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Abstract 

Does humus exist or is it just a view of the mind as some authors claimed it? I suggest, based on the 

observation of the activity of soil organisms, that humus should be considered as the ‘dark side’ of life 

and not as an intractable chemical component of soil organic matter. Most properties humus confers to 

the soil ecosystem are linked to high surface area for nutrient exchange and water retention and strong 

affinity to mineral particles. Comminution and transport of organic matter along the soil profile, 

together with intimate blending with mineral particles, take a prominent part in ecosystem services 

provided by humus. Microscopy, coupled with thorough examination of humus profiles, may help to 

reveal the biological origin of humus and the chain of processes by which living matter is transformed 

and recycled within the soil ecosystem. 
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Introduction 

Four years ago Johannes Lehmann and Markus Kleber, in a controversy paper entitled “The 

contentious nature of soil organic matter” (Lehmann and Kleber 2015), suggested to abandon the term 

‘humus’, together with correlated terms like ‘humic’, ‘humin’, ‘humified’, ‘humification’, etc. The 

first reason they invoked was that these notions were only instrumental in outdated methods of soil 

analysis, being based on an alkaline extraction of soil organic matter and its further precipitation in 

the form of a dark substance upon acidification. A second reason was that modern, non-extractive 

methods of soil analysis suggest a continuum from macromolecules synthesized by soil-dwelling 

organisms (plant roots, animals, microbes) and constitutive of their living then dead parts, to 

small organic molecules excreted by organisms or issued from the enzymatic degradation of 

macromolecules. A third reason was that the decomposer community was largely ignored from 

‘humus chemists’ who relied only on extraction procedures without any attention to the functions 

ensured by soil organic matter. This urged them to propose a model for the fate of organic debris, 

called the “soil continuum model” (SCM), speaking of biopolymers of various sizes, monomers and 

associated processes of aggregate formation and destruction, transformation from residues to CO2, 

adsorption and desorption to mineral surfaces. We think that their updated view of soil organic matter, 

rejecting the chemical sense still given to the word ‘humus’, is warmly welcomed now that soil 

biology has become an unavoidable component of ‘soil science’. However, we also think that a further 

step should be taken for a clear understanding of the humus concept, before rejecting it from the field 

of science. 

 

Recent developments in humus chemistry 

The most comprehensive and updated view of humus from chemical sense seems to be that of Piccolo 

(2002). This author describes humic substances as “supramolecular associations of self-assembling 

heterogeneous and relatively small molecules deriving from the degradation and decomposition of 

dead biological material.” This definition has nothing to do with previous ones and open new avenues 



to the chemistry of soil organic matter. The notion of ‘supramolecular association’, already highlighted 

on the base of previous experiments by Piccolo and Conte (2000), explains why humic compounds 

extracted by classical analytical methods resist so much to chemical description. Even if unit 

components of humus have been searched for a long time by soil organic chemists, not one was able 

to describe with certainty a humus molecule. The most reliable reason is that humus molecules do not 

exist, as convincingly claimed by Lehmann and Kleber (2015). However, the supramolecular 

concept (small molecules linked by Van der Wals forces and hydrogen bonds) allows explaining that 

organic matter, not only in soils but also in sediments and even in atmospheric aerosols (Kiss et al. 

2003), may upon degradation become self-reassembled in molecular clouds doted of original 

properties. Among these properties, the ability to rapidly incorporate organic molecules (e.g. 

pesticides, proteins, sugars) and to intimately associate with minerals (e.g. clays, metals) is remarkable 

(Livens 1991, Senesi 1992, Varadachari et al. 1994, Lichtfouse et al. 1995, Zang et al.  2000). 

Molecular disorder operating during the formation of humus is opposed to molecular ordering in the 

synthesis of proteins and other macromolecules by organisms. Of interest is the fact that disordered 

regions of proteins are those which allow them to interact with their binding partners, like humus does 

(Turoverov et al. 2010). The strong capacity of humic substances to incorporate and sequester 

extraneous organic molecules (Spaccini et al. 2002) point to the postulated ability of humus to store 

recently added atmospheric carbon and thus fight against climate warming (Lal et al. 2007). 

