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Abstract: Amyloid plaques are one of the two hallmarks of Alzheimer’s disease (AD). They consist 

mainly of fibrils made of self-assembled amyloid- (A) peptides. A is produced in healthy brains 

from proteolytic cleavage of the amyloid precursor protein. A aggregates, in particular smaller, 

soluble aggregates, are toxic to cells. Hence modulating the self-assembly of A became of very 

active field of research, with the aim to reduce the amount of the toxic aggregates of A or to block 

their toxic action. A great variety of molecules, chemical and biological, are able to modify the 

aggregation of A. Here we give an overview of the different mechanistic ways to modulate A 

aggregation and on which step in the self-assembly molecules can interfere. We discuss the 

aggregation modulators according to different important parameters, including the type of 

interaction (weak interaction, coordination or covalent bonds), the importance of kinetics and 

thermodynamics, the size of the modulating molecules, and binding specificity.  

Abbreviations: 

AD: Alzheimer’s disease 

A: amyloid beta 

APP: amyloid precursor protein 

PSEN1: presenilin 1 

PSEN2: presenilin 2 

polyP: polyphosphates 

HSP: heat shock proteins 

CLU: clusterin 

EGCG: epigallocatechin gallate 
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Keywords: 

Amyloids: the biophysical definition is based on the structure, i.e. aggregates of self-assembled 

proteins/peptides that form cross-beta structures. 

Aggregates: off pathways in protein biogenesis in which misfolded proteins accumulate. In the 

amyloid context, aggregates often mean ordered assemblies of several units of the same protein 

of any structure into protein fibers.   

Inert-labile: describes the kinetic stability, in contrast to the thermodynamic stability, which is 

strong-weak. An inert bond can exist for a long time, and hence be biologically relevant, despite 

it is not thermodynamically stable. 

A oligomers: A aggregates that are soluble and relatively small (roughly from dimer to ~one- 

two dozen of monomers) 

Polyphenols: Organic compounds (native or synthetic) that contain several, covalently linked 

phenols 

Polyphosphate: cyclic or linear polymer of phosphates linked by ester bonds. In nature linear 

polyphosphates can reach length of several hundred phosphate units. 
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Molecular chaperones: key players of the cellular proteostasis network, they assist protein 

folding and/or protein assembly into higher order structures without being part of the final 

structures. Molecular chaperones can also disassemble already formed aggregates in order to 

either reactivate aggregated proteins or target them to degradation machineries.  

Chemical chaperones: Small chemical molecules that have similar activity like the molecular 

chaperons. 

Polyoxometalate: discrete molecular anionic structures composed of early transition metals (e.g., 

M = V, Nb, Ta, Mo, W) at their highest oxidation states bridged by oxide anions. 
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1) Introduction

Alzheimer’s disease (AD) is the most common form of dementia, accounting for 50-70% of cases. 

The number of AD cases is expected to reach 75 million by 2030, and 130 million by 2050 1. A 

major common point between familial AD (related to specific mutations) and sporadic AD (no 

mutation background) is the accumulation of a 40-42 amino acids peptide, amyloid- (A) in form 

of amyloid plaques. The higher aggregation prone A1-42 form is enriched compared to the most 

abundant but lower aggregation prone A1-40 isoform. In familial cases, mutations on the Amyloid 

Precursor Protein (APP), the Presenilin 1 (PSEN1) or the Presenilin 2 (PSEN2) genes result in an 

overall increased production of A. Sporadic cases are rather characterized by a reduced clearance 

of A due to a decrease in A-degrading enzymes 2.  

A peptide production through APP sequential cleavage by - and γ-secretases occurs already 

during brain embryogenesis and seems to be required for normal brain development. A has been 

reported to enhance neurons survival in vitro, neural progenitor cells differentiation, neuron 

proliferation and synapse regulation 3,4. How a physiologically necessary peptide becomes a major 

actor in the development of AD has been proposed to occur through a cascade of events known as 

the “amyloid hypothesis” proposed in 1992 5. A accumulation promotes conformational changes 

in the peptide, which lead to its gradual non-covalent polymerization into a heterogeneous array of 

oligomeric species that eventually evolves towards amyloid fibrils.  Experimental data points to 

A oligomers species as the most toxic ones, exerting their deleterious effect through a variety of 

mechanisms 6, including direct interaction with membranes forming pore-like structures and 

disrupting their proper permeability, and binding to cellular receptors with deleterious 

consequences 7,8. 

