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Abstract

Finding a generally accepted formal definition of a disentangled representation
in the context of an agent behaving in an environment is an important challenge
towards the construction of data-efficient autonomous agents. Higgins et al. (2018)
recently proposed Symmetry-Based Disentangled Representation Learning, a defi-
nition based on a characterization of symmetries in the environment using group
theory. We build on their work and make observations, theoretical and empirical,
that lead us to argue that Symmetry-Based Disentangled Representation Learning
cannot only be based on static observations: agents should interact with the envi-
ronment to discover its symmetries. Our experiments can be reproduced in Colab 1

and the code is available on GitHub 2.

1 Introduction

Disentangled Representation Learning aims at finding a low-dimensional vector representation
of the world for which the underlying structure of the world is separated into disjoint parts (i.e.,
disentangled) reflecting the compositional nature of the said world. Previous work (Higgins et al.,
2017; Raffin et al., 2019) has shown that agents capable of learning disentangled representations can
perform data-efficient policy learning. However, there is no generally accepted formal definition of
disentanglement in Representation Learning, which prevents significant progress in this emerging
field.

Recent efforts have been made towards finding a proper definition (Locatello et al., 2019b). In
particular, Higgins et al. (2018) defines Symmetry-Based Disentangled Representation Learning
(SBDRL), by taking inspiration from the successful study of symmetry transformations in Physics.
Their definition focuses on the transformation properties of the world. They argue that transformations
that change only some properties of the underlying world state, while leaving all other properties
invariant, are what gives exploitable structure to any kind of data. They distinguish between linear
and non-linear disentangled representations, which models whether the transformation affects the rep-
resentation in a linear or non-linear way. Supposedly, linearity should be more useful for downstream
tasks such as Reinforcement Learning or auxiliary prediction tasks. Their definition is intuitive and
provides principled resolutions to several points of contention regarding what disentanglement is. For
clarity, we refer to a representation as SB-disentangled if it is disentangled in the sense of SBDRL,
and as LSB-disentangled if linear disentangled.

We build on the work of Higgins et al. (2018) and make observations, theoretical and empirical,
that lead us to argue that SBDRL requires interaction with environments. The necessity of having
interaction has been suggested before (Thomas et al., 2017). We propose a proof for SBDRL.

1https://colab.research.google.com/drive/1KVlSV24c687N_4TLJWwGTkjt3sh9ufWW
2https://github.com/Caselles/NeurIPS19-SBDRL
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As in the original work, we base our experiments on a simple environment, where we can formally
define and manipulate a SB-disentangled representation. This simple environment is 2D, composed
of one circular agent on a plane that can move left-right and up-down. The world is cyclic: whenever
the agent steps beyond the boundary of the world, it is placed at the opposite end (e.g. stepping up at
the top of the grid places the object at the bottom of the grid).

We prove, for this environment, that the minimal number of dimensions of the representation required
for it to be LSB-disentangled is counter-intuitive (i.e. 4). Indeed, the natural number of dimensions
required to describe the state of the world (i.e. 2) is not enough to describe its symmetries in a
linear way, which is supposedly ideal for subsequent tasks. Additionally, learning a non-linear
SB-disentangled representation is possible, but current approaches are not designed to model the
effect of the world’s symmetries on the representation, a key aspect of SBDRL which we present
later. We thus ask: how is one supposed to, in practice, learn a (L)SB-disentangled representation?

We propose two approaches that arise naturally, one where representation and world symmetries
effect on it are learned separately and one where they are learned jointly. For both scenarios, we
formally define what could be a proper representation to learn, using the formalism of SBDRL.
We propose empirical implementations that are able to successfully approximate these analytically
defined representations. Both empirical approaches make use of transitions (ot, at, ot+1) rather than
still observations ot, which validates the main point of this paper: Symmetry-Based Disentangled
Representation Learning requires interaction with the environment.

Ultimately, the goal of such representations is to facilitate the learning of downstream tasks. We
study the efficiency of (L)SB-disentangled representation on a particular downstream task: learning
an inverse model. Our results suggests that (L)SB-disentangled indeed facilitates the learning of such
downstream task.

Figure 1: Left: Environment studied in this paper. Right: Proposed architecture for learning a
LSB-disentangled representation in the environment at the left as presented in section 6.2.

Our contributions are therefore the following:

• We prove that interaction with the environment, i.e. the use of transitions, is necessary for
SBDRL, and illustrate it empirically.

• We propose two alternatives for learning linear and non-linear SB-disentangled represen-
tation in practice, both using transitions rather than still observations. Using a simple
environment, we describe both solutions theoretically and validate them empirically.

• We empirically demonstrate the efficiency of using SB-disentangled for a downstream task
(learning an inverse model).

2 Symmetry-Based Disentangled Representation Learning

Higgins et al. (2018) defines Symmetry-Based Disentangled Representation Learning (SBDRL)
in an attempt to formalize disentanglement in Representation Learning. The core idea is that SB-
disentanglement of a representation is defined with respect to a particular decomposition of the
symmetries of the environment. Symmetries are transformations of the environment that leave some
aspects of it unchanged. For instance, for an agent on a plane, translations of the agent on the y-axis
leave its x coordinate unchanged. They formalize this using group theory. Groups are composed of
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these transformations, and group actions are the effect of the transformations on the state of the world
and representation.

