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Highlights

• a new model has been developed to describe the hardening recovery

during annealing

• a temperature dependent recovery variable counteracts the effect of the

hardening

• the model has been applied to the thermomechanical response of 316L

steel

• the proposed modeling approach is intended to simulate the welding

process
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Abstract

In this paper, a new thermodynamically-consistent modeling approach, ded-

icated to welding applications, is presented to describe the phenomenon of

hardening recovery in metals during annealing. The constitutive equations

are based on a classical thermo-elasto-plastic formulation, which is enhanced

by a new recovery variable counterbalancing the effect of the hardening

through a temperature-dependent evolution law. The identification of the

model parameters is achieved through experimental compressive tests and

heat treatments on 316L austenitic stainless steel. Finally, numerical simula-

tions considering various thermomechanical loading configurations are carried

out to evaluate the capabilities and limits of the model, which are furthermore

illustrated in the context of welding applications through a FE example.
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1. Introduction

Integrating the thermomechanical behavior of metallic materials into Fi-

nite Element (FE) simulations of multipass welding process plays a major

role for the understanding and the prediction of internal residual stresses

and plastic distortions in welded engineering structures (Lindgren et al.,

1999; Depradeux, 2004; Goldak and Akhlaghi, 2005; Lindgren, 2007; Leg-

gatt, 2008). Previous studies demonstrated that the choice of the hardening

law in thermo-elasto-plastic models has an important influence on the accu-

racy of the predicted results (Mullins and Gunnars, 2009; Muránsky et al.,

2012a; Joosten and Gallegillo, 2012). In addition, the local plastic strain

associated with high local temperature in multipass welding may lead to a

softening behavior, where the yield strength can potentially be restored to

its original value (Petkovic et al., 1979; Keavey et al., 2010; Yu et al., 2015;

Chetra Mang and Hindili, 2017).

From a metallurgical point of view, this loss of hardening is caused by the

recovery mechanism, for which a plastically deformed metal can restore its

initial properties. Indeed, thermally activated processes such as solid-state

diffusion, as well as rearrangement and annihilation of dislocations occur

when metals are heated up to a certain temperature (Suwas and Ray, 2014).

During the recovery stage, the annihilation of dislocations previously intro-

duced by the plastic deformation leads to a reduction of the internal energy

and tends to favor strain-free grains. If plastic deformation and recovery

occur independently, this is referred to as static recovery. On the contrary,

if both mechanisms occur simultaneously, as it is the case during welding,
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this is referred to as dynamic recovery (Humphreys, 2017). Moreover, the

recrystallization stage may be triggered either simultaneously or after the

recovery stage (Stüwe et al., 2002), followed by the grain growth stage. The

recrystallization and grain growth mechanisms are considered negligible in

the modeling approach employed in this study and will be discussed in sec-

tion 5. It is important to note that the term of annealing is a synecdoche that

appears in different studies to describe the recovery mechanism, whereas it is

normally defined as a global term for metallurgical heat treatment describing

the recovery, recrystallization and grain growth.

Given the previous mentioned points, it is crucial to consider the phe-

nomenon of recovery, or so-called annealing, to describe the softening behav-

ior of a welded material through its loss of hardening memory. Different au-

thors studied by means of FE calculations the influence of recovery on AISI

316LN austenitic stainless steel for prediction of residual stresses through

phenomenological models using rate-independent plasticity with mixed isotropic-

kinematic hardening law (Smith et al., 2009; Muránsky et al., 2012b; Smith

et al., 2012; Muránsky et al., 2015). In these studies, two temperature thresh-

olds T1 and T2 (T1 < T2) have been set. Above a lower temperature T1, the

material ceases to exhibit any further isotropic hardening but does not lose it.

Above T2, the equivalent plastic strain, is instantaneously set to zero, remov-

ing any prior isotropic hardening. Depradeux and Coquard (2018) used the

same concept of the so-called two-stage annealing, considering that the equiv-

alent plastic strain is multiplied by a factor equal to T2−T
T2−T1 when T1 < T < T2.

Despite their efficiency, these approaches display a lack of physical signifi-
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cance, since the recovery is a continuous time-dependent mechanism. The

two-stage annealing concept considers only the spatially reached tempera-

ture and does not account for the time during which the temperature is held

constant (instantaneous recovery).

To overcome this limitation, rate-dependent plasticity models (viscoplas-

ticity) established within the framework of thermodynamics, and including

a viscous function or potential with rate-dependent dynamic and/or static

recovery terms (viscous recovery) were integrated (Chaboche and Nouailhas,

1989; Razakanaivo and Waeckel, 1999; Chaboche, 2008; Besson et al., 2010).

Although such approaches provide predictive results, they involve a large set

of temperature-dependent parameters, that requires identification through

laborious experimental tests such as stress relaxation or creep.

Furthermore, dislocation-based models such as the Kocks-Mecking-Estrin

(KME) model are used to predict the mechanical behavior of metallic mate-

rials for a wide range of temperatures (Mecking and Kocks, 1981; Estrin and

Mecking, 1984; Kocks and Mecking, 2003; Blaizot et al., 2016; Lin et al., 2018;

Yuan et al., 2019). Voyiadjis and Abed (2005) developed a model accounting

for the effect of the dislocation density evolution on the thermomechanical

response of metals with different crystal structures at low and high strain

rates and temperatures. Voyiadjis et al. (2019) recently modified this model

by adding a specific term for modeling dynamic strain aging, which may also

have a significant influence on the thermomechanical behaviors of metals.

In addition to the physical concepts of dislocation interactions mechanism
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and thermal activation energy, a mathematical expression of the Weibull

distribution related to a physically-based mechanism of dislocation density

evolution is used to derive the constitutive equations of the model. Despite

bringing a physical basis, all these models require to know the initial disloca-

tion density from TEM (Transmission Electron Microscopy) measurements,

and microstructural parameters whose values are not necessarily referenced

for all materials. To a lesser extent, it also necessitates to realize uniaxial

loading tests at different temperatures and strain rates, as well as to adjust

a large set of parameters (Nes, 1997; Lindgren et al., 2008, 2017).

In this work, a new constitutive modeling approach lying into the frame-

work of thermodynamics is proposed to account for a rate-dependent harden-

ing recovery in a classical thermo-elasto-plastic formulation under the small

strains assumption. In this purpose, a new recovery variable (internal state

variable), associated with an isotropic hardening function, is introduced into

the constitutive equations. This recovery variable gradually cancels the ef-

fect of the hardening variable according to a temperature-dependent evolu-

tion law. The latter involves a reduced number of parameters that can be

conveniently identified from uniaxial thermomechanical tests.

This paper is structured as follows: the second section introduces the

constitutive equations and the thermodynamical framework of the proposed

model. The third section focuses on the experimental procedure and the

identification strategy of the model parameters. The fourth section presents

examples of numerical simulations, where the material is subjected to var-
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ious thermomechanical loading paths. A three-dimensional FE example is

also presented to illustrate the model capabilities in the context of welding

applications. The fifth section discusses the possible perspectives related to

this work, before concluding in the last section.

In this work, the following notation is adopted: bold and blackboard

symbols denote second and fourth order tensors, respectively, whereas other

symbols are scalar quantities. The twice contracted and dyadic products are

given by:

A : B = AijBij, (A : B)ij = AijklBkl, (A⊗B)ijkl = AijBkl.

