Kaveh Khoshkhah
email: kavehkho@ut.ee

Khosravian Mehdi
email: m.khosravian@gmail.com

Jérôme Ghadikolaei

Dirk Oliver Monnot

Theis

Mehdi Khosravian Ghadikolaei

Jérôme Monnot
email: jerome.monnot@dauphine.fr

Dirk Oliver Theis
email: dotheis@ut.ee

Complexity and Approximability of Extended Spanning Star Forest Problems in General and Complete Graphs

Keywords: Computational complexity, Parameterized complexity, Approximation algorithms, Graphs, Extended solution, Spanning Star Forest

published or not. The documents may come

L'archive ouverte

Introduction

In [START_REF] Agra | A spanning star forest model for the diversity problem in automobile industry[END_REF], a diversity problem with application in the automobile industry is introduced. Here, each node corresponds to a cable configuration u (cable with a set of active option connections) and the cost w u,v between nodes u and v means that the cable configuration v will be supplied by the cable configuration u. In this application, a decision maker wishes to produce a set of cable configurations of minimum global cost under the constraint, that only configurations in the form of node-disjoint directed trees of depth at most 1 are feasible. In other words, the feasible solutions of this problem are directed spanning star forests; also called spanning star branchings. Several generalizations of this problem known as Carpooling problems have been studied in the literature (see the survey on ride-sharing [START_REF] Niels | Optimization for dynamic ride-sharing: A review[END_REF]). One of them, called Maximum Carpool Matching models an automatic service to match commuting trips between passengers and drivers [START_REF] Ben-Arroyo Hartman | Theory and practice in large carpooling problems[END_REF][START_REF] Kutiel | Approximation algorithms for the maximum carpool matching problem[END_REF]. In this case, new constraints are added: each star has an upper bound on its size. These bounds may be different for each potential driver and they represent the capacity of the car according to the number of passengers each user can drive if she was selected as a driver. Sometimes it is convenient to enforce some option connections in scheduling plans for the diversity problem or preselect some drivers with passengers together in the carpool Matching problem (enforcing them may be desirable for reasons outside of the scope of the model itself). This corresponds to requiring some arcs to belong to any feasible collection of spanning star branchings. Motivated by scheduling or control networking applications [START_REF] Delbot | Graphs with Forbidden and Required Vertices[END_REF][START_REF] Fotakis | Conference program design with single-peaked and single-crossing preferences[END_REF][START_REF] Tuza | Graph colorings with local constraints -a survey[END_REF][START_REF] Weller | On residual approximation in solution extension problems[END_REF], this type of problem, which consists of extending partial solutions, has recently drawn attention of the research community.

The undirected maximization version of the spanning star forest problem also has several motivations in bioinformatics [START_REF] Chen | Improved approximation algorithms for the spanning star forest problem[END_REF][START_REF] He | Improved approximation for spanning star forest in dense graphs[END_REF][START_REF] Nguyen | Approximating the spanning star forest problem and its application to genomic sequence alignment[END_REF]. Subproblems involving extending partial solutions can be used as a subroutine to design approximation algorithms for the master problem. In particular, He and Liang in [START_REF] He | Improved approximation for spanning star forest in dense graphs[END_REF] define and solve the complementary partial dominating set problem.

Graph terminology and definitions

Throughout this paper, we consider edge-weighed undirected graphs G = (V, E) on n = |V | vertices and m = |E| edges without isolated vertices. Each edge e = uv ∈ E between vertices u and v is weighted by a non-negative weight w(e) ≥ 0; K n denotes the complete graph on n vertices; a split graph G = (L, R, E) is an undirected graph where the vertex set L∪R is decomposable into a clique L and a independent set R. The degree d G (v) of vertex v ∈ V in G is the number of edges incident to v. A star S ⊂ E of a graph G = (V, E) is a tree of G where at most one vertex has a degree greater than 1 or, equivalently, it is isomorphic to K 1,ℓ for some ℓ ≥ 0. The vertices of degree 1 (except the center when ℓ ≤ 1) are called leafs of the star while the remaining vertex is called center of the star. A ℓ-star is a star of ℓ leafs; when ℓ = 0, the star is called trivial and it is reduced to a single vertex (the center). A non-trivial spanning star forest S = ∪ r i=1 S i ⊆ E3 of G is a spanning forest into stars, that is, each S i is a non trivial star, V (S i)∩V (S j) = ∅ and ∪ p i=1 V (S i) = V . Hence in this paper, a spanning star forest of a graph G is a collection of node disjoint non trivial stars (without isolated vertices, i.e., K 1,0) that covers all vertices of G. A matching M ⊆ E is a subset of pairwise non-adjacent edges. A matching M of G is perfect if all vertices of G are covered by M . A claw is a K 1,3 . A Spanning Star Forest Problem is defined as follows: The first problem is the restriction of the second to U = ∅. Given an instance I = (G, w) of Spanning Star Forest Problem (resp., I = (G, w, U) of Extended Spanning Star Forest Problem), S * = {S * 1 , . . . , S * ℓ * } will be an optimal solution with stars S * i and value w(S *) = opt SSF (I). The {0, 1}-Spanning Star Forest Problem is the restriction to binary weights w(e) ∈ {0, 1}. Notice that for general connected graphs G, one non-trivial spanning star forest4 containing U may not exists. For example consider G is a P 4 and U is the middle edge of G. However, for complete graphs with arbitrary set U, there always exists some spanning star forest containing U. For each of these problems, two possible goals will be considered in this paper: maximization and minimization. Hence, the Max Spanning Star Forest Problem consists of finding a spanning star forest S = {S 1 , . . . , S r } ⊆ E maximizing its weight. For instance, in Max {0, 1}-Spanning Star Forest Problem the size of a spanning star forest is the number of leaves in all its components. The goal in this case is to find the maximum-size spanning star forest of a given graph (induced by the edges of unit weight). From now, we assume the forced set U = M U ∪ S U is decomposed into a matching M U = {p i q i : i = 1, . . . , k ′ } of k ′ edges and a set S U = {F 1 , . . . , F k } of k vertex-disjoint stars with at least two leafs (c i will be the center of F i and C = {c 1 , . . . , c k } is the set of centers in S U). An illustration of these definitions is depicted in Figure 1. Cost Function Variants In this paper, when the graphs are complete, we will consider variants of the problem according to the cost function w: One variant assumes that w is any non-negative integer weight function; another that w satisfies the c-relaxed triangle inequality. Mainly consider that the c-relaxed triangle inequality might be satisfied outside the subgraph induced by V (U), ie., inside V \ V (U) because the structure of feasible solutions are strongly constrained by subset U.

Spanning Star Forest Problem

c1 . . . c k p1 q1 . . . p k ′ q k ′ x1 x2 . . . xt

Definition 1 (c-relaxed triangle inequality).

For a fixed c > 1/2, a weight function w on K n satisfies the c-relaxed triangle inequality, if:

∀x, y, z ∈ V (K n), w(x, y) ≤ c (w(x, z) + w(z, y)) (1)
The case c = 1 is usually called in the literature triangle inequality while for c ∈ (1/2; 1) it is called sharpened triangle inequality. Note that the extreme case c = 1/2 becomes trivial since all edges must have the same weight. A detailed motivation of the study of the Traveling Salesman problem satisfying sharpened triangle inequalities is given in [START_REF] Böckenhauer | Approximation algorithms for the TSP with sharpened triangle inequality[END_REF]. In the context of extended problems, Definition 1 leads to a new definition called the Extended c-relaxed triangle inequality: Definition 2 (Extended c-relaxed triangle inequality). For a fixed c ≥ 1, a weight function w on K n satisfies the extended c-relaxed triangle inequality, if:

(i) w(e) = 0 for e ∈ U;
(ii) for all {x, y, z} V (U), w satisfies the c-relaxed triangle inequality.