The proposed definition of SB-disentanglement supposes that these symmetries are formally defined
as a group G (equipped with composition) that can be decomposed into a direct product G =
G1 × ..×Gn. We now recall the formal definition of a SB-disentangled representation w.r.t to this
group decomposition. We advise the reader to refer to the detailed work of Higgins et al. (2018)
for any clarification. Let W be a set of world-states W = (w1, .., wm) ∈ Rm×d, where each
state wi is a d-dimensional vector. We suppose that there is a generative process b : W → O
leading from world-states to observations (these could be pixel, retinal, or any other potentially
multi-sensory observations), and an inference process h : O → Z leading from observations to an
agent’s representations. We consider the composition f :W → Z, f = h ◦ b. Suppose also that there
is a group G of symmetries acting on W via a group action ·W : G ×W → W . A world is thus
defined by (W, ·W). We would like to find a corresponding group action ·Z : G × Z → Z so that
the symmetry structure of W is reflected in Z. We also want the group action ·Z to be disentangled,
which means that applying Gi to Z leaves all sub-spaces of Z unchanged but the one corresponding
to the transformation Gi. Formally, the representation Z is SB-disentangled with respect to the
decomposition G = G1 × ..×Gn if:

1. There is a group action ·Z : G× Z → Z.
2. The map f :W → Z is equivariant between the group actions on W and Z:

3. There is a decomposition Z = Z1 × ..× Zn such that each Zi is fixed by the action of all
Gj , j 6= i and affected only by Gi.

This definition of SB-disentangled representations does not make any assumptions on what form
the group action should take when acting on the relevant disentangled vector subspace. However,
many subsequent tasks may benefit from a SB-disentangled representation where the group actions
transform their corresponding disentangled subspace linearly. Such representations are termed linear
SB-disentangled representations, which we refer to as LSB-disentangled representations.

3 Symmetry-Based Disentangled Representation Learning requires
interaction with environments

In this section we prove the main claim of this paper: SBDRL requires interaction with environments.
By “interaction with environments” we refer to the fact that in order to learn a SB-disentangled
representation, one should not use a training set composed of still samples (ot, ot+1, ...), but rather
transitions ((ot, at, ot+1), (ot+1, at+1, ot+2), ...).

We begin by observing that SBDRL definition is actually two-fold. The definition of a SB-
disentangled representation w.r.t the decomposition G = G1 × .. × Gn is composed of two main
properties:

1. There is a group action ·Z : G× Z → Z.
2. The map f : W → Z is equivariant be-

tween the group actions on W and Z.

 Definition of a Symmetry-Based representation.

3. There is a decomposition Z = Z1 × ..×
Zn such that eachZi is fixed by the action
of all Gj , j 6= i and affected only by Gi.

 Disentanglement property.

The first two points define what a SB representation is. It’s a representation for which the effect of
group actions on the world state is the same as the effect on the representation itself. The third point
characterizes what disentanglement is for a SB representation.
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In practice, it seems natural to first know how to learn a representation that satisfy the first two points,
i.e. a SB representation. Based on this, we can develop methods that enforce disentanglement.

Hence we ask, how can one learn a SB representation? This task involves knowledge about how the
group action affect Z. The group action is defined to be the effect of symmetries on the representation.
These symmetries can be translations, rotations, time translations, etc. In a Machine Learning
paradigm, we would design an algorithm that learns from examples. We thus need, in practice, a
way to apply these transformations on observations of the world (ot)t=1..n and observe the result
(gt ·Z ot = ot+1)t=1..n.

We thus make an analogy between the effect of a symmetry g (by the group action ·W ) on the
environment (o1, g, g ·W o1 = o2), and a transition that uses the dynamics f of the environment
(ot, at, f(ot, at) = ot+1). It allows us to consider a more realistic scenario where we have an agent
in an environment, and we can apply the group actions to this agent. In our analogy we simply say
that o1 = ot, o2 = ot+1 and at = g and ·W = f .

However, we do not make a total confusion between symmetries and regular actions that can be found
in any environment. A symmetry is an element of a group (in the mathematical sense) of functions
g :W →W , and the binary operation of the group is composition. In that sense, these functions can
effectively be considered as actions, because actions take the environment from one state to another
through the dynamics f , and symmetries take the environment from one state to another through the
group action ·W .

It is important to mention that not all actions are symmetries, for instance the action of eating a
collectible item in the environment is not part of any group of symmetries of the environment because
it might be irreversible.

More formally, Theorem 1 provides a mathematical proof that we need interaction with environments.

Theorem 1. Suppose we have a SB representation (f, ·Z) of a worldW0 = (W = (w1, .., wm) ∈
Rm×d, ·W0) w.r.t to G = G1 × ...×Gn using a training set T of unordered observations ofW0. Let
Wk be the set of possible values for the kth dimension of w ∈W .
Then:

1. There exists at least kW,G = n[(mink(card(Wk))!]− 1 worlds (W1, ..,WkW,G
) equipped

with the same world statesWi = (w1, .., wm) and symmetriesG, but different group actions
·Wi

.