A aggregation is thus key in AD neurodegeneration and it has stimulated multiple studies with 

the objective of elucidating the exact mechanism by which aggregation occurs. One of the 

observations is that A aggregation is a modifiable process. Environmental factors, such as peptide 

concentration, temperature, pH, ion strength, added solvents, agitation, etc., have been studied and 

are known to affect A fibrillization 9. A great variety of molecules, chemical and biological, are 

able to modify as well the aggregation of A. Here, we shortly review the bases of A aggregation 

and structure, and focus then on the different strategies and classes of chemical and biological 

modulators of the A aggregation. We do also not treat the strategies to disaggregate oligomers or 

amyloid fibrils, despite it is general importance and refer to the literature 10. The purpose is not to 

be exhaustive in terms of mentioning all tested compounds, but to show the different classes and 

principles that can be exploited. 

2) Aggregation mechanism and structures

2.1) Mechanism 
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Amyloid formation occurs through a complex mechanism that involves a heterogeneous array of 

species. One can describe amyloid formation process as a function of time with a sigmoidal curve 

characterized by a lag phase followed by rapid growth and plateau phases. During lag phase, 

polypeptides suffer a spontaneous transition from soluble to non-soluble β-cross species, which 

ultimately assemble leading to the formation of amyloid fibrils. Amyloids can be formed 

with intrinsically disordered peptides/proteins, such as Aβ, or with natively folded proteins. In 

latter case the fold has to be destabilized first. Once a peptide has adopted the characteristic 

cross-β structure of amyloids, it will serve as a template for the upcoming monomers that will 

add-up to the growing fibril as they become equally cross-β structured. The initial cross-β 

structural shift is known as primary nucleation, while the addition of new monomers to the 

growing fibril is named elongation. Primary nucleation directly affects the lag phase duration that 

will depend on the time taken by the cross-β structures to reach a detectable concentration of 

aggregates. Once primary nucleation has occurred, fragmentation and secondary nucleation 

processes can take over and dominate amyloid formation. Fragmentation depends on the 

probability that fibrils break increasing the number of termini in which new cross-β monomers 

polymerize to elongate fibrils. Intact fibrils can, on their side, serve as catalytic surfaces that 

promote the formation of secondary nuclei of aggregation. Quantitative analysis of amyloid 

growth has revealed that primary nuclei form within the first milliseconds of the reaction, 

allowing elongation and secondary processes to coexist, at different rates, through all the 

amyloid formation phases 11,12. Alteration of the microscopic processes rates result in a 

modification of the amyloid formation curve. For example, a variation in the primary nucleation 

leads to changes in the duration of the lag phase. On their side, changes in the rates of elongation, 

fragmentation and secondary nucleation profoundly affect the lag phase duration as well as the 

growth phase slope.  

Aβ1-42 fibril growth, in particular, is governed by secondary nucleation. Moreover, Aβ1-42 toxic 

oligomeric species seem to originate from monomers mainly through secondary nucleation 13. 

Thus, modulation of specific microscopic steps of the amyloid formation is a promising area of 

study that could lead to future therapeutics. 

2.2) Importance of biomembranes 

Biomembranes play a very crucial role in the biology of Aβ. First Aβ is cleaved of a 

transmembrane protein called amyloid-precursor protein, in which the Aβ sequence is partially in 

the transmembrane region 2,3. Thus, cleaved Aβ has a hydrophobic part with affinity to 

membranes. Thus membranes can on one hand serve as a template to foster Aβ aggregation and 

on the other hand interaction of Aβ-aggregates with membranes has been reported as a 

mechanism of Aβ toxicity, including disruption, pore formation or destabilization. Therefore, 

studying the different modulators outlined below in the context of biomembranes is crucial and 

changing the lipid constitution of the membranes is also a very potent way to influence Aβ 

aggregation and toxicity. (for recent review see 14,15). 
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2.3) Structural aspects of amyloid-beta: monomer, oligomer, fibrils 

Hugh attempts have been done to shed light on the molecular structure of the different aggregation 

states of A. The best characterized structures are A fibrils, with a few complete models 

available from mainly solid-state NMR studies and cryo-TEM 17. Oligomers, due to their transient 

and heterogenic nature, have been more difficult to describe. Several studies have been published 

but their structures remain elusive.  