Condition (i) of Definition 2 refers to the discussion in [START_REF] Weller | On residual approximation in solution extension problems[END_REF] which argues that the "residue" part of a feasible solution S, i.e., the part given in S \ U, is the most important of the valuation. Another consequence of conditions (i) and (ii) concerns the valuation of w restricted to the subgraph induced by V (U) (except for edges of U): this function does not satisfy any specified property. The main reason is that they could never contribute in any spanning star forest containing U. Finally, the reason for assuming c ≥ 1 is that condition (ii) implies max{w(xz), w(yz)} ≤ c min{w(xz), w(yz)} when xy ∈ U and z / ∈ V (U).

Related work

The minimization version of Spanning Star Forest Problem, is well known by weighted upper edge cover problem. An edge cover of a connected graph G is a subset of edges which covers all vertices of G and given a weighted connected graph (G, w), the weighted edge cover problem consists of finding an edge cover S ⊆ E of G minimizing ρ w (G) = w(S) = ∑ e∈S w(e). This problem is polynomial-time solvable (see chapters 33 and 34 volume A of [START_REF] Schrijver | Combinatorial Optimization: Polyhedra and Efficiency[END_REF]).

Proposition 3. Min Spanning Star Forest Problem is polynomial-time solvable.

Proof. We essentially prove that this problem is equivalent to solve the weighted edge cover problem. Let I = (G, w) be an instance of the Min Spanning Star Forest Problem. Obviously, opt SSF (I) ≥ ρ w (G) because any spanning star forest is a particular edge cover. Conversely, there is an optimal edge cover S * ⊆ E of (G, w) (with value w(S *) = ρ w (G)) which is a spanning star forest. Actually, otherwise a P 4 or a K 3 exists in the subgraph (V, S *); in each case, an edge of the P 4 or the K 3 can be deleted without increasing the cost because the weights are non-negative.

The maximization version of Spanning Star Forest Problem, called here Max Star Forest Problem, in general graphs has been investigated intensively in recent years for unweighed graphs without isolated vertices. Usually, the input is an undirected connected graph (weighted or not) and trivial stars are allowed as part of a feasible spanning star forests. In [START_REF] Nguyen | Approximating the spanning star forest problem and its application to genomic sequence alignment[END_REF], an APXhardness proof with explicit non-approximability bound is proposed, together with a polynomial-time algorithms for trees. A combinatorial 0.6-approximation algorithm which mainly solves the dominating set problem is presented as well while better algorithms with approximation ratio 0.71 and 0.803 are given respectively in [START_REF] Chen | Improved approximation algorithms for the spanning star forest problem[END_REF] and [START_REF] Athanassopoulos | Energy-efficient communication in multi-interface wireless networks[END_REF]. In contrast, for edge weighted graphs with non-negative weights, few results are proposed in the literature. As indicated above, trivial stars (ie., isolated vertices) are allowed because we want to maximize the total weight of the stars. This requirement is equivalent to find a packing star forest (ie. a collection of vertex disjoint stars): a 0.5-approximation is given in [START_REF] Nguyen | Approximating the spanning star forest problem and its application to genomic sequence alignment[END_REF] (which is the best ratio obtained so far) and polynomial-time algorithms for special classes of graphs such as trees and cactus graphs are presented in [START_REF] Nguyen | Approximating the spanning star forest problem and its application to genomic sequence alignment[END_REF][START_REF] Viet | The maximum weight spanning star forest problem on cactus graphs[END_REF]. Negative approximation results are presented in [START_REF] Nguyen | Approximating the spanning star forest problem and its application to genomic sequence alignment[END_REF][START_REF] Chakrabarty | On the approximability of budgeted allocations and improved lower bounds for submodular welfare maximization and GAP[END_REF][START_REF] Chen | Improved approximation algorithms for the spanning star forest problem[END_REF]. For any ε > 0, the unweighted version (or equivalently the Max {0, 1}-Spanning Star Forest Problem) is hard to approximate within a factor of 545 546 + ε unless P=NP [START_REF] Nguyen | Approximating the spanning star forest problem and its application to genomic sequence alignment[END_REF]. The edge-weighted version is NP-hard to approximate within 10 11 + ε [START_REF] Chakrabarty | On the approximability of budgeted allocations and improved lower bounds for submodular welfare maximization and GAP[END_REF]. For the Maximum Carpool Matching problem, a 0.33-approximation algorithm and a 0.5-approximation algorithm for both the general problem and the unweighted variant are given in [START_REF] Kutiel | Approximation algorithms for the maximum carpool matching problem[END_REF]. To the best of our knowledge, the extended versions of both problems have not been studied in the literature.

As indicated in introduction, extending a partial solution into a feasible solution has been studied from a computational complexity for independent dominating set 5 , conference programs and coloration in [START_REF] Delbot | Graphs with Forbidden and Required Vertices[END_REF][START_REF] Fotakis | Conference program design with single-peaked and single-crossing preferences[END_REF][START_REF] Tuza | Graph colorings with local constraints -a survey[END_REF] respectively. Dealing with approximation algorithms with performance guarantee of NP-hard of optimization problems, results on extension problems are given in [START_REF] Delbot | Graphs with Forbidden and Required Vertices[END_REF][START_REF] Weller | On residual approximation in solution extension problems[END_REF] for several problems including vertex cover, connected vertex cover feedback vertex set, Steiner tree, max leaf and bin packing. For algorithms finding an optimal solution, it often does not matter whether we optimize the weight of whole solution S or the weight of the residue part S \ U . However, in the context of approximation algorithms, this difference may produce important modifications as for bin packing. It is the main reason explaining the works given in [START_REF] Weller | On residual approximation in solution extension problems[END_REF] where the authors define and propose the approx-imation classes FRAPX and RAPX capturing approximability of the residue. The residue approximation of a solution S is the approximation of w(S) -w(U).

In the conclusion of their paper [START_REF] Weller | On residual approximation in solution extension problems[END_REF], the authors elaborate that obtaining parameterized complexity results [START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF] of extension problems parameterized by |U| leads to challenging open problems.

Summary of results and orginization

We prove the following results in this paper. First, in Section 2 we show that for a given graph G = (V, E) and a packing of stars U ⊆ E, even deciding the existance of a spanning star forest containing U is a NP-hard problem. However, by introducing a dynamic programming algorithm for bounded tree-width graphs, we show that not only the decision version is decidable in polynomial time but also both Max\Min Extended Spanning Star Forest problems are solvable in polynomial time.