2. For these worlds, (f, ·Z) is not a SB representation.

3. These worlds can produce exactly the same training set T of still images.

Proof. Consider two identical worlds (W1,W2) equipped with the same symmetries G. Suppose
that they are given two different group actions ·1,Z and ·2,Z i.e. the effect of G onW1 is not the same
as its effect onW2. Then, given a fixed observation o, it is impossible to tell if o is an observation of
W1 orW2. It is only possible to tell if we have access to transitions (ot, gt, ot+1)t=1..n and observe
the result (gt ·Z zt = zt+1)t=1..n. See Appendix A.1 for full proof.

Using Theorem 1, we can deduce that for a given dataset of still images collected in a world, it is
impossible to describe the action of symmetries on the world. The dataset could come from a number
of different worlds where symmetries act differently. Hence the need for transitions. For example,
in a world where the agent can change color along a hue axis, the succession of colors can be (red,
green, blue, red, ...), or (red, blue, green, red, ...). Then the world states are identical, the symmetries
also. Yet, the effect of the symmetries are not the same, i.e. ·1,W 6= ·2,W .

Still, it is not clear how to discover the symmetries G of a world. Higgins et al. (2018) propose to use
active perception or causal manipulations of the world to empirically determine them. Having this
in mind, we note that high-level actions in an environment often correspond to symmetries, such as
translations along cartesian axis, rotations, changes of color, changes related to time (no-op action).
Actions could then be used as replacement to symmetries, and one could learn SB representations
using traditional transitions (ot, at, ot+1)t=1..n that are readily available in most environments. In
the rest of the paper, we validate this approach empirically.
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4 Considered environment

In this paper, we consider a simplification of the environment studied in (Higgins et al., 2018). This
environment is 2D, composed of one circular agent on a plane that can move left-right and up-down,
see Fig.1. Whenever the agent steps beyond the boundary of the world, it is placed at the opposite end
(e.g. stepping up at the top of the grid places the object at the bottom of the grid). The world-states can
be described in two dimensions: (x, y) position of the agent. All of our experimental results are based
on this environment. It is simple, yet presents the basis for a navigation environment in 2D. We chose
this environment because we are able to define theoretically SB-disentangled representations, without
making any approximation. We implement this simple environment using Flatland (Caselles-Dupré
et al., 2018). The code is available in Colab3 and Github4. All architecture and hyperparameters
details are specified in Appendix B.

5 Theoretical analysis

We first provide a theoretical analysis of what can be learned in the considered environment, in
the formalism of SBDRL. Learning a non-linear SB-disentangled representation of dimension 2 is
possible. If (x, y) is the position of the object, then learning these two coordinates as well as the
cyclical effect of translations is enough to create a SB-disentangled representation of dimension 2.

However, it is not the case for LSB-disentangled representations. We provide a theorem that proves it
is impossible to learn a LSB-disentangled representation of dimension 2 in the environment presented
in Sec.4 (the result also applies to the environment considered in Higgins et al. (2018)). The key
element of the proof is that the two actual dimensions of the environment are not linear but cyclic.
Hence the impossibility of modelling two cyclic dimensions using two linear dimensions. See
Appendix A.2 for full proof of the result.

Based on this, we show next how to learn, in practice, a SB-disentangled representation of dimension
2 and a LSB-disentangled representation of dimension 4.

6 Symmetry-Based Disentangled Representation Learning in practice

Figure 2: Left: First option: decoupled learning of representation and group action, here applied to
learning a non-linear SB-disentangled representation. Latent traversal spanning from -2 to 2 over each
of the representation’s dimensions, followed by the predicted effect of the group action associated with
each action (left, right, down, up). Right: Second option: joint learning of representation and group
action, here applied to learning a non-linear LSB-disentangled representation. The representation is
complex: latent traversal over the phase of each of the representation’s dimensions, followed by the
predicted linear effect of the group action associated each action (down, left, up, right).

We consider the problem of learning, in practice, SB-disentangled and LSB-disentangled represen-
tations for the world considered in Sec.4. For that, we propose two approaches: decoupled and
end-to-end.

3https://colab.research.google.com/drive/1KVlSV24c687N_4TLJWwGTkjt3sh9ufWW
4https://github.com/Caselles/NeurIPS19-SBDRL
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We illustrate each method by learning a SB-disentangled representation with the decoupled approach,
and learning a LSB-disentangled representation with the end-to-end approach.

6.1 Decoupled approach (illustrated on SB-disentangled representation)

We propose to learn the representation first, and then the group action of G on Z using a separate
model. This way, we have a complete description of the SB-disentangled representation. This
approach is effectively decoupling the learning of physics from vision as in (Ha and Schmidhuber,
2018).

We consider learning a 2-dimensional SB-disentangled representation. We started by reproducing
the results in (Higgins et al., 2018): we used a variant of current state-of-the-art disentangled
representation learning model CCI-VAE. The learned representation corresponds (up to a scaling
factor) to the world-state W , i.e. the (x, y) position of the agent. This intuitively seems like a
reasonable approximation to a disentangled representation.

However, once the representation is learned, we have no idea how the group action of symmetries
affect the representation, even though it is at the core of the definition of SBDRL. This is where the
necessity for transitions (ot, at, ot+1)t=1..n rather than still observations (ot)t=1..n comes into play.
We learn the group action on Z ·Z : G× Z → Z, such that f = h ◦ b is an equivariant map between
the actions on W and Z.