A fibrils contain cross- motifs in their structure. This means that A monomers contain -strand 

segments that assemble into -sheets, with -strands running perpendicular to the fibril axis, and 

hydrogen bonds between -strands running parallel to it. Cross- motifs can arise both from 

parallel and antiparallel -sheets. A fibrils comprise parallel in-register -sheets. Nevertheless, 

antiparallel -sheets can be observed in A intermediate aggregation species 18. One preliminary 

model for A1-40 fibrils consists in two cross- units each one formed by monomers with a 

disordered N-terminus followed by two -strand segments that form two parallel in-register -

sheets and that are separated by a 180° bent stabilized by a salt bridge 19. Conditions under which 

fibrils are prepared can significantly impact their structure. Indeed, while mild agitation conditions 

correlate with fibrils that contain two cross- units with two-fold symmetry (striated ribbon 

morphology), fibrils prepared under quiescent conditions contain three cross- units with a three-

fold symmetry (twisted morphology). Later proposed models, as well as a S-shaped A1-42 fibril, 

and A1-40 Iowa and Osaka mutations fibrils models are available 12,20. 

The structure of A oligomers is even less clear. Due to the difficulties encountered to obtain 

homogeneous and stable samples of oligomers, a great variety of models are described in the 

literature. The majority of the available observations suggest that oligomeric species lack the 

characteristic in-register parallel -sheets of fibrils 18. However, some groups have reported 

oligomers with cross- structure 21,22. 

3) Modulation of A aggregation by molecules

Conceptually one can distinguish modulations by molecules on different levels: 

i) the type of interaction, i.e. which type of bonding is involved. We consider here the three main

types of interaction: weak bonds (including H-bonds, hydrophobic interactions, Pi-stacking, Van-

der Waals etc.), coordination and covalent bonds. In general, the strength of the bonds decreases

from covalent to coordination to weak bonds.

ii) the structure targeted by the molecule, i.e. aggregation species to which the molecule binds

iii) the action that is triggered upon binding of the molecule: inhibition or promotion, slow-down

or acceleration, new pathway, etc.

Therefore, based on the hypothesis that certain oligomeric species are the most toxic, there are 

several strategies to avoid their formation: 

i) inhibition of the formation of toxic oligomers by binding and stabilizing the monomeric species



7 

ii) acceleration of fibril formation and stabilization of fibrils (this lowers the concentration of

oligomeric species)

iii) triggering other pathways that lead to non-toxic species, like favoring non-toxic amorphous

aggregates

iv) binding to the toxic oligomers and inhibiting their toxic action, for instance inhibiting binding

of oligomers to their pathological target (like membrane, receptor, metal ions, etc.).

This is summarized in Figure 1.

Figure 1 Schematic view of the various ways (bio)-molecular or synthetic chaperones can act on 

the aggregation process are shown in red. This simplified scheme shows only three type of 

aggregates, oligomers (most toxic), fibrils (like found in the amyloid plaques; not or less toxic) and 

other non-toxic aggregated species (off-pathway species, e.g. amorphous aggregates). Various 

modulations to reduce the toxicity of Aoligomers are: push the equilibrium away from the toxic 

oligomers, either to monomers (A), to fibrils (B) or to non-toxic aggregates (E), block the 

interaction of oligomers with the biological partners that triggers the toxicity (D; e.g. a membrane 

receptor); orange color), inhibit secondary nucleation to form oligomers (C). 
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4) Modulation by weak interactions

4.1) Small organic molecules 

A lot of small organic molecules have been studied concerning their modulation of 

aggregation. The advantages of such molecules are that they are interesting as drug, because they 

are cheap, can often be tuned to pass the blood brain barrier passively. These compounds contain 

very often (poly)-aromatic systems and are often planar. A reason for that might be possibility of 

intercalation with beta-sheet structures and the hydrophobic interaction with the 

central hydrophobic patch of Aβaround the Phe-Phe at position .02/91A problem is to 

target the monomeric Aβ, with the idea to inhibit the formation of toxic aggregates (Figure 1, 

path A). The affinity of a small organic molecule with an intrinsically disorder peptide Aβ is 

often relatively low (µM) and not very specific. This can be explained by the limited weak 

interaction a small molecule is able to make, and by the entropic penalty of a disordered 

peptide to form this interaction. However, interaction with structured oligomers and fibrils can 

have higher affinities. Several types of mechanisms have been described. Such compounds can: 

i) bind to fibrils and reduce fragmentation (Figure 1, path C), like proposed for the flat compound

BAF31 (Binder of Amyloid Fibers 31), which was identified upon a structure-based screening.