In Sections 3 and 4, we focused on complete graphs. Minimization version is studied in Section 3. A dichotomy result of the computational complexity is presented depending on parameter c of the (extended) c-relaxed triangle inequality (Theorems 10 and 13). Then, a parameterized complexity, which shows this version is FPT is given. Positive and negative approximation results conclude this section. In section 4, we focus on Max Extended Spanning Star Forest in complete graphs. We prove that, compared to the unextended version, the same positive approximation result is reached, while we strengthen the negative approximation result to hold even for the Max Extended {0, 1}-Spanning Star Forest Problem. Table 1 summarizes the results obtained in sections 3,4 on complete graphs.

w-general c-relaxed Extended c-relaxed Min Extended NP-hard NP-hard c > 1 NP-hard c > 1 Spanning Star inapproximable at all polynomial 1 2 ≤ c ≤ 1 polynomial c = 1
• V (G) = V (C) ∪ V (X) where V (C) = {v j : c j ∈ C} and V (X) = {v 0 i , v 1 i : i = 1, . . . , n}, • U = {v 0 i v 1 i : x i ∈ X } and let M = m ∪ j=1 ({v j v 1 i : x i ∈ c j } ∪ {v j v 0 i : ¬x i ∈ c j }). • E(G) = U ∪ M . It is clear that I ′ is built in polynomial-time.
Suppose that I is satisfiable and let T be a truth assignment of I. For each clause c j , we define f (j) as an index of a variable x f (j) which satisfies clause c j in T ; we build a spanning star forest S containing U as follows:

S = {v 1 f (j) v j : T (x i) = true} ∪ {v 0 f (j) v j : T (x i) = false} ∪ U .
Conversely, assume that S * is a spanning star forest containing U. So S * \ U are incident to at most one of v 0 i , v 1 i for each 1 ≤ i ≤ n. Hence, we can build a truth assignment T as follows: if

v j v 1 i ∈ S * , then T (x j) = true and T (x i) = false otherwise.
Concerning the result of Theorem 4 we can easily derive:

Corollary 5. Dec Extended Spanning Star Forest is NP-hard for general graphs of maximum degree 3 and even if the packing of non-trivial stars U makes a matching.

Proof. Instead of SAT, we start the reduction from 2-balanced 3-SAT, denoted (3, B2)-SAT. An instance of (3, B2)-SAT is given by a set C of clauses defined over a set X of variables such that each clause has exactly 3 literals and each variable appears 4 time in C, 2 twice positive and twice negative. Deciding weather an instance of (3, B2)-SAT is satisfiable is NP-complete [START_REF] Berman | Approximation hardness of short symmetric instances of MAX-3SAT[END_REF]. So, by considering the Corollary 5, we should focus on some instances which has always some feasible solutions for Max\Min Extended Spanning Star Forest. Since, there exists some feasible solution for the problem, in complete graphs with every arbitrary packing of stars U, thus in Sections 3,4 we will study both minimization and maximization versions of the problem on complete graphs. Here, we propose a polynomial algorithm with dynamic programming method for Max\Min Extended Spanning Star Forest for bounded treewidth graphs. Instead of operating an algorithm on the input graph, we should operate it on a non-unique representation of the original graph, called Tree Decomposition as described in [START_REF] Hans | Treewidth: Algorithmic techniques and results[END_REF] and [START_REF] Kloks | Treewidth: computations and approximations[END_REF]. A tree decomposition (TD) of the original graph G = (V, E), includes some bags B X ⊆ V which satisfies following conditions:

(i) ∪ x∈T D B x = V . (ii) ∀(uv) ∈ E, ∃x ∈ T D such that u, v ∈ B x . (iii) There is a path of bags containing v between B x and B y in T D if v ∈ B x ∩ B y .
The TD is converted easily into a nice tree decomposition (nice TD), to decrease the possible transactions between bags [START_REF] Kloks | Treewidth: computations and approximations[END_REF]. A TD is nice if every node x be one of the following types:

-Leaf: a node with no children,

|B x | = 1.
-Introduce: a node with one child y such that B x = B y ∪{v} for some v ∈ V .

-Forget: a node with one child y such that B x = B y \ {v} for some v ∈ V .

-Join: a node with two children y and z such that B x = B y = B z . Definition 6. For any vertex v ∈ V of a given graph G = (V, E) and a spanning star forest f , we assign a labeling of v as follows:

l f (v, G) :=      center if v is a center of a star in f, leaf if v is a leaf of a star in f, isolated if v is a single vertex in f.
Since both endpoints of each K 1,1 in the spanning star forest f can be center and leaf, one of them is labeled in arbitrary with center and the other with leaf . In the following, we propose a dynamic programming for Min Extended Spanning Star Forest problem. Definition 7. For a weighted graph G = (V, E, w), packing of stars U and a sub-labeling function l from S ⊆ V to {center, leaf, isolated}, the value of minimum extended spanning star forest of G such that satisfies l and is allowed to have isolated vertices in S is defined as follows:

F l S (G, U) := min f ∈ESSFI (G,U) {w(f)|∀s ∈ S, l f (s, G) = l(s) and ∀s / ∈ S, l f (s, G) ̸ = isolated} ∪ {∞}.
(

) 2
Let T be a nice tree decomposition of G by rooted r. We note B x and V x vertices appearing in node x and vertices appearing in the subtree rooted at x respectively. Actually, the solution of Min Extended Spanning Star Forest of G is arrived from min l∈L F l r (G, U) where L is a family of sub-labeling on B r such that no vertex in B r is labeled with isolated. The computation progresses from leaves of T to the root r by postorder traversal and all valid sub-labeling of x are achieved by possible sub-labeling of it's children. For each node x of T , let

G x = G[V x] and U x = G x [E(G x) ∩ E(U)]. We need to calculate F l x (G x , U x
) for all valid sub-labeling l on B x for each node x in T . Since there are four different types of nodes in T , we propose four types of function F l x (G x , U x) as follows:

•Leaf node Suppose that B x = {u} is a leaf in T . It is clear that |V x | = 1, G x =
u and the only valid sub-labeling is l(u) = isolated, so we have:

F l x (G x , U x) = { 0 if l(u) = isolated, ∞ otherwise.

•Introduce node

Suppose that y is the only child of x in T and B x = B y ∪ {a}. The important thing here is the label of node a for all valid sub-labeling B x . Node a can accept all the three labels isolated, leaf and center :

if l(a) = isolated and node a is not in V (U §), then by keeping all valid sublabeling on B y and adding a label "isolated" for node a we make some valid sub-labeling on B x . if l(a) = leaf , it means that node a is a leaf of a star s in G[V x], so by considering the structure of TD, center of s has to be in B y . Every node b ∈ B y such that ab ∈ E and b has one of the labels {isolated, center} on B y can be a candidate for the center of s. if l(a) = center, it means that node a is a center of a star s in G[V x], so by considering the structure of TD, all of its leaves must be appeared in B y . So every subset M of vertices with label isolated on B y such that M ⊆ N G (a) can be a candidate for leaves of s.

In addition, we have to consider in all above cases that whether node a ∈ V (U x) or not. Thus based on the label of a in the valid sub-labeling l on B x , we consider following cases:

if l(a) = isolated, F l x (G x , U x) := { F l ′ y (G y , U y) if a / ∈ V (U x) ∞ otherwise.
where

l ′ (v) = l(v) for each v ∈ B y . if l(a) = leaf , F l x (G x , U x) :=          min l(b)=center,ab∈E(Gx) {F l ′ b y (G y , U y) + w(ab), F l ′′ b y (G y , U y) + w(ab)} if a / ∈ V (U x) min l(b)=center,ab∈E(Ux) {F l ′ b y (G y , U y) + w(ab), F l ′′ b y (G y , U y) + w(ab)} if d Ux (a) = 1 ∞ if d Ux (a) > 1 where l ′ b (v) := l(v) for v ∈ B y \ {b} and is isolated when v = b and l ′′ b (v) := l(v) for v ∈ B y \ {b} and is center when v = b. if l(a) = center, let S = {v ∈ V x : l(v) = leaf and va ∈ E}, F l x (G x , U x) :=        ∞ if S = ∅, ∞ if ∃b ∈ U x : ab ∈ E(U x) and d Ux (b) > 1 min ∅̸ =M ⊆S,NU x (a)⊆M {F l ′ M y (G y , U y) + ∑ v∈M w(av)} otherwise.
where

l ′ M (v) := isolated for every v ∈ M and equals l(v) if v ∈ B y \ M .