In practice, we learn h : O → Z with a variant of CCI-VAE, and then use a multi-layer perceptron to
learn the group action on Z. The results are presented in Fig.2, where we observe that the learned
group action correctly approximates the cyclical movement of the agent. We thus have learned a
properly SB-disentangled representation of the world, w.r.t to the group decompositionG = Gx×Gy .

6.2 End-to-end approach (illustrated on LSB-disentangled representation)

In the decoupled approach, the learned representation is identical to a setting where we would have
ignored the group action. Hence, a preferable approach would be to jointly learn the representation and
the group action. We study such approach on the task of learning a LSB-disentangled representation.

To accomplish this, we start with a theoretically constructed LSB-disentangled representation. It is
based on a example given in Higgins et al. (2018). The representation is defined as following, using 4
dimensions:

• f : R2 → C2 is defined as f(x, y) = (e2iπx/N , e2iπy/N )

• ρ(g) : C2 → C2 is defined as

{
ρ(gx)(zx, zy) = (e2iπnx/Nzx, zy)

ρ(gy)(zx, zy) = (zx, e
2iπny/Nzy)

In this representation, the (x, y) position is mapped to two complex numbers (zx, zy). For each
translation (on the x-axis or y-axis), the associated group action on Z is a rotation on a complex plane
associated to the specific axis. This representation linearly accounts for the cyclic symmetry present
in the environment.

Using CCI-VAE with 4 dimensions fails to learn this representation: we verified experimentally that
only 2 dimensions were actually used when learning (for encoding the (x, y) position), and the two
remaining were ignored.

In order to learn the LSB-disentangled representation, we generate a dataset of transitions, and use
it to learn the 4-dimensional LSB-disentangled representation with a specific VAE architecture we
term Forward-VAE. This architecture allows to jointly learn the representation and the group action
on it. Here, we want the group action on Z to be linear, so we enforce linearity in transitions in the
representation space.

We begin by re-writing the complex-valued function ρ(g) : C2 → C2 as a real-valued function:

ρ(g) :
R4 → R4

v → ρ(g)(v) = A∗(g) · v
(1)
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where A∗(g) is a 4x4 block-diagonal matrix, composed of 2x2 rotation matrices. Let’s consider the
environment in Sec.4. The agent has 4 actions: go left, right, up or down. We associate each action
with a corresponding matrix with trainable weights.

For instance, if g = gx ∈ Gx is a translation on the x-axis, the corresponding matrix isA∗(gx) and we
associate actions go right/left with corresponding matrices Â(at), where · are trainable parameters:

A∗(gx) =

cos(nx) − sin(nx) 0 0
sin(nx) cos(nx) 0 0

0 0 1 0
0 0 0 1

 and Â(gx) =

 · · 0 0
· · 0 0
0 0 1 0
0 0 0 1

.

We would like the representation model that we learn to satisfy ρ(g)(vt) = Â(g) · vt = vt+1. We
thus enforce the representation to satisfy it in our Forward-VAE architecture, as illustrated in Fig.1.
The training procedure is presented in Algorithm 1 in Appendix C.2 For each image in a batch, we
compute f(ot) = zt and f(ot+1) = zt+1 using the encoder part of the VAE. Then we decode zt with
the decoder and compute the reconstruction loss Lreconstruction and annealed KL divergence LKL
as in (Caselles-Dupré et al., 2019). Then we compute Â(at) · zt and compute the forward loss, which
is the MSE with zt+1: Lforward = (Â(at) · zt − zt+1)

2. We then backpropagate w.r.t to the full loss
function of Forward-VAE:

LForward−V AE = Lreconstruction + γt · LKL + Lforward (2)

The results are presented in Fig.2 and Appendix D. Forward-VAE correctly learns a representation
where the two complex dimensions correspond to the position (x, y) of the agent. Plus, we observe
that the learned matrices (Âi)i=1..4 are very good approximation of the ideal matrices (A∗i )i=1..4

defined above, with nx ≈ π
3 . The mean squared difference is very small (order of 10−4).

6.3 Remarks

Note that we could have applied this joint learning approach to learning non-linear SB-disentangled
representation. However it is not possible to apply the decoupled approach to learning a LSB-
disentangled representation.

We used inductive bias given by the theoretical construction of a LSB-disentangled representation
theory to design the action matrices and its trainable weights. This construction is specific to this
example. However, the idea of having an action matrix for each action is extendable. If each action is
high-level and associated to a symmetry, then SBDRL can be performed. Still, it requires high level
actions that represent these symmetries. One potential way to find these actions is through active
search (Soatto, 2011), as suggested in (Higgins et al., 2018).