BAF31 does not reduce A fiber formation but it reduces A cytotoxicity by increasing fiber

stability and shifting the equilibrium of A from oligomers to fibers 23.

ii) accelerate the formation of fibrils (Figure 1, path B) by reducing the lifetime of toxic oligomers.

The compound O4 (orcein-related polyphenol) is such an example 24

iii) bind to toxic oligomers and change aggregation into non-toxic species (Figure 1, path E). An

example is epigallocatechin gallate (EGCG) 24,25.

iv) inhibit interaction with biological target (Figure 1, path D). An example is ALI6 (Amyloid-

LilrB2 Inhibitor 6), identified upon a structure-based screening. ALI6 inhibits Aβ interaction 

with the neuronal cell surface receptor LilrB2 reducing Aβ cytotoxicity 26. 

4.2) Peptide derivatives 

Peptides and derivatives have often been used with the aim to inhibit aggregation of Aβ 

(Figure 1, path A). Among different applied strategies, the uses of peptides (and peptoids) as β-

sheet breakers was often reported. The basic idea behind this approach is that for aggregation, Aβ 

has to recognize itself. Under focus were mainly the central part around Phe19-Phe20, thought to 

be the first contact between two Aβ molecules. Thus, investigations started with small peptides of 

the LVFF region (Aβ17-20), supposed to bind to the parent similar sequence in Aβ1-40/42 and 

inhibit the self-recognition of Aβ and hence its aggregation 27. Then several derivatives of pure 

peptides have been developed in order to increase the activity, like cyclization, methylation of the 

amide bond, introduction of non-native amino acids (see e.g. 28–30). These studies also showed the 

efficiency of the peptide derivatives to inhibit amyloid fibrils formation. However, at least for 

some, it is clear that they do not stabilize the monomeric form and/or inhibit nucleation or 
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elongation as aimed by the design, but that they rather promote formation on non-fibrillar, non-

toxic A aggregates (Figure 1, path E) 28.  

4.3) Chemical chaperones 

 4.3.1) Chemical and pharmacological chaperones 

These are small molecules with activities similar to that of molecular chaperones, assisting proper 

protein folding and refolding misfolded proteins. According to Cortez and Sim 31, one should 

distinct between pharmacological and chemical chaperones. Pharmacological chaperones have a 

specific binding site with proteins in order to stabilize the native fold or induce refolding. In 

contrast, chemical chaperones have often a non-specific mode of action. Thus, they have often only 

an effect at higher concentrations, which can be limiting for therapeutic approaches. On the other 

hand, certain of these chemical chaperones can be natively present at very high concentrations (like 

sugars or aminoacids). 

Two main classes of chemical chaperones are osmolytes and hydrophobic compounds. 

Examples for osmolytes are sugars (e.g. trehalose, mannitol), inositols, aminoacid (proline), etc. 32. 

Hydrophobic compounds are often detergents or fatty acids. Their proposed mode of action 

involves the binding to exposed hydrophobic patches and hence inhibition of aggregation (Figure 

1, path A). There also some larger molecules studied, like cyclodextrins or polyphosphates 33,34. 

4.3.2. Polyphosphates as modulator of A aggregation 

Polyphosphates (polyP) are chains of inorganic phosphates linked by phosphoanhydride bonds, 

which biological role is just starting to be unveiled. In eukaryotes, polyP are involved in blood 

clotting, apoptosis, mTOR activation and neuronal signaling 35–38, but recent work unveiled a new 

role for polyP as a chaperone 39. PolyP were shown to inhibit the aggregation of various chaperone 

substrate proteins, which remained in a state that was compatible for refolding, suggesting that 

polyP act in a non-specific and promiscuous manner. Since polyP synthesis does not require 

transcription nor translation, they may constitute a backup system during stresses hindering 

chaperone overexpression and their ATP-dependent function. In the context of protein-misfolding 

diseases, it has been discovered that polyP are able to accelerate amyloid fibril formation by a series 

of proteins including ⍺-synuclein, Tau and A1-40/42. PolyP accelerate protein fibrillation (Figure 

1, path B) by serving as a scaffold that recruits a maximum number of monomers to the cross- 

structure and stabilize them to prevent secondary nucleation processes (Figure 1, path C). Through 

this mechanism, polyP reduce the time window of cell exposition to A oligomers 33.   