•Forget node

Suppose that y is the only child of x in T and B y = B x ∪ {a} for a / ∈ B x . Because of the structure of TD, we will not see again node a in other bags in the following of the algorithm. On the other hand, notice that the final solution does not contain any non-trivial stars (an isolated vertex). Hence, label a can not be isolated and all valid sub-labeling of B y with l(a) = isolated will be invalid on B x . Therefore, for each valid sub-labeling l on B x we have:

F l x (G x , U x) := min{F l ′ y (G y , U y), F l ′′ y (G y , U y)} where l ′ (v) = l ′′ (v) = l(v) for v ∈ B
x and l ′ (a) = center and l ′′ (a) = leaf .

•Join node

In the last case, suppose that y 1 and y 2 are children of x in T and B x = B y1 = B y2 . Since, in the Join node x, two subgraphs V y1 and V y2 will be merged then the two sub-labeling l 1 , l 2 defined on B y1 and B y2 respectively, have to be adapted to each other. For example, for a node v ∈ B x , with l 1 (v) = leaf and l 2 (v) = leaf does not lead to a valid sub-labeling for B x , because it makes a P 3 in G x . Thus, for each valid sub-labeling l on B x we have:

F l x (G x , U x) := min <l1,l2>∈L {F l1 y1 (G y1 U y1) + F l2 y2 (G y2 , U y2)} < l 1 , l 2 >∈ L iff      {l 1 (v), l 2 (v)} = {isolated, leaf } if l(v) = leaf, {l 1 (v), l 2 (v)} = {isolated, center} or {center} if l(v) = center, {l 1 (v), l 2 (v)} = {isolated} if l(v) = isolated.
Theorem 8. Min Extended Spanning Star Forest is solvable in polynomial time for bounded tree-width graphs.

Proof. Now, we show that our proposed algorithm gives the optimal solution of Min Extended Spanning Star Forest for a given weighted graph G = (V, E, w) and a packing of non-trivial stars U. We focus on recursive functions F and show that the algorithm for each node x of TD, calculate and stores the optimal solution of each valid sub-labeling of

B x on G[V x].
Hence, in the last step of the algorithm, the optimal solution of each valid sub-labeling of B r on G = G[V r] is achieved. Among these optimal solutions, one which does not contain the label isolated for all vertices in B r and has maximum amount of F , is the final solution of Min Extended Spanning Star Forest on (G, U). Here we show that how F obtains the amount of optimal solution for each types of node and for every labeling in TD.

If x is a Leaf node in TD, it is trivial. Assume that x is an Introduce node with B x = B y ∪ {a} and assume that the algorithm calculated and stored the optimal amount of F for all valid sub-labeling of B y on G[V y]. Concerning the labeling for vertex a (center, leaf, isolated) and all valid sub-labellings of B y on G[V y] and also by considering U x , we obtain optimal amount of F for all sub-labeling of B x on G[V x]: If l(a) = isolated and vertex a isn't an endpoint of U x , then the amount of F isn't changed and if a ∈ V (U x), since the final solution must contains U, the amount of F is ∞; If l(a) = leaf , the number of edges in U x incident to a can not be more than 1 and for other cases we can easily calculate the amount of F ; If l(a) = center, for every neighbor v of a, d Ux (v) ≤ 1 and also a must have some neighbors M with label leaf in B x which have label isolated in B y . For all of these cases we calculate the amount of F and store the labeling.

Suppose node x is Forget and parent of y in TD such that B x = B y \ {a}. Since vertex a will not be appeared in the following steps of the algorithm, then we don't consider the cases that label of vertex a was isolated among valid sublabeling of B y on G[V y], but by considering other cases (when label of vertex a was leaf, center, we obtain optimal amount of function F for all valid sublabelings of

B x on G[V x].
Now assume x is a Join node with two children y 1 and y 2 in TD such that B x = B y1 = B y2 . Suppose that the algorithm calculated and stored the optimal amount of F for all valid sub-labeling of B y1 and B y2 on G[V y1] and G[V y2] respectively. Recall that by construction of TD, V y1 ∩ V y2 = B x and also there is no edges between vertices of V y1 \ B x and V y2 \ B x in G. Hence, optimal amount of F for all valid sub-labelings of B x on G[V x] is obtained by checking valid sub-labelings of B y1 and B y2 . A valid sub-labeling of B x does not contain three following cases:

1-there is a vertex v ∈ B x , with label leaf in B y1 and B y2 , 2-there is a vertex v ∈ B x , with label leaf in B y1 and label center in B y2 , 3-there is a vertex v ∈ B x , with label leaf in B y2 and label center in B y1 .

For all valid sub-labelings in B x we calculate optimal amounts of F .

Assuming that the size of tree-width of input graph is bounded by k. Since for each vertex v ∈ B x there are three labels, we have 3 k different labelings for each B x . Also by considering the calculating method of F for each node type, the worst case for time complexity happens for join nodes where we have to consider three different cases when l(u) = center and two different cases when l(u) = leaf for each u ∈ B x . Let z 1 (resp. z 2 , z 3) be the number of vertices with labeling center (resp., leaf, isolated) in B x for a join node x. All possible sub-labelings for B x where |B x | = k can be computed as follows:

∑ z1+z2+z3=k (k z 1 , z 2 , z 3) .3 z1 .2 z2 .1 z3 = (1 + 2 + 3) k = 6 k (3)
Thus the time complexity of the algorithm is O * (6 k).

By changing function F of the algorithm such that putting max instead of min and -∞ instead of ∞, we can solve Max Extended Spanning Star Forest.

Corollary 9. Max Extended Spanning Star

Forest is solvable in polynomial time for bounded tree-width graphs.

Min Extended spanning star forest in complete graphs

Let us start this section by a definition of a special transformation on weighted complete graphs, called H-extended procedure.

H-extended procedure In several parts of this section, we will consider the weighted graph I ′ = (H, w H) built from an instance I = (K n , w, U) of the Min Extended Spanning Star Forest Problem where U = S U ∪ M U is a packing of nontrivial stars (see Figure 1). H = (V H , E H) is a complete weighted split graph defined as follows:

• V H = X ∪ (R ∪ C) where X = V (K n) \ V (U), C = {c 1 , . . . , c k } is the set of centers of starts in S U and R = {r 1 , . . . , r k ′ } is a set of vertices correspond- ing to stars in M U ;
• E H is the set of edges of a complete split graph where the left side is a complete graph on X, the right side is an independent set on R ∪ C and we have a complete bipartite graph between them; • w

H (uv) =      w(uv) if u, v / ∈ R ∪ C, u ̸ = v w(uv) if u / ∈ R ∪ C, v ∈ C min{w(up i), w(uq i)} if u / ∈ R ∪ C, v = r i .
Figure 2 gives an illustration of the construction. The H-extended procedure transforms any subset F ⊆ E(H) into a subset F ′ ⊆ E(K n) by adding U and replacing any edge xr i ∈ F by edge xp i if w(xr i) = w(xp i), else by xq i . Obviously, these two constructions (H and H-extension procedure) are done in polynomialtime. Figure 3 proposes an example of the H-extended procedure. We now prove that the extended version of Min Spanning Star Forest problem can be much harder than the unextended version even in complete graphs. Actually, we will give a dichotomy result depending on parameter c of the (extended) c-relaxed triangle inequality.