In our Forward-VAE architecture we indeed explicitly design the model such that the resulting
representation is Linear SB-disentangled, because we enforce linearity, force the representation to be
SB (see points 1 and 2 in the definition in Sec.3) and by design have two separate subspaces for each
symmetry. A more general approach would have been not to have those two separated subspaces
and learn the entire action matrices, and thus we won’t have the guarantee that the representation
will satisfy the disentangled property. We ran this experiment and obtained the expected result: the
learned representation is Linear-SB but not disentangled. This means that the x and y coordinates are
not properly disentangled w.r.t to the considered group decomposition (i.e. a latent traversal over each
dimension would not result in only a movement of the agent along the x or y coordinate). However
the learned actions matrices are able to describe how the symmetries affect the representation and
in a linear way. Hence enforcing disentanglement is the only viable option we found for LSB-
disentanglement with this architecture.

It is important to note that an instability in Forward-VAE training can be expected due to the different
contributions of the loss: at each training steps the goal of the forward part of the loss is to have a
latent space that is suited for predicting zt+1 using zt. The rest of the loss is the VAE, which tries
to learn a latent space that allows reconstruction. Hence the balance between these two seemingly
unrelated objectives might be a source of instability. However it worked in practice, without any
re-weighting of the objectives, which was a surprise.
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7 Using (L)SB-disentangled representations for downstream tasks

Is using (L)SB-disentangled representations beneficial for subsequent tasks? This remains to be
demonstrated, as other work have already challenged the benefit of learning disentangled repre-
sentations over non-disentangled ones (Locatello et al., 2019b). In this section we wish to an-
swer the following question: is it increasingly better to use non-disentangled/non-linear SB-
disentangled/LSB-disentangled representation for downstream tasks? We define better in terms
of final performance, under different settings (restricted capacity classifiers/restricted amount of data).

For the choice of downstream task, we select the task of learning an inverse model, which consists in
predicting the action at from two consecutive states (st, st+1).

As a LSB-disentangled representation models the interaction with the environment linearly, it intu-
itively should be increasingly easier to learn an inverse model from: a non-disentangled representation,
a non-linear SB-disentangled representation, and a LSB-disentangled representation.

7.1 Experimental protocol

In order to test this hypothesis, we selected a well-established implementation (Scikit-learn (Pedregosa
et al., 2011)) of a well-studied classifier (Random Forest (Breiman, 2001)). We collect 10k transitions
(ot, at, ot+1). We train the following models and baselines to compare:

• LSB-disentangled representation of dimension 4: Forward-VAE trained as in Sec.6.2.
• SB-disentangled representation of dimension 2: CCI-VAE variant trained as in Sec.6.1.
• Non-disentangled representation of dimension 2: Auto-encoder, non-disentangled baseline.
• SB-disentangled representation of dimension 4: CCI-VAE trained as in Sec.6.1 but with 4

dimensions, baseline to control for the effect of the size of the representation.

For each model, once trained, we created a dataset of transitions in the corresponding representation
space (st, at, st+1). We then report the 10-fold cross-validation mean accuracy as a function of the
maximum depth parameter of random forest, which controls the capacity of the classifier.
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(b) Dataset size: 10k samples

Figure 3: Downstream task evaluation of representation models: inverse model prediction. Mean
10-fold cross validation accuracy as functions of dataset size and classifier capacity (max depth
parameter of Random Forest). LSB and SB-disentangled representation perform best.

7.2 Results

We first observe that in all cases, either LSB or SB-disentangled representations are performing best.
In terms of final performance, all models meet at the upper 100% accuracy limit, given enough data
and a classifier with enough capacity.

However, if we consider a constraint in training set size and a fixed high capacity classifier (see Fig.3),
we can see that using a SB-disentangled representation is superior to other options. We refer to the
capacity of the classifier as "high" if increasing the capacity parameter does not lead to an increase in
validation accuracy.

Moreover, if we consider a fixed large training set size and a constraint on the classifier’s capacity,
using LSB-disentangled representation is the best option.
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As a conclusion, we observed that it is easier for a small capacity classifier to solve the task
using a LSB-disentangled representation and it is easier to solve the task using less data with a
SB-disentangled representation. This indicates that (L)SB-disentanglement is indeed useful for
downstream task solving.

7.3 Remarks

It’s worth noting that the advantage is not very substantial, which is expected due to the simplicity
of the task. Our results on usefulness of (L)SB-disentangled representations for downstream tasks
are preliminary, it would be interesting as future work to compare to more baselines and on more
tasks. Other related works such as van Steenkiste et al. (2019); Locatello et al. (2019a) also study the
usefulness of disentangled representations for downstream tasks, and respectively find them useful for
performance in abstract visual reasoning tasks and for encouraging fairness when sensitive variables
are not observed.

More generally, there is a lack of large-scale evaluations of representations’ usefulness for downstream
tasks in the disentanglement representation learning literature. Such studies are needed to validate
the intuition that disentanglement is useful in practice for subsequent tasks.

8 Discussion & Conclusion

Discussion. The benefit of using transitions rather than still observations for representation learning
in the context of an agent acting in a environment has been proposed, discussed and implemented
in previous work (Thomas et al., 2017; Raffin et al., 2019). In this work however, we emphasize
that using transitions is not only a beneficial option, but is compulsory in the context of the current
definition of SBDRL for an agent acting in an environment, as Theorem 1 proves it.

Applying SBDRL to more complex environments is not straightforward. For instance consider
that we add an object in the environment studied in this paper. Then the group structure of the
symmetries of the world are broken when the agent is close to the object. However, the symmetries
are conserved locally. One approach would be to start from this local property to learn an approximate
SB-disentangled representation.