Moreover, all the second order tensors are symmetric (Aij = Aji) and all

the fourth order tensors have at least the minor symmetries (Aijkl = Ajikl =

Aijlk). Consequently, they can be respectively reduced to 6 × 1 and 6 × 6

matrices according to the Voigt notation. I represents the second order

identity tensor. The operators hyd(σ) and Dev(σ) designate the hydrostatic

pressure and the deviatoric part of a stress tensor σ, respectively, while eq(σ)

is the equivalent Von Mises stress:

hyd(σ) =
1

3
tr(σ),

Dev(σ) = σ − hyd(σ)I,

eq(σ) =

√
3

2

(
Dev(σ) : Dev(σ)

)
.
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2. Constitutive equations and thermodynamical framework

2.1. State laws

The present model is based on classical thermo-elasto-plastic constitutive

equations (Lemâıtre and Chaboche, 1990) including a temperature-independent

isotropic hardening and the thermal expansion. The observable state vari-

ables of the proposed model are the total strain ε and the absolute temper-

ature T , while the plasticity-related internal state variables are the plastic

strain εp and the hardening variable p, which is also referred to as the equiv-

alent plastic strain. To represent the hardening recovery mechanism, an

additional internal state variable β, later referred as the recovery variable or

softening variable, is utilized. The latter is introduced in the Helmholtz free

energy potential as follows:

ρψ(ε, T, εp, p, β) =
1

2

(
ε− εp − εth(T )

)
: C :

(
ε− εp − εth(T )

)

+

∫ p−β

0

R(ξ) dξ + ρψ0(T ). (1)

In the above equation, ρ is the mass density, considered as constant under

the small strains assumption. C is the fourth order stiffness tensor classically

formulated for bulk isotropic materials and is thus defined by the Young

modulus E and the Poisson ratio ν. εth stands for the thermal strain, usually

expressed for an isotropic material as:

εth(T ) = αI(T − T0), (2)

where α and T0 denote the coefficient of thermal expansion and the reference

temperature, respectively. In equation (1), R represents the hardening func-

tion, defined in the present model by an exponential-linear law (Lemâıtre
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and Chaboche, 1990):

R(ξ) = Q1

(
1 − exp(−bξ)

)
+Q2ξ, (3)

where Q1, Q2 and b are material parameters, while ξ is the argument of the

function. Note that any other form can be used for R(ξ), as long as this

function is monotonically increasing and defined null at ξ = 0. The last term

in equation (1), ρψ0(T ), depicts the calorific energy, which is a temperature-

dependent function given in Appendix A.

Following the classical thermodynamical derivation procedure, it yields

the usual expression for the stress:

σ = ρ
∂ψ

∂ε
= C :

(
ε− εp − εth(T )

)
, −σ = ρ

∂ψ

∂εp
, (4)

and the thermodynamic forces:

ρ
∂ψ

∂p
= R(p− β), ρ

∂ψ

∂β
= −R(p− β). (5)

From equation (5), it can be observed that, unlike classical plasticity models,

the hardening function now depends on the difference between the hardening

and the recovery variables, p and β, respectively. From a phenomenological

point a view, the hardening variable p represents the effect of the generated

dislocations (Aifantis, 1987; Voyiadjis and Abed, 2005), while the recovery

variable β represents the effect of the dislocations that will rearrange and

annihilate each others. Thus, β plays the role of an antagonist variable with

respect to the internal variable p. Additionally, the entropy is defined by:

s = −∂ψ
∂T

, (6)

whose analytical expression is given in Appendix A.
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2.2. Evolution laws

The second law of thermodynamics implies that the mechanical dissipa-

tion has to be always positive or null through the Clausius-Duhem inequality

given by:

Φ̇ = Ẇε − ρ(ψ̇ + sṪ ) ≥ 0

= σ : ε̇− ρ

(
∂ψ

∂ε
: ε̇+

∂ψ

∂T
Ṫ +

∂ψ

∂εp
: ε̇p +

∂ψ

∂p
ṗ+

∂ψ

∂β
β̇ + sṪ

)
≥ 0

= σ : ε̇p −Rṗ+Rβ̇ ≥ 0.

(7)

where Φ̇ and Ẇε denote, respectively, the rate of dissipated energy and the

rate of strain energy. Therefore, the evolution of the internal state variables

must be written in accordance with the above inequality to guarantee that

the proposed constitutive model is well thermodynamically consistent.

2.2.1. Evolution of the plasticity-related variables

As usual in associative plasticity, the evolution of the hardening variable

p and the plastic strain εp are governed by the normality rule of the yield

function f , which also activate the plastic multiplier λ through the Kuhn-

Tucker conditions:

f(σ, R) = eq(σ) −R−R0 ≤ 0,





f < 0, λ̇ = 0

f = 0, λ̇ > 0
, (8)

where R0 is the initial yield threshold. Thus, one obtains for the plasticity-

related evolution equations:

ṗ = − ∂f

∂R
λ̇ = λ̇, ε̇p =

∂f

∂σ
λ̇ = Λ(σ) ṗ, (9)

where Λ(σ) denotes the plastic strain flow, given by:

Λ(σ) =
∂f

∂σ
=

3

2

Dev(σ)

eq(σ)
. (10)
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It is recalled that the convexity of f with regard to the associated variables

σ and R ensures that the plasticity-related dissipation is always positive or

null, i.e. σ : ε̇p −Rṗ ≥ 0.

2.2.2. Evolution of the hardening recovery variable

It is important to have in mind that achieving quantitative characteriza-

tion of the recovery phenomenon remains very complicated and that there

is no consensus regarding its evolution (Friedel, 1964; Humphreys, 2017).

However, Petkovic et al. (1979) and Farzadi (2015) brought out that the

recovery kinetic is mainly governed by the temperature and the dislocation

density, where both act as driving forces for the recovery mechanism. Based

on experimental trends observed in the above-mentioned references, a spe-

cific evolution law is proposed in this work to describe the kinetic of the

recovery variable β. According to this law, the recovery rate is defined as the

product of two sub-functions, which respectively represent the effects of the

temperature and the dislocation density on the recovery kinetic. This gives:

β̇ = g(T ) × h(p− β). (11)

The first sub-function, denoted by g, depends only on the temperature. This

function is chosen under the form of a power law of the positive part1 of the

difference between the current and the activation temperature, Ta:

g(T ) = AT
〈
T − Ta

〉AL

+
, (12)

1The positive part of a scalar quantity a is denoted by
〈
a
〉
+

, such that
〈
a
〉
+

= a if

a ≥ 0 and
〈
a
〉
+

= 0 if a < 0.
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where AT and AL are material parameters. Ta represents the temperature

threshold from which the hardening recovery mechanism becomes active2.

The second sub-function, denoted by h, depends on the difference between

the hardening and the recovery variables (p and β), whose value is implicitly

related to the current dislocation density. This function is chosen under the

following exponential form:

h(p− β) = 1 − exp

(
− p− β

Ar

)
. (13)

With this form, h is nearly equal to 1 when the value of β is far lower than

the current value of p. In this case, the recovery rate is mainly influenced

by the temperature through the sub-function g. However, h gradually goes

to 0 when β approaches the current value of p. In this case, the recovery

rate decreases and tends to zero, which prevents β to exceed p. Thus, the

role of the sub-function h is to ensure that the material cannot restore more

hardening than it has been generated. Note that the parameter Ar controls

the influence of the remaining hardening to recover (p − β) on the recovery

rate. If Ar is small, then, at fixed temperature, the hardening recovery rate

will start decreasing just before the full recovery. On the contrary, if Ar is

large, then the recovery rate will be slowly decreasing long before the full re-

covery. Both types of evolution have been reported in various experimental

studies (Petkovic et al., 1979; Vandermeer and Rath, 1990; Farzadi, 2015).