Theorem 10. Min Extended Spanning Star Forest problem in complete graphs is NP-hard for both c-and extended c-relaxed triangle inequality when c > 1.

Proof. Let c > 1 be a constant. For both cases, we propose a reduction similar to what we did in Theorem 4 and build an instance I ′ = (K 2n+m , w, U) of Min Extended Spanning Star Forest as follows:

• V (K 2n+m) = V (C) ∪ V (X) where V (C) = {v j : c j ∈ C} and V (X) = {v 0 i , v 1 i : i = 1, . . . , n}, • U = {v 0 i v 1 i : x i ∈ X } and let M = m ∪ j=1 {v j v 1 i : x i ∈ c j } ∪ {v j v 0 i : ¬x i ∈ c j }.
It is clear that I ′ is built in polynomial-time. The weight function w is defined by, ∀xy ∈ E(K 2n+m),

w(xy) =          0 if xy ∈ U, 1 if xy ∈ M, c if xy / ∈ M, x ∈ V (C), y ∈ V (X), 2c otherwise.
We can easily verify that w satisfies the extended c-relaxed (and c-relaxed) triangle inequality. We claim that I is satisfiable if and only if opt SSF (I ′) ≤ m.

Suppose that I is satisfiable and let T be a truth assignment of I. For each clause c j , we define f (j) as an index of a variable x f (j) which satisfies clause c j in T ; we build a spanning star forest S containing U such that w(S) = ∑ e∈S w(e) = m as follows:

S = {v 1 f (j) v j : T (x i) = true} ∪ {v 0 f (j) v j : T (x i) = false} ∪ U.
Conversely, assume that S * is a spanning star forest containing U with w(S *) = opt SSF (I ′) ≤ m. Since U is a matching of size n, and by construction of the weights, if S * contains ℓ edges of weights 2c, then w(S *) ≥ 2cℓ + (m -2ℓ) = m -2ℓ(c -1) because these ℓ edges cover at most 2ℓ vertices of V (C) and the weight of any other edge is at least 1 (recall c > 1). Hence, we deduce ℓ = 0. Now, if S * contains ℓ ′ edges of weight c > 1, then these ℓ ′ edges cover exactly ℓ ′ vertices of V (C) and w(S *) ≥ ℓ ′ c + (m -ℓ ′) > m, contradiction. Hence, S * only contains unit weights. We can build a truth assignment T as follows: if v j v 1 i ∈ S * , then T (x j) = true and T (x i) = false otherwise. Corollary 11. The Min Extended Spanning Star Forest Problem for general weight function w is not approximable at all unless P=NP.

Proof. Revisit the proof of Theorem 10 by replacing the weight of any edge e by w ′ (e) = 0 if e ∈ M and w ′ (e) = 1 otherwise. Now, this restriction becomes the Min Extended {0, 1}-Spanning Star Forest Problem and it is NPcomplete to distinguish between opt SSF (I ′) = 0 and opt SSF (I ′) > 0.

In the following, in order to get some positive results, we will use of the Min weighted lower-upper-cover problem which is defined as follows:

Min weighted lower-upper-cover problem Input: A weighted graph (V, E, w) and two non-negative integer functions a, b

on V such that ∀v ∈ V , 0 ≤ a(v) ≤ b(v) ≤ d G (v). Solution: A subset M ⊆ E such that the subgraph G M = (V, M) induced by M satisfies a(v) ≤ d GM (v) ≤ b(v). Output: Minimizing w(M) = ∑ e∈M w(

e).(if any)

The Min weighted lower-upper-cover problem is known to be solvable in polynomial-time (Theorem 35.2 Chapter 35 of Volume A in [START_REF] Schrijver | Combinatorial Optimization: Polyhedra and Efficiency[END_REF]). For an instance I = (G, w) of the Min weighted lower-upper-cover problem, opt LU C (I) denotes the value of an optimal solution. Proof. We only deal with the c-relaxed triangle inequality case, because the other case is simpler. Let c be a constant with 1/2 ≤ c ≤ 1. We solve Min Extended Spanning Star Forest Problem for the c-relaxed triangle inequality via the help of the Min weighted lower-upper-cover problem.

Let I = (K n , w, U) be an instance of the Min Extended Spanning Star Forest Problem where w satisfies the c-relaxed triangle inequality and U is a packing of stars. From I, we build an instance I ′ = (H, w H) where H is a complete split graph which described in H-extended procedure. Moreover, we consider two functions a, b of the Min weighted lower-upper-cover problem as follows: 4 proposes an illustration of the construction. By construction of I ′ , an optimal lower-upper-cover with parameters a, b is {P 4 , C 3 }-free and then is an extended spanning star forest of I. Hence,

if v ∈ V H \ (R ∪ C), then a(v) = 1 and b(v) = 2. Otherwise, v ∈ R ∪ C and a(v) = 0 and b(v) = 1. Figure
c1 . . . c k p1 q1 . . . p k ′ q k ′ x1 x2 . . . xt I = (Kn, U, w) c1 . . . c k r1 . . . r k ′ x1 x2 . . . xt I ′ = (H = (VH , EH), a, b) a(v) = 1 b(v) = 2 a(v) = 0 , b(v) = 1
opt LU C (I ′) ≥ opt SSF (I) (4)
Conversely, let S * be an optimal extended spanning star forest of I. The next property allows us to focus on spanning star forest claw U-free. Property 14. There is an optimal extended spanning star forest of I which is claw U-free.

Proof. Let S be an optimal extended spanning star forest. Assume S is not claw U-free and let S = {uv i : i = 1, 2, 3} be a claw not U-free with uv i / ∈ U for i = 1, 2. In particular, vertices v 1 and v 2 are not adjacent to U; hence, S * = (S \S)∪{v 1 v 2 , uv 3 } is an extended spanning star forest with w(S *) ≤ w(S). By repeating this process, we get the expected result. Note that if c < 1, all optimal extended spanning star forests are indeed claw U-free.

Hence, we can assume that S * is claw U-free, and then it is a lower-upper-cover with parameters a, b of I ′ :

opt SSF (I) = w(S *) ≥ w H (S *) ≥ opt LU C (I ′) (5)
Inequalities (4) and (5) give the expected result.

We end this subsection by giving a parameterized complexity result depending on the number of forced edges. Proof. Let I = (K n , w, U) be an instance of the Min Extended Spanning Star Forest Problem where we recall that U = M U ∪ S U with M U = {p i q i : i = 1, . . . , k ′ } and S U = {F 1 , . . . , F k }. The set of centers is C = {c 1 , . . . , c k } where c i is the center of star F i . As in Theorem 13, we solve several instances I J of the Min weighted lower-upper-cover problem for each set J ⊆ {1, . . . , k ′ }. At the end, we return the solution minimizing w(S J) = opt LU C (I J) among all possible sets J, that is S = argmin J opt LU C (I J) where opt LU C (I J) is the optimal value of the Min weighted lower-upper-cover problem on instance I J .