In a recent review on our present-day knowledge on humic substances Gerke (2018) criticized 

the SCM model proposed by Lehmann and Kleber (2015), arguing that they did not take into 

consideration the polymerizing and further reacting ability of humic substances, restricting their model 

to decomposition processes and to the shift from plant and animal residues to biopolymers then to 

monomers then at last to carbon dioxide. However, it is clear that this criticism concerns only the 

processing chain displayed in the central part of the SEM model, forgetting that on both parts of it 

Lehmann and Kleber show that molecules derived from the degradation of organic debris, and organic 

debris themselves contribute to the formation and destruction of aggregates and to adsorption and 

desorption processes in which mineral surfaces are involved. The notion of ‘black carbon’ (Goldberg 

1985) was also discussed in detail in Gerke’s review, because it has been claimed that humic aromatic 

structures were derived from fire-affected organic matter and thus should not be termed humus. Gerke 

explained why the methods used to dose black carbon (BPCA marker or UV methods) overestimated 

it, and showed that black carbon and humic substances were in strong interaction through both 

covalent and non-covalent linkages. 

In an appealing paper Baveye and Wander (2019) also replied to Lehmann and Kleber (2019). 

They showed that despite the turmoil in the soil scientific community caused by Lehmann-Kleber’s 

proposal to reject ‘humus’, this term continues to be largely used by scientists, with a still increasing 

number of publications citing it routinely. They also showed that the ‘new’ SCM model was in fact not 

new, and well under the seminal views elaborated more than 80 years ago by Waksman (1936). This 

author defined humus as consisting “of certain constituents of the original plant material resistant to 

further decomposition, of substances undergoing decomposition, either by processes of hydrolysis or 

by oxidation and reduction, and of various compounds synthesized by microorganisms.” Following 

Waksman’s idea that a pure chemical assessment of humus was a dead end, Baveye and Wander 

pleaded for a multidisciplinary research on humus, meaning that this notion was not a prerogative of 

chemists. From their point of view microbiology but also agronomy have their say, too. We 

acknowledge and warmly recommend adding zoology, too. 

 

The biological meaning of humus 

Commonly, non-chemists use the term ‘humus’ to designate every kind of organic matter which 

cannot be assigned by the naked eye to recognizable plant or animal debris, either in the form of dark- 

colored deposits of fine organic matter (in superficial humus layers, below the litter) or mixed with 

mineral matter deeper in the soil (Zanella et al. 2011). This highly transformed organic substrate is the 

target of well-managed composting processes (Sugahara and Inoko 1981) and is used to amend the 



soil for agricultural or horticultural purposes under the name of ‘compost’ (e.g. vermicompost). The 

application of humified matter to the soil is known to improve water retention (Giusquiani et al. 1995), 

nutrient retention and exchange (Steiner et al. 2008), heat capture (Pinamonti 1998), and to protect soil 

from erosion (Bazzoffi et al. 1998), among other ecosystem services. It has also been shown, after 

more than a century of silence on this process, that humic substances are biologically active from a 

nutritional point of view. They can be taken up by plants to be assimilated as extra carbon and 

nitrogen sources (Näsholm et al. 2009) and display nutrient-capture and growth-promoting hormone- 

like properties (Nardi et al. 2002), soil and roots being involved in a win-win feedback mediated by 

positive interactions (Nardi et al. 2017). 

But what is humus for a biologist? When passing from the naked eye to the microscopic 

observation of organic and mineral-organic horizons, the biological nature of humus is revealed. 

Ponge (1984, 1985, 1988, 2016) showed, by scrutinizing a small volume of pine litter at varying stages 

of decomposition, that most plant (pine and moss) remains were processed by microbes and animals, 

turning to ‘black matter’ made of fecal pellets in which minute plant, fungal and bacterial remains 

were clearly visible under the light microscope. The most minute arthropods (springtails, mites), as 

well as annelids (earthworms, enchytraeids) were able to comminute plant and fungal remains to an 

extent that only the greatest magnification of the light microscope was able to identify them, while 

bigger litter-consuming arthropods (millipedes, woodlice, fly larvae) accumulated gross fragments, 

visible to the dissecting microscope, in their faeces. Similar observations were made in mineral- 

organic horizons, where the intimate association of organic with mineral matter can be disentangled. A 

lot of debris, either of plant or microbial origin, can be easily identified in organic-mineral 

assemblages under transmitted electron microscopy (Foster 1988, Saur and Ponge 1988). Previously 

Tisdall and Oades (1982) had shown in ultrathin sections that the so-called soil micro-aggregates were 

in fact quiescent microbial colonies embedded in clay sheets. Bernier and Ponge (1994) showed that 

links between the amorphous (non-recognizable to the light microscope) part of soil organic matter 

and silt- and clay-size mineral particles were controlled by the dynamics of earthworm populations. 