2Note that, experimental observations reported that slowly evolving recovery may exist

at low temperatures (Orowan, 1940; Messerschmidt et al., 2010; Pham et al., 2015). In the

present model, the activation temperature Ta may be interpreted as the threshold from

which the recovery mechanism becomes significantly active on the considered time-scale.
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The recovery kinetic in equation (11) is furthermore illustrated in Figure 1.

Figure 1: Schematic representation of the recovery kinetic: recovery rate (β̇) vs. difference

between the hardening and the recovery variable (p− β) vs. temperature (T ).

It is worth noticing that, since R and β̇ are necessarily positive, the

hardening recovery-related dissipation is always positive or null, i.e. Rβ̇ ≥ 0.

Therefore, the proposed constitutive relation is thermodynamically allowable,

according to equation (7).

2.3. Temperature field equation

The temperature field equation, commonly called heat equation, is ob-

tained from the 1st law of thermodynamics in which the expression of the

Helmholtz free energy potential is substituted (Lemâıtre and Chaboche, 1990;

Chatzigeorgiou et al., 2018; Praud, 2018), as detailed in Appendix A. For
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the proposed model, after proper calculation (see Appendix A), this gives:

ρcpṪ = −divx(q) + ω + Φ̇ − TαI : σ̇︸ ︷︷ ︸
ωε

. (14)

In the above equation, cp denotes the heat capacity at constant pressure. q

is the heat flux, classically defined for an isotropic material by:

q = −k gradx(T ), (15)

where k is the conductivity. ω stands for an eventual prescribed heat source.

Note that, in the context of welding process simulation, the heat source ω

may be utilized to represent the thermal load induced by a weld bead, al-

though an external heat flux or a fixed temperature may be also considered

in this purpose (Eagar and Tsai, 1983; Goldak et al., 1984; Seleš et al., 2018).

ωε represents the internal heat produced by the mechanical work. The first

and second terms of ωε depict the dissipation, already given in equation (7),

and the thermomechanical coupling sources.

From equation (14), it is obvious that the deformation process of the

material influences the temperature field equation through the internal heat

produced by the mechanical work ωε. Therefore, rigorously, the unknown dis-

placements and temperature must be solved as fully coupled fields. This is

generally achieved through a fully coupled thermomechanical analysis, where

the equilibrium equations (mechanical problem) and the heat equation (ther-

mal problem) are simultaneously solved, while integrating all the coupling

terms. However, the high temperatures involved with the welding process

are significantly larger than the ones generated by the mechanical work. In
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these conditions, the heat generated by the mechanical work, ωε, can be

reasonably neglected in the temperature field equation (14), i.e. ωε ≈ 0.

With this assumption, the temperature field equation becomes insensitive to

the deformation of the material. Thus, the whole problem can be treated

with an uncoupled thermomechanical analysis, where the thermal problem

is solved prior to the mechanical one. The temperature field computed from

the thermal analysis is then utilized as input data for the subsequent me-

chanical analysis. The simulations presented in this work were performed in

this context.

2.4. Numerical implementation

The proposed constitutive model is implemented into the FE solver

ABAQUS/Standard with the help of a User Material subroutine (UMAT).

The numerical integration algorithm is based on the convex cutting plane

form of the return mapping algorithm (Simo and Ortiz, 1985; Ortiz and Simo,

1986; Simo and Hughes, 1998; Praud et al., 2017a,b) and is detailed in Ap-

pendix B.

As explained in the previous section, uncoupled thermomechanical analy-

ses are considered in this work. Thus, the temperature field is first computed

from a thermal analysis and is next set as input data for the mechanical anal-

ysis, in which the UMAT is utilized.
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3. Experimental identification

3.1. Experimental procedure and testing

In this section, it is proposed to apply the previously formulated consti-

tutive model to study the hardening recovery of an austenitic 316L stainless

steel alloy. To do so, an experimental program involving uniaxial compressive

tests and annealing treatments, was conducted to highlight the hardening re-

covery phenomenon occurring near weld beads during the welding process.

It is assumed that high temperatures with high heating kinetics is reached

near weld beads, whereas, far from them, temperatures and heating kinetics

are lower (Murugan et al., 1998). This is why heat treatments should be

carefully chosen to simulate the range of temperature and heating kinetics

seen by the welded part near weld beads.

The compressive tests were conducted on four cylindrical samples named

S1, S2, S3 and S4, coming from a hot wire drawing rod. Their dimensions

are 10 mm in diameter and 24 mm in length. Prior to the tests, all samples

have undergone a stress-released heat treatment at 950°C during 40 min at

1 bar in air, to remove residual stresses induced prior the forming process

and sample preparation. The compressive tests were realized at room tem-

perature, Troom = 293.5 K, with the help of a hydraulic ZWICK 100 kN,

monitoring the uniaxial stress (σ11) with a load cell (Figure 3a). A MultiX-

tens extensometer has been used for the uniaxial strain measurement (ε11),

considering an initial gauge length of 15 mm. A constant nominal strain rate

of 5 × 10−4 s−1 was piloted by moving cross-head for all samples. Then, the

following thermomechanical loading configurations were performed:
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• Thermomechanical loading path for S1 sample:

Sample S1 was first subjected to a compressive strain of 0.035 (step 1:

loading), before being unloaded and left free of stress (step 2: unload-

ing). The sample was next heated up to a maximum temperature Tmax

(step 3: heating) and cooled down to room temperature Troom while

being kept free of stress (step 4: cooling). Then, the sample was sub-

jected to another compressive strain of 0.035 (step 5: loading), before

being one more time unloaded and left free of stress (step 6: unloading).

This thermomechanical loading path is illustrated in Figure 2a. Dur-

ing this test, the heat treatment (steps 3 and 4) was conducted under

vacuum at 4 × 10−5 mbar on a NETZCH dilatometer with a radiative

heating system. The temperature was recorded with a S thermocouple

in contact with the sample. Both the heating and cooling stages were

controlled during the test.

• Thermomechanical loading path for S2, S3, and S4 samples:

Samples S2, S3 and S4 were first subjected to a compressive strain of

0.035 (step 1), before being unloaded and left free of stress (step 2). The

samples were next heated up to a maximum temperature Tmax at fixed

strain (step 3), unloaded to zero stress at fixed temperature (step 4) and

cooled down to room temperature Troom while being kept free of stress

(step 5). Then, the sample is subjected to another compressive strain

of 0.035 (step 6), before being one more time unloaded and left free of

stress (step 7). This thermomechanical loading path is illustrated in

Figure 2b. During these tests, the heat treatments (steps 3, 4 and 5)
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were performed on a GLEEBLE machine with inductive heating system

(Figure 3b) at atmospheric pressure with argon used as shielding gas.

The temperature was recorded with a K thermocouple directly welded

on the sample. During the heat treatment (steps 3, 4 and 5), it is

important to mention that the stress was technically not measurable

during the heating stage (step 3), which occurred at fixed strain. Next,

during the following unloading and cooling stages (steps 4 and 5), where

the stress was released and left free, the strain was also technically not

measurable. Nonetheless, the strain at the beginning of the second

loading stage (step 6) was evaluated by measuring the samples before

and after the heat treatment. During these tests, the heating stage

(step 3) was temperature-controlled, while the cooling stage (step 5)

was free to Troom.