Let I = (K n , w, U) be an instance of the Min Extended Spanning Star Forest Problem where U is a packing of stars. From I and a set J ⊆ {1, . . . , k ′ }, we built an instance I J = (H J , w) where H J = (V HJ , E HJ) is a complete subgraph of K n and two functions a J , b J of the Min weighted lower-upper-cover problem as follows:

V HJ = (V (K n) \ V (U))∪({p j : j ∈ J} ∪ {q j : j ∈ {1, . . . , k ′ } \ J} ∪ C). Finally, if v ∈ V (K n) \ V (U), then a J (v) = 1 and b J (v) = d H J (v). Otherwise, for v ∈ {p j : j ∈ J}∪{q j : j ∈ {1, . . . , k ′ }\J}∪C, a J (v) = 0 and b J (v) = d HJ (v)
. Let S J be an optimal solution of the Min weighted lower-upper-cover problem on (I J , a J , b J). Clearly, S J is a spanning star forest on I and by construction there exists J * such that w(S J *) = w(S *) = opt SSF (I). The complexity of the whole algorithm is O * (2

|M U |) = O * (2 |U|) and then Min Extended Spanning Star Forest Problem is FPT.
The second part of the proof is a direct consequence of Corollary 11 for the Min Extended {0, 1}-Spanning star forest problem and use the Exponential Time Hypothesis (ETH in short): ∃s > 0 such that 3-CNF-Sat with n variables cannot be solved in time O * (2 sn) [START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF].

From Corollary 11 and Theorem 13, we focus on the approximation of the Min Extended Spanning Star Forest Problem for both c-and extended c-relaxed triangle inequality. Hence, let c > 1 be a fixed constant. In algorithm Approx 1 we use optimal solution of the Min weighted lower-upper-cover problem as subroutine which is already explained in Theorem 13.

Algorithm 1: Approx 1

Input: I = (K n , w, U) where U is a packing of forced stars.

Output: A spanning star forest S of I containing U.

1 Build instance I ′ = (H, w H) from I as is described in H-extended procedure, where H = (X, (R ∪ C), E H) is a split complete graph; 2 Find an optimal solution S * H ⊆ E H of the Min weighted lower-upper-cover problem on (I ′ , a 1 , b 1) with a 1 (v) = 1 and b 1 (v) = d H (v) if v ∈ X, a 1 (v) = 0 and b 1 (v) = 1 for v ∈ R and a 1 (v) = 0 and b 1 (v) = d H (v) for v ∈ C; 3 Convert S *
H into S using the H-extended procedure; 4 Return S. Proof. Let I = (K n , w, U) be an instance of the Min Extended Spanning Star Forest Problem which satisfies the c-relaxed (resp., extended c-relaxed) triangle inequality. Clearly, for c > 1, a ρ-approximation algorithm for the case of extended c-relaxed triangle is also a ρ-approximation algorithm for the c-relaxed triangle. Hence, we will prove the correctness of Approx 1 only for the case that weight function satisfies extended c-relaxed triangle inequality. Considering the H-extended procedure which already explained in the beginning of Section 3, we have:

-S contains U and the degree of each vertex in S is at least 1, since a 1 (v) = 1 for v ∈ X. by the minimality and since b 1

(v) = 1 for v ∈ R, S is P 3 -free.
So S is a spanning star forest of K n containing U.

Let S * be an optimal spanning star forest on I, we show how we can convert S * into a claw U-free S H ⊆ E H which is also a feasible solution of the Min weighted lower-upper-cover problem on (I ′ , a 1 , b 1) by losing at most a factor c.

For each p i q i ∈ M U , let S * i is the star of S * containing edge p i q i ; wlog., assume that p i is the center of S * i , and L * i denotes the leafs of S * i except q i . If

|L * i | ≥ 2
(v) = 1 and b ′ (v) = d H (v) if v ∈ X and a 2 (v) = 0 and b 2 (v) = d H (v) for v ∈ R ∪ C; 3 Convert S *
H into S using the H-extended procedure; 4 for (each connected component F i of S with L i as leafs such that p i q i ∈ F i and L i ∩ {p i , q i } = ∅) do 5 Build two stars

S 1 i = {p i x : x ∈ (L i ∪ {q i })} and S 2 i = {q i x : x ∈ (L i ∪ {p i })}; 6 if w(S 1 i) ≤ w(S 2 i) then S ← (S \ F i) ∪ S 1 i ; 7 else S ← (S \ F i) ∪ S 2 i ; 8 Return S ← S.
By construction, each connected component F i of S with p i q i ∈ F i and L i ∩ {p i , q i } = ∅ has a diameter equals to 3 (some leafs are connected to p i while the others leafs are connected to q i). The other connected components are stars. Hence, S is a spanning star forest of I. 4. of Approx 2 and wlog., assume that w(S 1 i) ≤ w(S 2 i) for all i ≤ ℓ. Hence, the spanning star forest S outputted by Approx 2 can be decomposed into S 1 1 , . . . , S 1 ℓ and S ′ where

S ′ = S \ (∪ ℓ i=1 F i)
. By construction and using the extended c-relaxed triangle inequality, we have:

2w(S 1 i) ≤ w(S 1 i) + w(S 2 i) ≤ ∑ x∈Li w(p i x) + ∑ x∈Li w(q i x) ≤ ∑ x∈Li w(p i x) + w(q i x) ≤ ∑ x∈Li (c + 1) min{w(p i x), w(q i x)} ≤ (1 + c)w(F i) (6)
Summing up inequality (6) for all i ≤ ℓ and adding twice w(S ′), we obtain:

2w(S) = 2w(S ′) + 2 ℓ ∑ i=1 w(S 1 i) ≤ (1 + c)w(S ′) + (1 + c) ℓ ∑ i=1 w(F i) ≤ (1 + c)w(S * H) = (1 + c)opt LU C (I ′)
Let S * be an optimal spanning star forest on I of value opt SSF (I); S * is a feasible lower upper cover on (H, a 2 , b 2). Hence, we deduce opt LU C (I ′) ≤ w(S *) = opt SSF (I). The two last inequalities provide the expected result. [START_REF] Håstad | Some optimal inapproximability results[END_REF], we know, for every ϵ > 0, given a 3-SAT instance Φ it is NP-hard to distinguish between two following cases:

• (Yes-instance) There exist an assignment satisfying (1 -ϵ) fraction of the clauses in Φ. • (No-instance) No assignment satisfies more than (78 + ϵ) fraction of clauses in Φ.

ning Star Forest Problem is defined in general graphs (ie., not necessarily complete), and allowing trivial stars. This assumption is not restrictive because by completing the graph by weights 0, the two problems become equivalent. Moreover, by replacing the weights of required edges U by a large enough value, then Max Spanning Star Forest Problem and Extended Spanning Star Forest Problem are completely equivalent from a computational complexity point of view. However, these modifications affect the approximability of the problem. Hence, here we are interested in the hardest case which corresponds to w(e) = 0 for ∀e ∈ U. This means that the obtained results will be valid for the residual approximation [START_REF] Weller | On residual approximation in solution extension problems[END_REF]. Recall that

U = {U 1 , . . . , U r } = M U ∪ S U where r = k + k ′ , M U = {e i : i = 1, . . . , k ′ } is a matching of k ′ edges and S U = {F 1 , . . . , F k } is a set of k vertex-disjoint
S = {S 1 , . . . , S r } ⊆ E of G such that U i ⊆ S i . Output: Maximizing w(S) = ∑ e∈S w(e) = ∑ r i=1 ∑ e∈Si w(e).
Solving Extended Disjoint Spanning Forest is polynomial and use the same arguments that solving maximum weighted spanning tree.