Topoliantz and Ponge (2003) showed that in tropical slash-and-burn cultivated fields pieces  of 

charcoal were ingested, ground in tiny particles in the muscular gizzard and mixed with mineral matter 

by earthworms. Such observations of biological contributions to humus formation are not new, being 

since a long time the aim of soil micromorphologists (Kubiëna 1938, Zachariae 1965, Zaiets and Poch 

2016). However, knowledge on feeding and behavioral habits of soil organisms, together with plant 

anatomy, allows much more plant and microbial material to be observed and identified and much more 

structures (aggregates, coatings) to be assigned to the activity of animals and microbes, in particular 

when soil organisms can be observed and identified in the immediate vicinity of traces of their activity 

(Ponge 1990, 1991). 

For a biologist, humus is thus made of plant, fungal and bacterial remains of a size varying 

from the micrometer to the millimeter, and of ‘amorphous’ matter in which transmission electron 

microscopy still allows to discern partly degraded plant and microbial cell pieces of a size varying 

from the nanometer to the micrometer (Foster 1981). An increase in nanometer-sized electron-dense 

particles can be observed as a degradation stage of plant cell walls (Messner et al. 1985, Saur and 

Ponge 1988). These particles could be considered with caution as ‘true’ humic substances, the 

existence of which is still debated (Schmidt et al. 2011). In this respect it is a pity that during the last 

30 years ‘modern’ techniques of organic matter analysis, e.g. stable isotopes (Briones et al. 1999, 

Nguyen Tu et al. 2011), high-resolution molecular techniques (Lynch et al. 2004), and more recently 

metabolomics (Swenson et al. 2015), took precedence over soil imaging, because adapting the scale of 

observation to the studied process is a basic requirement of the search for causal relationships in 

complex systems (Coleman et al. 1992, Chapura 2009). 

 

Reconciling biological and chemical views about humus 

How to reconcile the view of the biologist with the most recent developments in humus chemistry? 

The transformation of organic matter in the soil, as viewed by the biologist, is mainly a physical 



process, embracing comminution (Mori et al. 2009), leaching (Nykvist 1963), compaction (Chauvel et 

al. 1999), physical protection (Balesdent et al. 2000), displacement along the soil profile and mixing 

(or not) with mineral matter (Lavelle et al. 2016), the net result of this transformation being 

exemplified in the concept of humus form (Bal 1970, Zanella et al. 2018). This physical 

transformation of organic matter is mainly effected by saprophagous animals (Wolters 2000) and to a 

more limited extent by microbial (Tisdall and Oades 1982) and abiotic processes (Denef et al. 2001). 

To these physical transformations, visible to the naked eye in the formation of the so-called humus 

horizons (Zanella et al. 2018), are superimposed microbial (Keeler et al. 2009) and to a lesser extent 

faunal (Garvin et al. 2000) enzymatic degradation, resulting in the formation of easily leached (Allison 

and Vitousek 2004) or metabolized small molecules (Tian et al. 2010). In the same time every soil- 

dwelling organism elaborates its own biomass (Powlson et al. 1987), which is in turn processed along 

soil trophic networks (Lueders et al. 2006) or accumulates as more or less degraded dead bodies 

(Kallenbach et al. 2015). All that is humus, most properties it confers to the soil ecosystem (Ponge 

2015) are linked to high surface area for nutrient exchange and water retention (Laird et al. 2010) and 

strong affinity to mineral particles (Vermeer et al. 1998). Some of the abovementioned processes 

contribute to degrade organic matter (until respired as carbon dioxide) while others stabilize it under 

various forms, e.g. deep carbon by roots (Kell 2011) or earthworms (Shuster et al. 2001), clay-humus 

assemblages by earthworms (Scullion and Malik 2000) or bacteria (Six et al. 2004). 

All models proposed by soil chemists cope with this view as far as they do not give 

precedence to a pure chemical formulation of humus which is, to our opinion, a complete waste of 

time given the complexity of soil organic matter even at the smallest scale (Lehmann et al. 2008). It 

has been claimed that most properties given to the soil by organic matter cannot be deduced from its 

molecular composition (Schmidt et al. 2011), and thus that a better knowledge of the environment and 

of the organisms which contribute to the dynamics of soil organic matter is urgently needed if we want 

to dispose of reliable models of carbon cycling and storage (Hedges et al. 2000). We suggest speaking 

of humus as the ‘dark side’ of life, and not as the abiotic component of soil organic matter, as most 

authors suggest it be (Gerke 2018). The recognition of the biological nature of humus would allow a 

better assessment of its origin, dynamics and emergent properties (Ponge 2005), like a step has been 

taken in soil science when the direct role of soil organisms in mineral weathering has been universally 

acknowledged (Neilands 1995, Jongmans et al. 1997). 
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