In general, chemical chaperones are attractive because they have multiple modes of action and they 

are often tolerated at high concentrations. And in the case of small organic molecules they can have 

good blood–brain barrier penetration property (particular the hydrophobic type). Disadvantage is 
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that they are more unspecific and can have a variety of side effect and that often high concentrations 

are needed.  

4.4. Proteins 

4.4.1 Modulation of A aggregation by molecular chaperones 

Molecular chaperones interact, stabilize and help nonnative proteins to reach their native 

conformation 40. They assist de novo protein folding, disaggregation and refolding of stress-

denatured proteins, oligomeric assembly and disassembly of protein complexes, protein  targeting 

and translocation through biological membranes, and assistance to proteolytic degradation 41. Most 

chaperones belong to the heat shock proteins (HSP) families that are generally classified on the 

basis of their sequence homology as observed for HSP100, HSP90, HSP70, HSP60, HSP40, or 

small HSP family members 42,43. Other  many important bona fide chaperones including prefoldin, 

clusterin, haptoglobin, α2-macroglobulin, SecB, Trigger Factor or caseins do not belong to HSP 

families 44–47. Among these, several chaperones have proven ability to modulate A aggregation 

(see Table I).  

Table 1: Chaperones studied towards the modulation of A self-assembly 

Chaperone Aggregation modulation Reference 

HSP20, HSP27, B-crystallin A1-42, A1-40, E22Q Dutch 

familial mutant 

48,49

Human HSP60 A1-40 
50

GroEL from E.coli A1-40 
51

GroEL apical domain A1-42 
52

HSP70 , HSP90 A1-42, A1-40 
53,54

HSP104 A1-42 
55,56

BRICHOS domain A1-42, A1-40 
57

Clusterin (CLU) A1-42, A1-40 
58,59

DNAJB6 A1-42 
60–63

Kinetic studies have shown that molecular chaperones can target specific steps of the 

protein aggregation process. This is of particular importance in the case of A aggregation because 

its aggregation is dominated by the generation of highly toxic oligomers through secondary 

nucleation processes. Human BRICHOS domain has a high affinity for A1-42 fibrils to which it 

remains bound abolishing their breakage as well as the catalysis of new nuclei (Figure 1, path C) 
64. Clusterin (CLU) shields the hydrophobic region of A1-40 and A1-42 oligomers (Figure 1,

path E) antagonizing their toxic effect and providing an inert reservoir of oligomers for later
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processing and degradation 58,59. Finally, DNAJB6 (HSP40 human member) delays Aβ1-42 

aggregation by interacting with aggregated but not with monomeric forms of the peptide (Figure 

1, path A) 60. Interestingly, the same protein inhibits Huntingtin aggregation by interacting with 

monomeric species 62. This illustrates how chaperones do not have a unique mechanism of handling 

amyloid fibrils, and that discreet steps of aggregation affected by one chaperone may depend on 

the intrinsic characteristics of the amyloid-forming protein itself.  

As natural existing modulators of Aβ fibril formation, molecular chaperones have become 

one of the therapeutic targets of AD, as well as other protein-misfolding diseases. Current 

approaches include the identification of small chemical compounds able to upregulate chaperones 

expression or to enhance their activity, and the direct administration of recombinant chaperones 

via intranasal administration 65. One downside of these strategies arises from the chaperones broad 

substrate specificity 66. Up-regulating or increasing the pool of one chaperone is likely to affect 

the disease-associated protein but also other proteins that naturally interact with that one 

chaperone. Therefore, in order to therapeutically use chaperones, it may be important to 

first engineer chaperones that are specifically directed towards disease-related proteins, including 

Aβ67. 

4.4.2 Modulation of Aβ aggregation by antibodies and alike: 

Antibody-antigen binding is mediated by hydrogen bonds, van der Waals forces and ionic 

interactions. Common Kd values range from 5 x 10-4-10-11 M 68. Specific binding and promotion 

of degradation are the two characteristics that have brought attention to immunotherapy in the 

neurodegeneration field. Passive immunotherapy consists in stimulating the organism to produce 

its own antibodies against a specific antigen. Active immunotherapy is the direct administration of 

pre-produced antibodies 69. Both, passive and active immunotherapy against Aβ have been 

extensively developed with the aim of arresting Alzheimer’s mental deterioration. Many 

antibodies that bind Aβ have been engineered in the last decades (for detailed reviews refer to 
70,71.  