For each sample, the details of the heat treatments in terms of maximum

temperature and heating/cooling kinetics are summarized in Table 1.

Table 1: Details of the heat treatments for S1, S2, S3 and S4 samples.

Sample S1 S2 S3 S4

Tmax (K) 673 973 1273 1423

Heating rate (K.s−1) 0.7 70 333.3 383.3

Time held at Tmax (s) 10 1 1 5

Cooling rate (K.s−1) 0.3 free free free
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(a) Thermomechanical loading path for S1 (b) Thermomechanical loading path for S2,

S3 and S4

Figure 2: Experimental thermomechanical loading paths.

(a) Compressive test on Zwick machine (b) Heat treatment on Gleeble machine

Figure 3: Experimental set-up for the thermomechanical tests.

It is worth noticing that, for the first thermomechanical loading path (for

sample S1), the heat treatment was performed under free stress conditions,

leaving the material free to expand and to contract. Therefore, the material
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exhibits a static recovery, as the hardening recovery phenomenon occurred

independently from the plasticity. Such a configuration is particularly conve-

nient for the identification of the model parameters. However, the equipment

at our disposal (NETZCH dilatometer with radiative heating system) allows

to realize heat treatments under free stress conditions only for moderate tem-

peratures (≈1000°C), which appear to be lower than the recovery activation

temperature. This is why only S1 sample was tested with this configuration.

To overcome this issue, the second thermomechanical loading path was

realized for samples S2, S3 and S4 with another equipment (GLEEBLE ma-

chine with inductive heating system) allowing to perform heat treatments in

a higher temperature range but only at fixed strain for the heating stage.

Under these conditions, the material cannot freely expand and the compres-

sive stresses were generated into the sample, which may potentially plastify

during the heating stage. Therefore, the material can exhibit a dynamic

recovery. Since the elasto-plastic properties are assumed to be temperature-

independent in the present model, which may not be the case in reality, the

dynamic recovery conditions are not ideal for the identification of the model

parameters. Nevertheless, in the context of this first study, these tests will

be utilized for the parameter identification of the proposed model.

3.2. Identification of the parameters

The parameters of the proposed constitutive model were identified from

the experimental tests previously introduced.

For sample S1, the maximum temperature Tmax appears to be not high
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enough to activate the recovery mechanism. Therefore, this test can be uti-

lized to identify the plasticity parameters R0, Q1, Q2 and b through standard

procedures for plastic materials (Lemâıtre and Chaboche, 1990). The coef-

ficient of thermal expansion α, is directly determined from the dilatometer

measurements during the heat treatment. The obtained parameters are listed

in the upper part of Table 2. The experimental data for this test are com-

pared to the computed material response in Figure 4.

(a) Stress (σ
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) vs. temper-

ature (T ) for sample S1
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(b) Temperature (T ) vs. time for sample

S1

Figure 4: Thermomechanical test for the S1 sample. In Figure 4a, the dashed line depicts

the experimental material’s response, while solid lines represent the response computed by

the model using the experimentally measured temperature in Figure 4b. The color code

of the steps is the same as Figure 2a and is recalled in Figure 4b.

The hardening recovery parameters were next identified from the exper-

imental data coming from samples S2, S3 and S4. Then, the parameters

Ta, AT , AL, Ar were identified using a reverse engineering algorithm based

on the Levenberg-Marquardt technique (Levenberg, 1944; Marquardt, 1963;

Meraghni et al., 2014). This method consists in adjusting the unknown model

parameters by minimizing a cost function generally expressed by the least
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squares between the computed response and the experimental data. It is

recalled that the material response is not measured during the heat treat-

ment (steps 3, 4 and 5). Thus, the identification was carried out only on the

loading and unloading stages (steps 1, 2, 6 and 7). The obtained parameters

are listed in the lower part of Table 2. Comparisons between the experimen-

tal data and the computed material responses are presented in Figure 5 for

samples S2, S3 and S4.

Table 2: Identified material parameters for austenitic 316L stainless steel alloy.

Feature Parameter value unit

Elasticity E 193500 MPa

ν (standard value) 0.3 -

Thermal expansion α 17.1 × 10−6 K−1

T0 293.5 K

Plasticity R0 190 MPa

Q1 50 MPa

b 400 -

Q2 2880 MPa

Hardening recovery Ta 673.5 K

AT 5 × 10−7 K−AL .s−1

AL 2.5 -

Ar 40 -

For sample S1 (see Figure 4), as previously mentioned, the maximum
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temperature reached throughout the heat treatment was not high enough to

activate the hardening recovery mechanism. Thus, at the beginning of the

second loading stage, the hardening was approximately at the same level as

the one reached at the end of the first loading stage.
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(a) Stress (σ11) vs. strain (ε11) vs. temper-

ature (T ) for sample S2
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(b) Temperature (T ) vs. time for sample

S2

(c) Stress (σ11) vs. strain (ε11) vs. temper-

ature (T ) for sample S3
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(d) Temperature (T ) vs. time for sample

S3

(e) Stress (σ
11

) vs. strain (ε
11

) vs. temper-

ature (T ) for sample S4
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(f) Temperature (T ) vs. time for sample

S4

Figure 5: Thermomechanical tests for samples S2, S3 and S4. In Figures 5a, 5c and

5e, dashed lines depict the experimental material’s response, while solid lines represent

the response computed by the model using the experimentally measured temperatures in

Figures 5b, 5d and 5f, respectively. The color code of the steps is the same as Figure 2b

and is recalled in Figure 5b. Note that, since the step 4 (the second unloading) occurs

quasi-instantaneously, the corresponding green colored line is not visible in Figures 5b, 5d

and 5f, but is well present between the blue and purple colored lines.
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For samples S2, S3 and S4 (see Figure 5), the material responses were

overall well captured during the first loading and unloading stages (steps 1

and 2). However, it is worth noticing that there is a slight shift between the

experiment and the computed response for sample S3 (see Figure 5c). More-

over, one can remark a small tensile (negative compressive) strain in the

experimental data for sample S4 (Figure 5e) during the first loading stage

(step 1). This may come from an unsuitable parallelism of the sample’s faces,

which might have induced small perturbations of the strain measurement at

the beginning of the compression. During the heating stage (step 3), which

occurred at fixed strain, compressive stress was generated as the material

cannot freely expand. The generated stress levels appeared to be important

enough to cause plastic flow with hardening. During this stage the hardening

recovery also became active as the temperature increased and exceeded the

activation threshold of this mechanism (Ta). This produced a small stress

drop at the end of the heating stage (step 3), which can be clearly observed

on sample S4 (see Figure 5e), whereas it is barely visible for sample S2 and

S3 (see Figures 5a and 5c). Next, the material was quasi-instantaneously

unloaded to zero stress (step 4) and left free of stress during the following

cooling stage (step 5), during which the sample could freely shrink. After re-

turning at room temperature, the second loading stage was carried out (step

6) with an associated stress response reflecting the partial or full recovery.

The temperature reached during the heat treatment of sample S4 was high

enough and permitted the material to recover most of its hardening. For

samples S2 and S3, the intermediate temperatures produced a partial hard-

ening recovery of the material.
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The overall good agreement between the computed results and the exper-

imental data demonstrated the capabilities of the model to capture the ther-

momechanical response of metallic materials exhibiting thermally-activated

hardening recovery.