Conclusion. Using theoretical and empirical arguments, we demonstrated that SBDRL (Higgins
et al., 2018), a proposed definition for disentanglement in Representation Learning, requires inter-
action with the environment. We then proposed two methods to perform SBDRL in practice, both
of which are successful empirically. We believe SBDRL provides a new perspective on disentan-
glement which can be promising for Representation Learning in the context of an agent acting in a
environment.
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A Proofs

A.1 Symmetry-Based Disentangled Representation Learning requires interaction with
environments

We prove Theorem 1.

Theorem. Suppose we have a SB representation (f, ·Z) of a world W0 = (W = (w1, .., wm) ∈
Rm×d, ·W0) w.r.t to G = G1 × ...×Gn using a training set T of unordered observations ofW0. Let
Wk be the set of possible values for the kth dimension of w ∈W .
Then:

1. There exists at least kW,G = n[(mink(card(Wk))!]− 1 worlds (W1, ..,WkW,G
) equipped

with the same world statesWi = (w1, .., wm) and symmetriesG, but different group actions
·Wi .

2. For these worlds, (f, ·Z) is not a SB representation.

3. These worlds can produce exactly the same training set T of still images.

Proof. We prove the three points.

1. For each symmetry Gi, we can shuffle the order of states along each axis of W . For instance, if
the symmetry is translation along a cyclic hue axis composed of three colors (red, green, blue). Then
one can consider two worlds where translating right from red moves the agent in blue (world 1) or
green (world 2).

We provide a lower bound to the number of possible worlds. For a symmetry Gi, the minimal number
of possible visited states is mink(card(Wk)). It is the case if all symmetries affect only one axis of
W and all axis of W have the same number of possible values (= mink(card(Wk)). The number of
possible world is then given by the number of permutations of a set composed of mink(card(Wk))
elements, which is mink(card(Wk))!.

There are n symmetries inG = G1×..×Gn, hence there are at least kW,G = n[(mink(card(Wk))!]−
1 possible worlds (W1, ..,WkW,G

) that are notW0 but share the same state space W and symmetries
G. They differ by the action ·Wi

of G on the worldWi.

2. For any different worldWi thanW0, there exists a state and a symmetry (g, w ∈ G×W ) such
that the action of g on w is not the same on the two worlds. Thus, f is not equivariant between
the group actions on W and Z w.r.t to both W0 and Wi. Hence (f, ·Z) is necessarily not a SB
representation w.r.t to any of the worlds (W1, ..,WkW,G

) and G.

Formally, let i ∈ [|1..kW,G|]. Wi 6=W0 =⇒ ∃(g, w ∈ G×W ), g ·Wi
w 6= g ·W0

w. Necessarily,
f(g ·Wi

w) 6= f(g ·W0
w). Yet, (f, ·Z) is SB w.r.tW0: f(g ·W0

w) = g ·Z f(w). Hence, f(g ·Wi
w) 6=

g ·Z f(w), i.e. for worldWi, (f, ·Z) is not equivariant between the group actions on W and Z.

3. (W0, ..,WkW,G
) all share the same state space. Hence they can theoretically produce any

training set of still images collected inW0.

A.2 Trivial representations

We first define trivial representations and then prove that they are LSB-disentangled. We will then
use this definition to prove Theorem 2.

Definition 1. Z is a trivial representation if and only if f is constant.

If Z is a trivial representation, we thus have that each state of the world w ∈ W has the same
representation.

Proposition 1. If Z is a trivial representation then Z is LSB-disentangled w.r.t to every group
decomposition.

We prove Proposition 1 which states that trivial representations are LSB-disentangled.
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Proof. The definition of LSB-disentangled representation of dimension 2 is:

1. There is a linear action ·Z : G× Z → Z. It thus can be viewed as a group representation
ρ : G→ GL(Z).

2. The map f :W → Z is equivariant between the actions on W and Z.

3. There is a decomposition Z = Z1 × Z2 or Z = Z1

⊕
Z2 such that each Zi is fixed by the

action of all Gj , j 6= i and affected only by Gi.

Let ρ(g) be the identity function ∀g ∈ G, which is linear.

We have that f :W → Z is constant. We can verify that f is equivariant between the actions on W
and Z:

ρ(g)(f(w)) = f(w) = f(g ·W w) (3)

Finally, Z has the same representation ∀w ∈ W , so Z is fixed by the action of any subgroup of G.
Hence for all decomposition of G, point 3. of the definition is satisfied.

A.3 It is impossible to learn a LSB-disentangled representation of dimension 2 in the
considered environment

We prove Theorem 2 which states that it is impossible to learn a LSB-disentangled representation
of dimension 2 in the environment presented in Sec.4 (the result also applies to the environment
considered in Higgins et al. (2018)).
Theorem 2. For the considered world, there exists no LSB-disentangled representation Z w.r.t to the
group decomposition G = Gx ×Gy , such that dim(Z) = 2 and Z is not trivial.