Antibodies can have different impact on Aβ: i) they can direct the immune system towards Aβ 

aggregates (preferentially oligomers) which then can be cleared by the microglia. ii) they can bind 

to oligomers and inhibit their interaction with the binding-partner responsible for the toxicity, e.g. 

membranes of receptors, and iii) they can modulate Aβ aggregation, by stabilizing the monomeric 

form of Aβ. To which extent the different mechanisms are involved in the in vivo experiments is 

often not clear.  

Antibodies and antibody fragments have been designed to inhibit Aβ aggregation, via for instance 

a β-sheet breaker mechanism72. They have the advantage to be very specific towards their target, 

and can even distinguish between different aggregation states of Aβ, such as oligomers and fibrils 

71. Moreover, their affinity can be very strong allowing the binding to nano-picoM concentrations 
of Aβ. A potential drawback to the use of antibodies is their large size; although the use of 

antibody fragments or of camel single domain antibodies might be very promising 73. In addition, 

aptamers, oligonucleotide ligands with high affinity and specificity, have also been developed 

toward Aβ

binding74. 
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Antibodies having the ability to i) enter the brain where Aβ plaques are formed, ii) induce 

microglial phagocytosis of Aβ, and iii) reduce Aβ burden, have been successfully tested in mice 

Yet, data from human trials were less promising 71. 

5) Modulation by coordination bonds

Coordination bonds often have a strength between covalent and weak bonds. In biology, they

mostly occur between positive charged metal ions and electron donors like nitrogen, oxygen or

sulfur. Coordination bonds could be strong enough to occur even at low concentrations (nM, pM)

and can be reversible (with labile metal ions) or not (with inert metal ions). Hence, the strength of

the interaction (thermodynamic) is not the only factor that counts, but also the kinetics. Certain

metal ions (like Cu, Zn, Fe, Mn, etc) are generally kinetically labile, meaning they will rapidly bind

to the highest affinity ligand. In contrast certain metal ions (like Pt(II), Ru(II), Ir(III)) are kinetically

inert, meaning that the reactions are very slow, and these metals can bind to a target for a very long

time, although it is not the thermodynamically most favorable. The canonical example is the

binding of cis-Pt to its therapeutic target DNA. Only a few percent bind to DNA, the other

complexes bind to other targets 75.

5.1. Labile metals, mainly Zn, and Cu 

5.1.1 Labile metal ions in solution: The effects of metal ions on A aggregation has been widely 

studies. 76,77. Mostly Cu(II) and Zn(II) has been investigated, due to the fact that these two metal 

ions are bound to A  in amyloid plaques 78. The main binding sites for Cu(I), Cu(II) and Zn(II) to 

the soluble monomeric A are well known 79,80. The binding sites in aggregated A are less well 

defined, but seems to be generally similar. In contrast, the effects of the main studied metal ions 

Zn(II) and Cu(II) on the aggregation are not consensual. The only consensus is that these metal 

ions affect the aggregation behavior, but how, in terms of kinetic and structures is not clear. There 

are several parameters playing an important role, like concentrations, metal-peptide ratios, pH, A 

pretreatment, and batch to batch differences 76,77,81. 

Potential important effects of metal ion binding are i) the change in the structure, ii) change in the 

overall charge, and iii) the possibility to bind to two peptides simultaneously, i.e. bringing two 

peptides close together. It is clear that binding of Cu(I), Cu(II) and Zn(II) change the structure(s) 

of the  A. As A is an intrinsically disordered protein, it stays very disordered when metals are 

bound, but the structural propensities and the dynamics change significantly. And such changes are 

metal and oxidation specific, i.e. the induced changes are different for the different metal ions 82. 

In the case of A, binding of metal ions can change the overall charge, but one has also to consider 

that metal ions often displace H+, which are released. In general, Cu(I/II) and Zn(II) increase 

slightly the net-charge at pH 7.4 and can render it more aggregation-prone 83.  
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The importance of bridging metal ions in the case of Cu(I/II) and Zn(II) is not very clear. Stable 

bridging metal ions in oligomers and fibrils have been suggested, but there is no strong evidence 

for them. However it is clear that metal-ion bridging occurs transiently and for Cu(II), the  

transiently formed A–Cu(II)-A have been proposed to be less aggregation prone 84,85. In contrast, 

it has been shown that substoichiometric Zn compared to Aβhave a strong impact on aggregation 

kinetics 86–88.  