4. Numerical simulations

4.1. Thermomechanical response of a material point

In this section, additional examples are presented to provide a better

understanding of the proposed model, as well as to illustrate its predictive

capabilities. These examples were carried out on a single material point under

uniaxial loading conditions with the material parameters listed in Table 2.

4.1.1. Example 1: Study of static recovery

In this first example, the material was loaded up to a stress level of 300

MPa in 100 s before being fully unloaded in another 100 s. During this stage,

the temperature was kept constant and equaled to the reference temperature

(T0 = 293.5 K). The material was next left free of stress for 100 s, during

which the temperature was raised to a maximum value Tmax in 100 s before

returning to the reference temperature T0 in another 100 s. In the last stage,

the material was reloaded up to 350 MPa under constant temperature. As-

suming a melting temperature Tm for 316L of 1773 K, three values of Tmax

were considered: 573.5 K (0.3 × Tm), 1073.5 K (0.6 × Tm) and 1473.5 K

(0.8 × Tm). The first one was lower than the activation temperature Ta, the

second one was slightly greater than Ta, whereas the third one was much
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greater than Ta. These thermomechanical loading paths are illustrated in

Figure 6.
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(a) Applied stress (σ
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) vs. time
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(b) Applied temperature (T ) vs. time

Figure 6: Example 1: Applied thermomechanical loading paths in the case of static recov-

ery.

This example highlights the effect of the thermally-activated hardening

recovery on the thermo-elasto-plastic response of the material in the case

of static recovery, when the plasticity and the hardening recovery are sepa-

rately activated. The results of these simulations are presented in Figure 7.

Plastic strain and hardening were generated during the first loading stage.

When the material was next heated under free stress conditions, there was

no hardening recovery if the temperature does not exceed Ta (see Figure 7b).

Thus, at the next reloading stage, the material started plastifying from the

previously reached stress level (see Figure 7a). However, if the temperature

exceeded Ta, then the hardening could gradually recover (see Figures 7d and

7f). In this case, during the reloading stage, the material started plastifying

from a stress level lower than the one previously reached (see Figures 7c and

7e). The hardening may be partially or fully recovered, depending on the

27



temperature reached and the time the material has been kept at this tem-

perature (see Figures 7c, 7d , 7e and 7f).

28



(a) Stress (σ11) vs. strain (ε11) vs. temper-

ature (T ) for Tmax = 573.5 K
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(b) Hardening and recovery variables (p

and β) vs. time for Tmax = 573.5 K

(c) Stress (σ11) vs. strain (ε11) vs. temper-

ature (T ) for Tmax = 1073.5 K
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(d) Hardening and recovery variables (p

and β) vs. time for Tmax = 1073.5 K

(e) Stress (σ
11

) vs. strain (ε
11

) vs. temper-

ature (T ) for Tmax = 1473.5 K
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(f) Hardening and recovery variables (p and

β) vs. time for Tmax = 1473.5 K

Figure 7: Example 1: Simulated material responses in the case of static recovery. This

example illustrates the cases of non-recovery, partial recovery and full recovery of the

hardening according to the temperature levels reached.

29



4.1.2. Example 2: Study of dynamic recovery under monotonic loading

In the second example, the material was, in a first step, left free of stress

while the temperature was elevated up to certain level Tmax hold for 5 s.

During this stage the material could freely expand. The same values of Tmax

as for the first example were considered, namely: 573.5 K, 1073.5 K and

1473.5 K. In a second time, a strain of 0.05 was applied with a strain rate of

5 × 10−4 s−1, while the temperature was kept constant. An additional case

with a higher strain rate: 5 × 10−3 s−1 was also considered for Tmax = 1073.5

K. These thermomechanical loading paths are illustrated in Figure 8.
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(a) Applied strain (ε
11

) vs. time

0 50 100 150
Time [s]

500

1000

1500

T
em

pe
ra

tu
re

 [K
]

(b) Applied temperature (T ) vs. time

Figure 8: Example 2: Applied thermomechanical loading paths in the case of dynamic

recovery under monotonic loading.

This example highlights the effect of the thermally-activated hardening

recovery on the thermo-elasto-plastic response of the material in the case of

dynamic recovery, when the plasticity and the hardening recovery are simul-

taneously activated, under monotonic loading. The results of these simula-

tions are presented in Figures 9 and 10. If the temperature of the material

did not exceed Ta, the simulation indicated that the hardening recovery was
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Figure 9: Example 2: Simulated material responses, stress (σ
11

) vs. strain (ε
11

), in the

case of dynamic recovery under monotonic loading.

not active (see Figure 10a) and the material response corresponds to the one

of a classical plastic model (see the black curve in Figure 9). However, if

the temperature exceeded Ta, then the hardening started to be recovered at

the same time than it was generated (see Figures 10b, 10c and 10d). If the

temperature was high enough, then the hardening was recovered almost as

fast as it was generated (see Figure 10d), making the material response quasi

similar to a perfectly plastic material (see the red curve in Figure 9). At lower

temperatures, the hardening was generated much faster than it was recovered

(see Figures 10b and 10c), leading to an intermediate response between the

two previous cases (see dark and light blue curves in Figure 9). This inter-

mediate response appears to be time-dependent as the latter is sensitive to

the applied strain rate (see dark and light blue curves in Figure 9). Indeed,

although the plasticity-related evolution laws are time-independent (see Sec-
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tion 2.2.1), the one related to the hardening recovery is time-dependent (see

Section 2.2.2), which makes the overall material response time-dependent

when both mechanisms are active.
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(a) Hardening and recovery variables (p

and β) vs. time for Tmax = 573.5 K and

ε̇ = 5 × 10−4 s−1
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(b) Hardening and recovery variables (p

and β) vs. time for Tmax = 1073.5 K and

ε̇ = 5 × 10−4 s−1
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(c) Hardening and recovery variables (p

and β) vs. time for Tmax = 1073.5 K and

ε̇ = 5 × 10−3 s−1
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(d) Hardening and recovery variables (p

and β) vs. time for Tmax = 1473.5 K and

ε̇ = 5 × 10−4 s−1

Figure 10: Example 2: Evolution of the internal state variables p (hardening variable) and

β (recovery variable), in the case of dynamic recovery under monotonic loading.
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4.1.3. Example 3: Study of dynamic recovery-induced stress relaxation

In the third example, a strain of 0.01 was applied at the reference tem-

perature (T0 = 293.5 K) in 5 s. In a second stage, the stress reached after

the previous loading was kept constant, the material was heated up to a

certain temperature Tmax in 5 s, and left free to expand. Then, the strain

and temperature were both kept constants. The same values of Tmax as for

the first example were considered, namely: 573.5 K, 1073.5 K and 1473.5 K.

These thermomechanical loading paths are illustrated in Figure 11.
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(a) Applied strain (ε11) vs. time
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(b) Applied temperature (T ) vs. time

Figure 11: Example 3: Applied thermomechanical loading paths in the case of dynamic

recovery-induced stress relaxation.

This example highlights the stress relaxation induced by a dynamic re-

covery under constant strain. The results of these simulations are presented

in Figure 12. When the material was heated up above the activation tem-

perature Ta, the hardening recovery became active under constant strain.