Proof. Proof by contradiction.
Suppose that there exists a LSB-disentangled representation Z w.r.t to the group decomposition
G = Gx ×Gy , such that dim(Z) = 2. Then, by definition:

1. There is a linear action ·Z : G× Z → Z. It thus can be viewed as a group representation
ρ : G→ GL(Z).

2. The map f :W → Z is equivariant between the actions on W and Z.

3. There is a decomposition Z = Z1 × Z2 or Z = Z1

⊕
Z2 such that each Zi is fixed by the

action of all Gj , j 6= i and affected only by Gi.

We now prove that if these conditions are verified, f is necessarily constant. Consequently, Z has
the same representation for each state of the world, which is a trivial representation. So, if Z a
LSB-disentangled representation of dimension 2 w.r.t to G, then Z is the trivial representation.

We thus suppose that there exists a LSB-disentangled representation Z of dimension 2 w.r.t to the
group decomposition G = Gx ×Gy . Hence, we have, by point 2. of the definition:

g ·Z f(w) = f(g ·W w) (4)

Since ·Z is linear, we can view it as a group representation ρ, as mentioned in point 1. of the definition:

g ·Z f(w) = ρ(g)(f(w)) (5)

Because f(W ) ∈ Z ⊂ R2 and W =Wx

⊕
Wy = (x, y), we can re-write f as:

f(w) = f((x, y))

= (f1(x, y), f2(x, y))
(6)
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Hence, combining (4) and (5):

f(g ·W (x, y)) = ρ(g)((f1(x, y), f2(x, y))) (7)

We can decompose any g ∈ G into the composition of functions of each subgroup of G, i.e.
∀g ∈ G = Gx × Gy,∃(gx, gy) ∈ Gx × Gy such that g = gx ◦ gy. Plus, by definition of Z and
because W = Wx

⊕
Wy = (x, y), the action of all Gi on W and Z is fixed by the action of all

Gj , j 6= i and affected only by Gi. We can thus re-write both terms of Equation (7).

f(g ·W (x, y)) = (f1((gx(x), gy(y))), f2((gx(x), gy(y))) since g ·W (x, y) = (gx(x), gy(y))
(8)

ρ(g)((f1(x, y), f2(x, y))) = (ρx(gx)(f1(x, y)), ρy(gy)(f2(x, y))) by definition of ρ (9)

Hence, Equation 7 becomes:

(f1((gx(x), gy(y))), f2((gx(x), gy(y))) = (ρx(gx)(f1(x, y)), ρy(gy)(f2(x, y))) (10)

We will now prove that f1 is necessarily constant. The same argument applies for f2.

From Equation (10), we have:

f1((gx(x), gy(y))) = ρx(gx)(f1(x, y)) (11)

gx and gy are respectively translations on the x-axis and y-axis. Let N be the size of the grid, then
∃(nx, ny) ∈ [|0, N |] s.t. (gx(x), gy(y)) = ((x + nx) mod N, (y + ny) mod N). When at edge
of the world, if the object translates to the right, it returns to the left, hence the modulo operation that
represents this cycle. Hence:

f1((gx(x), gy(y))) = f1(((x+ nx) mod N, (y + ny) mod N))

= ρx(gx)(f1(x, y))
(12)

The key argument of the proof lies in the fact that ρx(gx) is necessary cyclic of order 2N (the minimal
order can be inferior to N , but it is not useful to caracterize the minimal order in this proof). Let’s
compose ρx(gx) 2N times:

ρx(gx)
(2N)(f1(x, y)) = f1(((x+ 2N · nx) mod N, (y + 2N · ny) mod N))

= f1((x, y))
(13)

We now use the fact that ρx(gx) is a linear application of R, thus:

ρx(gx) ∈ GL(R) =⇒ ∃(a(gx), b(gx)) ∈ R2 s.t. ∀x ∈ R ρx(gx)(x) = a(gx) · x+ b(gx)
(14)

For notation purposes, we drop the dependence on gx of the coefficients of the real linear application
ρx(gx), and we can rewrite Equation (10):

ρx(gx)(f1(x, y)) = a · f1(x, y) + b (15)

Hence, using Equation 13 we can develop the term ρx(gx)
(2N)(f1(x, y)):

ρ2Nx (gx)(f1(x, y)) = a2N · f1(x, y) + b ·
2N−1∑
i=0

ai

= f1(x, y)

(16)

13



Define c = b ·
∑2N−1
i=0 ai, we have:

a2N · f1(x, y) + c = f1(x, y)

⇐⇒ (a2N − 1) · f1(x, y) + c = 0
(17)

Equation (17) is verified ∀(x, y) ∈ R2. Let ((x1, y1), (x2, y2)) ∈ R2 × R2:

{
(a2N − 1) · f1(x1, y1) + c = 0

(a2N − 1) · f1(x2, y2) + c = 0
=⇒ (a2N − 1) · (f1(x1, y1)− f1(x2, y2)) = 0 (18)

We can now derive conditions on f1 or (a, b). From Equation (18) we know that either f1 is constant
or (a2N − 1) = 0 =⇒ a = 1. If a = 1, then Equation (17) simplifies to c = 0 =⇒ b = 0. So
either ρx(gx) is the identity function or f1 is constant. The same argument applies to f2 and ρy(gy),
hence we have that either f is constant or ρ(g) = Id(R2). By plugging the second option in Equation
(7), we have that ρ(g) = Id =⇒ f is constant.