5.1.2 polyoxometalates: labile metal ions in solid state/assembly: 

Metal substituted polyoxometalates (POMs) are among the few inorganic complexes based on a 

labile central ion probed for their ability to modulate A aggregation via interaction with the His 

residues. In a seminal and key study, Dawson-type POMs were able to reduce A aggregation with 

a dependence on the central ion (POM-NI > POM-Co > unsubstituted POM) via a mechanism 

where oligomers formation is disfavored and monomers stabilized (Figure 1, path A) 89.   

5.2. Inert metal complexes: 

Complexes made of d-block metal ions of the second and third rows have been used to impact the 

A aggregation process 90–92. The rationale behind this approach is the formation of kinetically 

stable L-M-A ternary species, where the ligand L is generally made of bulky aromatic ancillary 

scaffold to target the hydrophobic sequence involved in aggregation and where M is mainly Pt(II), 

Ru(II) and to a lesser extent Pt(IV), Ru(III), Ir(III), Rh(III). Such species would then modify the 

aggregation propensity of the apo-A and hamper binding of Cu and Zn ions in their natural/native 

sites 93,94 thus further modifying the aggregation properties in presence of biological ions. It was 

shown that the interaction to the central metal ions occurs via the His residues of the peptide. Due 

to the intrinsic toxicity of Pt(II) and Ru(II) species, pro-drug approach was also developed using 

less-toxic Pt(IV) or Ru(III) central ions that could be further reduced biologically 95,96. The main 

modes of action of such inert-metal complexes are interaction with monomers and further 

preclusion of native A aggregation (Figure 1, path A).  

6) Modulation via covalent bonds

Covalent bonds are normally the strongest bond and are mostly not reversible. Thus, 

derivatization of A by a covalent bond can be a very strong and persisting way to modulate 

aggregation. As in the case for slow exchanging metals, a main problem is the selectivity, i.e. how 

to target A only. Moreover, a modulation of all A by a covalent bond needs as much of the 

modulator as A, thus this is not catalytic. However, it is likely that partially derivatization of A 

is enough to modulate aggregation.  

Polyphenols are well known to modulate A aggregation (see above) (recent review: 97). 

The exact mechanism is not completely understood, and often only weak interactions are 

considered. However, polyphenols could also form covalent bonds. In the case of EGCG, it was 

proposed that oxidized EGCG molecules could react with free amines of A via formation of Schiff 
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bases 98. Similarly, Taxifolin, a catechol type flavonoid, was able to suppress A1-42 aggregation 

via reaction of its oxidized form (o-quinone) with the Lys in A 99. Moreover, further analysis 

suggested that Taxifolin specifically targets the elongation phase, rather than the nucleation phase. 

Thus, it is possible that also other polyphenols than EGCG and Taxifolin modulate A aggregation 

via weak and covalent bonds. 

Recently Kino et al. 100 conceived a covalent A aggregation modifier. They used a cyclic 

peptide (cyclo-KLVFF), known to bind to A by weak interaction and inhibiting A aggregation. 

They decorated the cyclo-KLVFF with a diazirine. UV irradiation resulted in a covalent bond 

formation with Tyr 10. Further experiments showed that this photoinduced derivatization reduced 

amyloid formation and attenuated cell toxicity. 

7) Conclusions

A aggregation is an auto-catalyzed self-assembly process with a lot of different pathways and 

species of various morphology that can be form. Thus, it is inherently a process very sensitive to 

conditions and effectors. Hence, it is not astonishing that a lot of different conditions and chemical 

or biological molecules influence this process. We reviewed the different classes of effectors, by 

focusing more on the type of interactions, and their pros and cons. An ideal effector would be 

cheap, penetrates very well to the brain, is specific for A, not toxic and gives no side effects and 

is highly efficient so that only low amount is needed.  

When going through all the different type of effectors on A aggregation, it seems that no strategy 

assembles all these advantages. Thus, may be a trade-off has to be found. Another strategy might 

be to use a combination of different effectors, to combine the positive parameters.   
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