Therefore, due to the gradually decreasing yield stress, the material plasti-

fied, leading to an apparent stress relaxation. The higher the temperature,

the faster is the recovery rate and thus the relaxation (see blue and red curves
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in Figure 12). However, if the temperature did not exceed Ta, the recovery

remained inactive and the material did not undergo any relaxation (see black

curve in Figure 12). It is noted that, according to the model formulation, the

stress cannot decrease beyond the yield threshold R0 during the relaxation.
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Figure 12: Example 3: Simulated material responses, stress (σ
11

) vs. time, in the case of

dynamic recovery-induced stress relaxation.

4.2. Three-dimensional FE application

The capabilities of the proposed model in the context of welding applica-

tions are illustrated through an example of a clamped plate locally heated at

its center representing the thermal load induced by a weld bead (see Figure

13). The dimensions of the plate, as well as the thermal and mechanical

boundary conditions applied on it are shown in Figure 13a. Due to symme-

tries, only one fourth of the plate is represented and appropriate boundary

conditions were applied on the planes of symmetry. Zero displacements are
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set to the clamped face on which adiabatic conditions are assumed. All the

other external surfaces of the plate were subjected to convective boundary

conditions, that were active during the whole analysis, considering an ex-

change coefficient H = 10 × 10−3 mW.mm−2.K−1 and an constant external

temperature T∞ = T0 = 293.5 K, which was also equal to the initial tem-

perature of the system. The plate was locally heated at the center of its top

face, on a small band area on which a heat flux q was applied. As shown

in Figure 13b, this heat flux q was initially null before taking the value of

4 × 103 mW.mm−2 during the heating stage, which lasted from t = 100 s

to t = 200 s. Afterwards came the cooling stage, where q was set back to

zero until the end of the analysis, at t = 3800 s. The plate was made with

the same material as the one identified in section 3, namely: 316L austenitic

stainless steel alloy, whose parameters and thermal properties are listed in

Tables 2 and 3, respectively.

The FE mesh contained 23664 nodes and 20691 first order hexaedral

solid elements (see Figure 13c). As explained in Section 2.3, it was assumed

the thermal problem was not influenced by the mechanical one. Hence, the

thermal problem was solved in a first stage and the obtained temperature

field was set as an input for the mechanical analysis to be solved in a second

stage. Note that the same mesh was used for both analyses.

The results of the thermal analysis are shown in Figure 14. During the

heating stage, the temperature rapidly increased and diffused from the center

of the plate top face, where the heat flux was applied. During the subsequent

cooling stage, the plate was not heated anymore, thus the temperature grad-
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(a) Dimension (in mm) of the plate and thermomechanical boundary conditions

0 500 1000 1500 2000 2500 3000 3500 4000
Time [s]

0

1

2

3

4

F
lu

x 
[m

W
.m

m
-2

]

103

(b) Applied heat flux (q) vs. time (c) FE mesh of the plate

Figure 13: Three-dimensional FE application: clamped plate locally heated at its center.

ually returned to the external temperature T∞ as the heat was extracted by

convection with the external environment. In this example, the attention

will be focused on three points A, B and C (see Figure 14a), where the levels

of stress, plasticity and recovery will be analyzed. The Point A was located

relatively far away from the heated area, the Point B lied in the vicinity

of the heated area, while the Point C was in the heated area. The highest

temperatures reached at points A, B and C were of 665.2 K, 991.0 K and
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Table 3: Thermal properties for austenitic 316L stainless steel alloy (Depradeux, 2004).

Feature Parameter value unit

Mass density ρ 8 × 10−9 T.mm−3

Heat capacity cp 577.3 × 106 mJ.T−1.K−1

Thermal conductivity k 21.3 mW.mm−1.K−1

1731.5 K, respectively (see Figure 14b).
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(b) Temperature (T ) vs. time at points A,

B and C

Figure 14: Three-dimensional FE application: temperature field computed from the ther-

mal analysis.

The results of the mechanical analysis are presented in Figures 15 and

16. Figures 15a and 15b displays the spatial distribution of the Von Mises

stress eq(σ) across the plate at the end of the heating stage (t = 200 s) and

at the end of the analysis (t = 3800 s), respectively. Figures 16a, 16c and

16e show, at points A, B and C, the evolution of the the Von Mises stress

eq(σ), along with the hydrostatic stress hyd(σ) in order to visualize whether

tension (hyd(σ) > 0) or compression (hyd(σ) < 0) stresses were involved. In
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addition, Figures 16b, 16d and 16f show the evolution of the hardening and

recovery variables at points A, B and C, respectively.

During the heating stage, the plate overall entered in axial compression

as its expansion was prevented along ~x1 (see Figures 16a, 16c and 16e). One

can also notice some stress concentrations around the edge of the clamped

surface due to prevented expansion along ~x2 (see Figure 15a). The induced

A
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(a) Von Mises stress (eq(σ)) at the end of

the heating stage (t = 200 s)

A

B
C

(b) Von Mises stress (eq(σ)) at the end of

the analysis (t = 3800 s)

Figure 15: Three-dimensional FE application: Von Mises stress field computed from the

mechanical analysis. The results are projected on the deformed configuration, which is

amplified by a factor ×15.

compressive stresses were overall sufficiently important so that plastic defor-

mations could be generated. At the point A, which is away from the heated

area, the maximum reached temperature (665.2 K) appeared to be too low

to activate the hardening recovery and only a small amount of plastic de-

formations were generated (see Figure 16b). At the point B, which lies in

the vicinity of the heated area, the maximum reached temperature was high

enough (991.0 K) to activate the hardening recovery. At this point, about
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50% of the generated hardening has been recovered (see Figure 16d). At the

point C, which is in the heated area, the maximum reached temperature was

much higher (1731.5 K). This led to an important hardening recovery, which

even more promoted further plastic deformations. At this point, about 80%

of the generated hardening has been recovered (see Figure 16f). During the

cooling stage, the plate shrank (see Figure 15b) as the temperature gradu-

ally decreased and returned to the ambient temperature T∞. Thus, the plate

overall entered in axial tension with stress levels high enough so that plastic

deformations are generated anew under tensile mode. However, the harden-

ing recovery stopped evolving quickly as the temperature rapidly dropped

below the activation threshold of this mechanism (see Figures 16b, 16d and

16f).
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(a) Von Mises and hydrostatic stresses

(eq(σ) and hyd(σ)) vs. time at point A
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(b) Hardening and recovery variables (p

and β) vs. time at point A
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(c) Von Mises and hydrostatic stresses

(eq(σ) and hyd(σ)) vs. time at point B
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(d) Hardening and recovery variables (p

and β) vs. time at point B
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(e) Von Mises and hydrostatic stresses

(eq(σ) and hyd(σ)) vs. time at point C
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(f) Hardening and recovery variables (p and

β) vs. time at point C

Figure 16: Three-dimensional FE application: Evolution of the Von Mises and hydrostatic

stresses (eq(σ) and hyd(σ)), and internal state variables p (hardening variable) and β

(recovery variable), at point A, B and C.
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5. Discussion towards future improvements

As it is formulated, the elasto-plastic part of the model is temperature-

and time-independent. However, it has been shown that temperature- and

time-dependent effects arise from the hardening recovery mechanism. In real-

ity, metallic materials are known to have elasto-plastic properties temperature-

dependent and may also display time-dependent (viscoplastic) behavior at

moderately high temperature before the activation of the recovery mecha-

nism. For example, with the proposed model, the stress cannot decrease

beyond the yield threshold during a relaxation induced by a dynamic re-

covery, whereas, experimentally, the stress is expected to vanish due to addi-

tional temperature- and time-dependent effects (Depradeux, 2004). Previous

studies have also demonstrated that, in welding process, the value of yield

threshold at high temperature has a small influence on the residual stresses,

but a large effect on the prediction of residual distortions (Bru et al., 1996;

Leblond et al., 1997; Bergheau et al., 2004). Long-time annealing involving

recrystallization and grain growth may also modify the mechanical proper-

ties such as the shape of the hardening function (Chen et al., 2014). Taking

into account the time- and temperature-dependencies may be substantial for

the numerical simulation of welding process. Therefore these effects are in-

tended to be integrated in the context of future improvements. For example,

a temperature-dependent hardening function might be considered along with

a viscoplastic or even a viscoelastic-viscoplastic formulation.