Algorithm 3: Approx 3

Input: I = (Kn, w, U) where U is a packing of forced stars. Output: A spanning star forest S of I containing U.

7 if w(S 1 i) ≥ w(S 2 i) then S ← S ∪ S 1 i ; 8 else S ← S ∪ S 2 i ;
Lemma 20. There is a linear-time algorithm that solves Extended Disjoint Spanning Forest.

Proof. The algorithm starts from U, sorts the edges by non increasing weights and iteratively adds edges satisfying condition U i ⊆ S i for all i ≤ r. The arguments of optimality are the standard ones and more generally are valid for matroid. We present them for sake of completeness. Consider a connected weighted graph I = (G, w) and let S * 1 be an optimal spanning forest S * 1 = {S * 1 , . . . , S * r } of G such that U i ⊆ S * i . Consider S 1 = {S 1 , . . . , S r } the solution returned by the greedy algorithm; let e ∈ S * 1 \ S 1 . The addition of e * to S 1 leads to either the creation of a cycle or the fusion of two subtrees S ℓ and S ℓ ′ . In any case, all edges of that cycle or the path between U ℓ and U ℓ ′ are larger or equals than w(e *).

From I = (K n , w, U), we delete all edges xy / ∈ U with x ∈ L i for some i ≤ k and y ∈ V (K n). Let G = (V, E) be the resulting connected graph and I ′ = (G, w, U) be the instance of Extended Disjoint Spanning Forest. Consider the Algorithm 3. Let us formally explain how solutions are built during Step 5. Here, U i ⊂ S * i ; first we root subtree S * i at the center of U i (if U i = {p i q i }, we root S * i at p i). Then, we construct a first partial solution which consider edges of S * i \ U i with odd levels and another partial solution with even levels. At the end of this Step 5. we add edges of U i for both partial solutions. Figure 6 propose an illustration on the construction of the two spanning star forests (containing trivial stars at this stage) S 1 i and S 2 i of the induced subgraph (V, S * i) according to the structure of U i . Theorem 21. Approx 3 is a 1 2 -approximation of Max Extended Spanning Star Forest Problem in complete graphs.

Proof. Let I = (K n , w, U) be an instance of the of the max Extended Spanning Star Forest Problem where w(x, y) ≥ 0 for all xy ∈ E(K n). Consider a subtree S * i ̸ = U i of the optimal solution S * 1 found by Approx 3 for the Extended Disjoint Spanning Forest problem on instance (G, w). Clearly, either S * 1 \U i has two subtrees (one containing p i , the other containing q i) and in this case U i = {p i q i } or S * 1 \U i remains a subtree. Wlog., assume w(S 1 i) ≥ w(S 2 i) (Step of Approx 3); hence, since S 1 i and S 2 i are two spanning star forests (with possibly containing trivial stars at this stage) such that S 1 i ∩ S 2 i = U i and S 1 i ∪ S 2 i = S * i , we get: ∀i ≤ r, 2w(S 1 i) ≥ w(S 1 i) + w(S 2 i) ≥ w(S * i) + w(U i). By summing up inequality [START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF] for all i ≤ ℓ (note this inequality also holds when S * i = U i), and using w(e) ≥ 0, we obtain:

2w(S) ≥ r ∑ ℓ=1 w(S * i) = w(S * 1) (10)
On the other hand, from an optimal spanning star forest S * containing U with a maximum value w(S *) = opt SSF (I) and by adding n -r -|U| edges, we get particular feasible solution of Extended Disjoint Spanning Forest on I ′ = (G, w, U). Hence, because the weights are non-negative:

w(S * 1) ≥ opt SSF (I) (11)
Combining inequalities [START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF] and [START_REF] Fotakis | Conference program design with single-peaked and single-crossing preferences[END_REF] gives the result.

Setting w(e) = 0 for e ∈ U leads to the following corollary. [START_REF] Håstad | Some optimal inapproximability results[END_REF], we obtain the result.

Conclusion

In this article, we have studied two Max and Min Extended Spanning Star Forest Problems. We have shown both problems is solvable in polynomial time for bounded tree-width graphs while are N P -hard for general graphs. Moreover, We have studied both versions in complete graphs. For Min Extended Spanning Star Forest, we considered different types of weight function w for edges of input graphs. We have shown for general-w, the problem is not approximable at all but for c-relaxed and extended c-relaxed triangle, it is in RAPX. Moreover, we have shown the Min Extended Spanning Star Forest Problem parameterized by the cardinality of U is in FPT. Furthermore, we proved Max Extended Spanning Star Forest Problem is in RAPX for general-w. It would be interesting to study parameterized complexity of the maximizing version with respect to the cardinality of U on the future.

 Input: A weighted graph (G, w) where G = (V, E) and w(e) ≥ 0 for e ∈ E. Solution: Non-trivial spanning star forest S = {S 1 , . . . , S p } ⊆ E. Output: Optimizing w(S) = ∑ e∈S w(e) = ∑ p i=1 ∑ e∈Si w(e). The extended version of the Spanning Star Forest Problem, called Extended Spanning Star Forest Problem consists of extending a given packing of stars into a spanning star forest. Formally, we have: Extended Spanning Star Forest problem Input: A weighted graph (G, w) and a packing of non-trivial stars U = {U 1 , . . . , U r } where G = (V, E) and w(e) ≥ 0 for e ∈ E. Solution: Non-trivial spanning star forest S = {S 1 , . . . , S p } ⊆ E containing U. Output: Optimizing w(S) = ∑ e∈S w(e) = ∑ p i=1 ∑ e∈Si w(e).

Fig. 1 .

 1 Fig. 1. Bold Edges corresponds to forced edges of U: sets SU and MU are indicated to the left and to the right of the figure respectively. Set X = {x1, ..., xt} are the vertices of the graph, out of U .

Fig. 2 .

 2 Fig. 2. Illustration of the construction of the split graph H = (X, (C ∪ R), EH).

Fig. 3 .

 3 Fig. 3. H-extended procedure. Bold edges are in U.

Definition 12 .Theorem 13 .

 1213 Let I = (K n , w, U) be an instance of Min Extended Spanning Star Forest Problem. Solution S is called claw U-free if for each claw F = K 1,3 subset of S, at least two edges of the claw F belongs to U, i.e. |F ∩ U| ≥ 2. Min Extended spanning star forest problem in complete graphs is solvable in polynomial-time for the c-relaxed triangle inequality when 1/2 ≤ c ≤ 1 and the extended c-relaxed triangle inequality when c = 1.

Fig. 4 .

 4 Fig. 4. An instance I of the Min weighted lower-upper-cover problem is shown on the right hand. Bold edges are in U.

Theorem 15 .

 15 Min Extended Spanning Star Forest Problem in complete graphs, parameterized by |U| is FPT and under ETH, Min Extended Spanning Star Forest Problem cannot be solved in time O * (2 s|U |) for some s > 0.

Theorem 16 .

 16 Approx 1 is a c-approximation of Min Extended Spanning Star Forest Problem in complete graphs for both c-and extended c-relaxed triangle inequality.

