proposed, in particular attention has been paid to thermo-mechanical problems. The
variational approach uses an error indicator to adapt the mesh, based on the optimality property
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of the solution. The geometry is divided into patches and according to the level of improvement of
the local value of an energy-like potential, refinement or de-refinement of the patch is performed.

This strategy was first tested on simple steady state and transient thermal problems, for which
a complete parametric analysis was performed. The effect of each parameter was studied and
the strategies of selection of these parameters were discussed. Then the algorithm was applied
to a strongly coupled problem of thermo-elasticity, using an adiabatic staggered algorithm and
two different meshes for the thermal and the mechanical solution fields. Finally, the strategy was
successfully tested on a more complicated thermo-elasto-plasticity benchmark test case. In this
weakly coupled problem, the mechanical solution field was calculated on a fixed mesh, whereas the
thermal mesh was adapted.

In all these test cases, it has been demonstrated that the developed strategy is reliable, eco-
nomical and more effective than using a simple uniform mesh. The first perspective of this method
in current progress is to extend this strategy to 2-D and 3-D problems, using different subdivision
schemes, for example, the mesh subdivision scheme by (Rivara and Inostroza 1997) and (Rivara
1997).
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