With the proposed model, the plastic deformation is governed by an

isotropic hardening rule. Such a description is generally sufficient when
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the material is exclusively subjected to tension or compression. However,

during the welding process, the material may be alternately subjected to

tension and compression. To treat such cases, it is also intended to extend

the proposed concept of hardening recovery to kinematic and/or combined

isotropic-kinematic hardening.

Integrating more complex temperature- and time-dependencies and kine-

matic hardening rules in the model would also require more-advanced char-

acterization techniques. In this purpose, performing tension/compression

tests at different strain-rates and temperatures would be useful to more

clearly identify the contribution of the hardening recovery on the time- and

temperature-dependent response of the material. The Satoh test could also

be carried out (Satoh and Ohnishi, 1972). This thermomechanical test is gen-

erally well representative of all the phenomena occurring during the welding

process (Mochizuki et al., 2002; Depradeux and Coquard, 2018).

6. Conclusions

In this work, a new thermodynamically-consistent modeling approach

has been developed to describe the thermally-activated hardening recovery

of thermo-elasto-plastic metals during annealing. The proposed constitutive

equations consist in a classical thermo-elasto-plastic formulation, which is

enhanced by an additional internal state variable, so-called recovery variable.

The latter counteracts the effect of the hardening through a temperature-

dependent evolution law.
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An experimental program involving uniaxial compressive tests and heat

treatments on a 316L austenitic stainless steel has been carried out to identify

the model parameters. The good agreement between the experimental and

computed results have demonstrated the capabilities of the model to capture

the thermomechanical response of metallic materials exhibiting thermally-

activated hardening recovery. Further simulations have been performed to

provide a better understanding of the proposed model and to highlight the

specific cases of static and dynamic recovery.

The proposed modeling approach is intended to be utilized for the sim-

ulation of welding process, to predict the reliability of welded engineering

structures through the evaluation of residual stresses and distortions. In this

context, future improvements are planned, like accounting for temperature-

dependent elasto-plastic properties and/or extending the recovery mechanism

to kinematic hardening rules.
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Appendix A. Relation with the temperature field equation

According to the 1st law of thermodynamics, the rate of internal energy

per unit of mass, e, in a material volume element, is equal to the sum of the

power produced by this material (heat source ω) and its deformation (strain

energy rate Ẇε = σ : ε̇) minus the power leaving the material through the

heat flux q. This gives:

ρė = ω + Ẇε − divx(q). (A.1)

The Helmholtz ψ free energy potential is connected to the internal energy e

and the entropy s by:

ψ = e− Ts, (A.2)

or, in rate form:

ψ̇ = ė− (sṪ + ṡT ). (A.3)

Thus, inserting the (A.3) into (A.1) leads to the general expression of the

heat equation:

ρT ṡ = ω + Ẇε − ρ(ψ̇ + sṪ )︸ ︷︷ ︸
Φ̇

−divx(q). (A.4)

For the proposed model, the common form of the calorific energy term in

the Helmholtz free energy potential is adopted:

ψ0(T ) = cp

(
(T − T0) − T ln

(
T

T0

))
− s0 (T − T0) + e0, (A.5)

where s0 and e0 are respectively, the value of entropy and internal energy,

at T = T0, while cp denotes the specific heat capacity at constant pressure.
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Introducing the above definition in equation (1), it yields for the entropy:

s = −∂ψ
∂T

=
1

ρ
αI : σ + cp ln

(
T

T0

)
+ s0, (A.6)

or, in rate form:

ṡ =
∂s

∂σ
: σ̇ +

∂s

∂T
Ṫ =

1

ρ
αI : σ̇ +

cp
T
Ṫ . (A.7)

Thus, inserting (A.7) into (A.4) eventually leads to the specific form of the

heat equation for the proposed model, which is given in equation (14).

Appendix B. Numerical implementation: Backward Euler time im-

plicit algorithm

Let’s recall that a FE solver, like ABAQUS/Standard, employs a back-

ward Euler (or time-implicit) integration scheme. Accordingly, the value of

a given quantity x is computed from the previous time increment n to the

current one n + 1 such that x(n+1) = x(n) + ∆x(n+1). Such a relationship is

usually solved through an iterative scheme. Therefore, the current value of

x is corrected for each iteration k by: x(n+1)(k+1) = x(n+1)(k) + δx(n+1)(k) or

∆x(n+1)(k+1) = ∆x(n+1)(k) + δx(n+1)(k) until x(n+1) converges.

When the analysis is completed at the time increment, n, the FE solver

provides, for each integration point, all the state variables at the time incre-

ment n along with the increment of total strain ∆ε(n+1) and the increment of

temperature ∆T (n+1). From these data, the role of the UMAT subroutine is

to compute: i) the stress and the state variables at the time increment n+ 1,

and ii) the tangent operators Ctgσε =
dσ

dε
and Ctg

σT =
dσ

dT
that are necessary

to achieve a fast convergence for the next FE calculation step.
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B.1. Residuals

The equations governing the evolutions of the state variables are written

under the form of residual functions that must satisfy a nullity condition.

The one related to the recovery variable equation (11) gives:

φβ(T, β, β̇, p) = β̇ − g(T ) × h(p− β). (B.1)

For the plasticity, the residual function is simply equal to the yield function

(8), which takes negative values when the material is not actively yielding,

or that must remain null when actively yielding:

φp(σ, p, β) = f(σ, p, β) = eq(σ) −R(p− β) −R0. (B.2)

B.2. Linearization of the constitutive equations

The implicit implementation of the proposed model requires to linearize

the above residuals, as well as the stress. It is recalled that the convex

cutting plane method (Simo and Ortiz, 1985; Ortiz and Simo, 1986; Simo

and Hughes, 1998) considers a simplification regarding the linearization of

the flow equation (9), in which the gradient of the plastic strain flow with

respect to the stress is ignored. This gives:

δεp = Λ(σ)δp, (B.3)

Therefore, one obtains the following linearized forms for the residuals and

the stress:
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δφβ =
∂φβ
∂T

δT +
∂φβ
∂β

δβ +
∂φβ

∂β̇
δβ̇ +

∂φβ
∂p

δp

=
∂φβ
∂T

δT +
∂φβ
∂β

δβ +
∂φβ

∂β̇

1

∆t
δβ +

∂φβ
∂p

δp

=
∂φβ
∂T

δT +

(
∂φβ
∂β

+
∂φβ

∂β̇

1

∆t

)
δβ +

∂φβ
∂p

δp

= AβT δT + Aββδβ + Aβpδp,

(B.4)