Hence f is necessarily constant, which implies that Z is a trivial representation.

B Hyperparameters and neural networks architectures

The code for our experiments is available at the following link: https://github.com/Caselles/
NeurIPS19-SBDRL.

More specifically, the architecture and hyperparameters used for all the VAEs is avail-
able here: https://github.com/Caselles/NeurIPS19-SBDRL/blob/master/code/learn_
4_dim_linear_disentangled_representation/vae/arch_torch_sans_cos_sin.py.

All representation are learned using the same base architecture mentioned above. For the Forward-
VAE model, we only add the action matrices mentioned in the description of the model.

As for the training hyperparameters:

• We use 15k transitions for training, batch sizes of 128, β annealed from 1 using a factor of
0.995 at each batch.

• For optimization, we use Adam (Kingma and Ba, 2014) with the standard hyperparameters
provided in PyTorch (Paszke et al., 2017).

• LSB-disentangled representation of dimension 4 (Forward-VAE trained as in Sec.6.2): 35
epochs.

• SB-disentangled representation of dimension 2 (CCI-VAE variant trained as in Sec.6.1): 11
epochs.

• Non-disentangled representation of dimension 2 (Auto-encoder, non-disentangled baseline):
11 epochs.

• SB-disentangled representation of dimension 4 (CCI-VAE trained as in Sec.6.1 but with 4
dimensions, baseline to control for the effect of the size of the representation): 11 epochs.

As for the experiments in Sec.7, we use the standard implementation of random forest in Scikit-Learn,
and we only modify the hyperparameters indicated in the experiments.
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C Details about Forward-VAE

C.1 Definition of Â

A∗(g) is a 2x2 block-diagonal rotation matrix of dimension 4. For instance, if g = gx ∈ Gx is a

translation on the x-axis, the corresponding matrix is: A∗(gx) =

cos(nx) − sin(nx) 0 0
sin(nx) cos(nx) 0 0

0 0 1 0
0 0 0 1

.

Similarly, for g = gy ∈ Gy which is a translation on the y-axis, the corresponding matrix is

A∗(gy) =

1 0 0 0
0 1 0 0
0 0 cos(nx) − sin(nx)
0 0 sin(nx) cos(nx)

.

Let’s consider the environment in Sec.4. The agent has 4 actions: go left, right, up or down. We
associate each action with a corresponding matrix with trainable weights. Thus, we associate actions

go up and go down with a matrix of the form Â =

 · · 0 0
· · 0 0
0 0 1 0
0 0 0 1

, and we associate actions go left

and go right with a matrix of the form Â =

1 0 0 0
0 1 0 0
0 0 · ·
0 0 · ·

 where · represents trainable parameters.

C.2 Pseudo-code of Forward-VAE

Algorithm 1 Pseudo-code for training procedure of Forward-VAE

1: batch = ((ot, .., ot+k), (at, .., at+k−1)) = (o,a)
2: for batch in dataset do
3:

— Forward model Loss—
4:
5: z← encoder_mean(batch)
6: zbefore ← z[: −1]
7: zafter ← z[1 :] # targets
8: Â← [Â(at), .., Â(at+k−1)] # actions matrices corresponding to given action sequence
9: zprediction ← Â · zbefore # predictions

10: Lforward(batch)←MeanSquaredError(zprediction, zafter)
11:

— VAE Loss (reconstruction and KL) —
12:
13: z← encoder_sample(batch)
14: ô← decoder(z)
15: Lrecon(batch)←MeanSquaredError(ô,o)
16: LKL(batch)← KL_divergence(z,N (0, 1))
17:

— Backpropagation —
18:
19: LForward−V AE(batch)← Lrecon(batch) + LKL(batch) + Lforward(batch)
20: encoder, decoder, (Â1, .., Âj)← Backpropagation(LForward−V AE(batch)
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D Additional results

We observe that the mean squared difference between the ideal matrices (Ai)i=1..4 and the learned
matrices (Âi)i=1..4 is very small (order of 10−4). Hence, we have :

Â(go left / go right) ≈ A∗(go left / go right) =

cos(±α) − sin(±α) 0 0
sin(±α) cos(±α) 0 0

0 0 1 0
0 0 0 1



Â(go up / go down) ≈ A∗(go up / go down) =

1 0 0 0
0 1 0 0
0 0 cos(±α) − sin(±α)
0 0 sin(±α) cos(±α)


The result is quite surprising as we do not have completely explicitly optimized for this matrix (at
least for the cos/sin part). Plus there is no instability in training.

One issue with the fact that the approximation is not exact, is unstability with composition. Rotation
matrices’ determinants are stable with composition, as we have:

det(AB) = det(A) det(B)

As rotation matrices have a determinant equal to 1, the composition operation is cyclic for rotations.

However, as (Â)i=1..4 are only approximation of rotation matrices, their determinant is approximately
1 but not exactly. This is why, as many compositions are performed, the determinant of the resulting
matrix either collapses to zero or explodes to +∞. We provide evidence for this phenomenon in
Fig.4.

Figure 4: Determinant of real (A∗) and learned rotation matrix (Â) as a function of number of
compositions. As many compositions are performed, the determinant of the approximation of the
rotation matrix A∗ collapses to zero.
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