δφp =
∂φp
∂σ

: δσ +
∂φp
∂p

δp+
∂φp
∂β

δβ

= Apσ : δσ + Appδp+ Apβδβ,

(B.5)

δσ =
∂σ

∂ε
: δε+

∂σ

∂T
δT +

∂σ

∂εp
: δεp

=
∂σ

∂ε
: δε+

∂σ

∂T
δT +

∂σ

∂εp
: Λ(σ)δp

= Bσε : δε+BσT δT +Bσpδp,

(B.6)

where

AβT =
∂φβ
∂T

= − ∂g

∂T
× h(p− β), (B.7a)

Aββ =
∂φβ
∂β

+
∂φβ

∂β̇

1

∆t
= −g(T ) × ∂h

∂β
+

1

∆t
, (B.7b)

Aβp =
∂φβ
∂p

= −g(T ) × ∂h

∂p
, (B.7c)

Apσ =
∂φp
∂σ

= Λ(σ), (B.8a)

App =
∂φp
∂p

=
∂R

∂p
, (B.8b)
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Apβ =
∂φp
∂β

=
∂R

∂β
, (B.8c)

Bσε =
∂σ

∂ε
= C, (B.9a)

BσT =
∂σ

∂T
= −C : αI, (B.9b)

Bσp =
∂σ

∂εp
: Λ(σ) = −C : Λ(σ). (B.9c)

B.3. Computation of the stress

B.3.1. Elastic prediction with hardening recovery correction

During this first step, the material is assumed to behave elastically in

order to assess if it is actively yielding or not. Thus, the plasticity-related in-

ternal state variables εp and p are kept constant, while the recovery variable

β can evolve. Since the evolution of β does not influence the elastic behavior

of the material, a first correction of β can be done prior to the elastic pre-

diction. To initiate the correction procedure for β, its value is kept constant

at first, which leads to a non-null residual φβ. Therefore, β is iteratively

updated (k loop) until φβ is sufficiently close to 0. This gives:

β(n+1)(k+1) = β(n+1)(k) + δβ(n+1)(k). (B.10)

In this update procedure, δβ is obtained from the nullity condition of the

residual φβ (all the quantities are taken at (n+1)(k)):

φβ + δφβ = 0, (B.11)

where δφβ is expressed from the linearization of φβ, given in (B.4), while

considering δT = 0 and δp = 0:

δφβ = Aββδβ. (B.12)
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Therefore, inserting (B.12) into (B.11) leads to the expression for δβ:

δβ =
−φβ
Aββ

, (B.13)

where the term Aββ is provided in (B.7b). Once converged, the stress can be

elastically predicted with the equation (4). Then, the residual φp is calculated

with the equation (B.2) in order to assess whether the material is actively

yielding or not:

• if φp < 0, then the plasticity is not active and the stress does not need

to be corrected.

• if φp > 0, then the plasticity is active and the stress needs to be cor-

rected. This is the purpose of the second step refereed to as plastic and

hardening recovery correction.

B.3.2. Plastic and hardening recovery correction

During this second step, the plasticity-related internal state variables εp

and p, as well as the recovery variable β can simultaneously evolve. Therefore

all the internal state variables are iteratively updated (k loop) until both φβ

and φp are sufficiently close to 0. This gives:

β(n+1)(k+1) = β(n+1)(k) + δβ(n+1)(k), (B.14a)

p(n+1)(k+1) = p(n+1)(k) + δp(n+1)(k), (B.14b)

ε(n+1)(k+1)
p = ε(n+1)(k)

p + δε(n+1)(k)
p . (B.14c)

In this update procedure, δβ, δp and δεp are obtained from the nullity con-

ditions of both residuals φβ and φp (all the quantities are taken at (n+1)(k)):




φβ + δφβ = 0

φp + δφp = 0
, (B.15)
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where δφβ and δφp are expressed from the linearizations of φβ, φp and σ,

given in (B.4), (B.5) and (B.6), while considering δε = 0 and δT = 0:




δφβ = Aββδβ + Aβpδp

δφp = Apσ : δσ + Appδp+ Apβδβ
, (B.16)

and

δσ = Bσpδp. (B.17)

Therefore, inserting (B.16) and (B.17) into (B.15) leads to the following

expression for δβ and δp:



δβ

δp



 =


Lββ Lβp

Lpβ Lpp


×




−φβ
−φp



 , (B.18)

with 
Lββ Lβp

Lpβ Lpp


 =


Kββ Kβp

Kpβ Kpp



−1

, (B.19)

and

Kββ = Aββ, Kβp = Aβp, Kpβ = Apβ, Kpp = Apσ : Bσp + App. (B.20)

Furthermore, according to the convex cutting plane method (Simo and Or-

tiz, 1985; Ortiz and Simo, 1986; Simo and Hughes, 1998), δεp is directly

connected to δp through the linearization of the flow equation (B.3)3

3Note that, according to the convex cutting plane method (Simo and Ortiz, 1985; Ortiz

and Simo, 1986; Simo and Hughes, 1998) , the linearization of the flow equation (B.3) is

explicitly integrated within the correction procedure. Nevertheless, the time integration

is still implicit. Despite this simplification, the convex cutting plane method keeps a

good accuracy when compared to other schemes, while involving less computational cost

(Qidwai and Lagoudas, 2000).
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B.4. Tangent operators

As previously mentioned, the proposed implementation is based on the

convex cutting plane form of the return mapping algorithm (Simo and Ortiz,

1985; Ortiz and Simo, 1986; Simo and Hughes, 1998), which utilizes continu-

ous tangent operators. Accordingly, in the present case, the formulations of

the tangent operators Ctgσε =
dσ

dε
and Ctg

σT =
dσ

dT
are obtained by identifying

a linear relationship between dσ, dε and dT such as:

dσ = Ctgσε : dε+Ctg
σTdT. (B.21)

To do so, the stress strain temperature relationship is written in differential

form. From equation (B.6), this gives:

dσ = Bσε : dε+BσTdT +Bσpdp. (B.22)

If the plasticity is not active (the computation of the stress stopped at the

elastic prediction with hardening recovery correction), then dp = 0 and the

tangent operators can be directly identified from equation (B.22) by Ctgσε =

Bσε and Ctg
σT = BσT . However, if the plasticity is active, (the computation

of the stress went through the plastic and hardening recovery correction),

then it becomes necessary to consider the simultaneous nullity conditions of

the residuals φβ and φp in their differential form. From equations (B.4) and

(B.5), this gives:




dφβ = AβTdT + Aββdβ + Aβpdp = 0

dφp = Apσ : dσ + Appdp+ Apβdβ = 0
. (B.23)

Inserting (B.22) into (B.23), it yields:




dβ

dp



 =


Xβε XβT

Xpε XpT


×





dε

dT



 , (B.24)
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with

Xβε XβT

Xpε XpT


 = −


Lββ Lβp

Lpβ Lpp


×


Kβε KβT

Kpε KpT


 , (B.25)

where the terms Lββ, Lβp, Lpβ and Lpp are given in (B.19), and:

Kβε = 0, KβT = AβT , Kpε = Apσ : Bσε, KpT = Apσ : BσT . (B.26)

Finally, substituting dp in (B.22) with (B.24) allows to identify the following

expressions for the tangent operators:

Ctgσε = Bσε +Bσp ⊗Xpε and Ctg
σT = BσT +BσpXpT . (B.27)
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