Figure 5 2 iFig. 5 .

 525 Fig. 5. Illustration of construction of stars S 1 i and S 2 i from Fi. Bold edges are in U .

Fig. 6 .

 6 Fig. 6. Construction of solutions S 1i and S 2 i depending on S * i contains piqi (case (b)) or not (case (a)); bold edges are in Ui. For each case both solutions S 1 i and S 2 i are indicated (at this stage, trivial stars are allowed).

Table 1 .

 1 The results given for complete graphs

	Forest	in FPT parameterized by	in RAPX with c apx-ratio in RAPX with c+1 2	apx-
		|U |			ratio
			inapproximable	with	inapproximable with 7+c 8 -
			7+c 8 -ϵ		ϵ
	Max Extended in RAPX with 1 2 apx-ratio		
	Spanning Star inapproximable within 7 8 +	-		-
		ϵ		

2 Max\Min Extended Spanning Star Forest in general graphs

First of all, let us give a NP-hardness proof for decision problem Dec Extended Spanning Star Forest which is defined as follows: Dec Extended Spanning Star Forest Input: A graph G = (V, E) and a packing of non trivial stars U ⊆ E. Question: Does G admit a non-trivial spanning star forest containing U? Theorem 4. Dec Extended Spanning Star Forest is NP-hard for general graphs even if U makes a matching in G.

Proof. We propose a simple reduction from SAT to the Dec Extended Spanning Star Forest problem. SAT is an NP-complete problem

[START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]

which consists of deciding if an instance I = (C, X) of SAT is satisfiable. Here, C = {c 1 , . . . , c m } and X = {x 1 , . . . , x n } are the set of clauses and variables respectively; a variable x i which appears negatively will be denoted ¬x i . From I = (C, X), we build an instance I ′ = (G, U) of Dec Extended Spanning Star Forest Problem as follows:

 and x, y ∈ L * i are two distinct leafs, we replace edges p i x and p i y of S * i by two stars S * i \ {p i x, p i y} and {xy}. By repeating this process until the star S * i (containing p i q i) satisfy |L * i | ≤ 1 for each p i q i ∈ M U , we obtain a packing of stars S ′ i such that w(S ′ i) ≤ c.w(S * i) since w(xy) ≤ c (w(p i x) + w(p i y)). By summing up these inequalities for all such stars, at the end we get a spanning star forest S H (which is the union of S ′ i) with w(S H) ≤ c.w(S *) = c.opt SSF (I). This spanning star forest S H is by construction a feasible lower-upper-cover of (H, w H) with parameters (a 1 , b 1). In conclusion, w(S) = w(S * H) ≤ w(S H) ≤ c × w(S *). Corollary 17. For complete graphs, Min Extended Spanning Star Forest Problem is in RAPX for both c-and extended c-relaxed triangle inequality.Proof. Using the proof of Theorem 16 and the extended c-relaxed triangle inequality, we deduce that Approx 1 is a residue c-approximation[START_REF] Weller | On residual approximation in solution extension problems[END_REF]. Input: I = (K n , w, U) where U is a packing of forced stars. Build instance I ′ = (H, w H) from I as is described in H-extended procedure, where H = (X, (R ∪ C), E H) is a split complete graph; 2 Find an optimal solution S * H ⊆ E H of the Min weighted lower-upper-cover problem on (I ′ , a 2 , b 2) with a 2

	Algorithm 2: Approx 2

Output: A spanning star forest S of I containing U.

1

Theorem 19 .

 19 For any ϵ > 0 it is NP-hard to approximate and residue approximate the Min Extended Spanning Star Forest Problem in complete graphs within 7+c 8 -ϵ for both c and extended c-relaxed triangle inequalities. Proof. Let Φ be an instance of Max 3-SAT with variable set X = {x 1 , . . . , x n } and clause set C = {c 1 , . . . , c m }. W.l.o.g., assume m > n (otherwise, we duplicate the clauses c 1 , . . . , c m till m > n). Using the result of

 stars with at least two leafs each. The set of centers is C = {c 1 , . . . , c k } and L i are the leafs of F i . We study an intermediary problem called here Extended Disjoint Spanning Forest because it will provide an upper bound of our problem:Extended Disjoint Spanning Forest Input: A weighted connected graph (G, w) and a packing of non trivial stars U = {U 1 , . . . , U r }.

Solution: Spanning forest

 Corollary 22. Max Extended Spanning Star Forest Problem in complete graphs is in RAPX. For any ϵ > 0 it is NP-hard to approximate and residue approximate Max Extended Spanning Star Forest Problem in complete graphs within 7 8 + ϵ. Proof. The reduction given in Corollary 11 is indeed a reduction preserving approximation from 3-SAT to Max Extended {0, 1}-Spanning Star Forest Problem. Hence, using

	Theorem 23.

By abuse of notations, we write S = {S1, . . . , Sr} ⊆ E.

To simplify the notations, most of the time, we speak about spanning star forest instead of non-trivial spanning star forest.

In this case, it is also required that some vertices are forbidden.

Complete S into a spanning star forest by connecting each isolated vertex to some center;

Return S ← S.

Acknowledgments. Many thanks to the anonymous referee and the anonymous associate editor for pertinent and useful comments and suggestions.

Let ε > 0 and consider the reduction given in Theorem 10 for instances I Φ satisfying both c and extended c-relaxed triangle inequalities when c > 1. Recall that w(xy) =

Completeness: Suppose there is an assignment of variables {x 1 , . . . , x n } which satisfies (1 -ϵ) fraction of clauses (i.e., a Yes-instance). We build a spanning star forest S of n stars containing U as follows: Suppose T (Φ) is an assignment satisfies (1 -ϵ)m clauses C ′ = {c 1 , . . . , c (1-ϵ)m }. We start the construction of these n stars with total weight (1 -ϵ)m by taking the matching {p i q i : i = 1, . . . , n} and by connecting one vertex of each M U to some vertices v i corresponding to clauses of C ′ ; then we complete these n stars into a stars spanning by connecting arbitrarily the ϵm remaining vertices (corresponding to other clauses which are not satisfied) to some centers. Hence, S is a spanning star forest which contain U with w(S) = (1 -ϵ)m + cϵm, thus we have:

Soundness: Consider an optimal spanning star forest S * of I Φ with value opt SSF (I Φ). Clearly, for each 1 ≤ i ≤ n, at least one vertex of {v 0 i , v 1 i } is s a leaf of the star S * i of S * . From S * we build a truth assignment T for Φ as follows:

i , then clause c j is satisfied by assignment T . Hence, the total weight of S * is: opt SSF (I Φ) ≥ |{c j : c j is satisfied}| + c|{c j : c j is not satisfied}| Furthermore, if at most (78 + ϵ)m clauses are satisfied in Φ, the weight of opt SSF (I Φ) is at least:

The completeness and soundness arguments imply that it is NP-hard to distinguish whether instance I Φ has a spanning star forest with weight at least m(1 -ϵ + cϵ) or at most m(7 8 + ϵ + 1 8 c -cϵ). Therefore, we can conclude that it is NP-hard to approximate the Min Extended Spanning Star Forest Problem within factor:

By picking a small enough ϵ, we get the expected result.

Max Extended spanning star forest in complete graphs

Now, we study the maximization case when the weight function w is general, but non-negative and the graph is complete. Usually (see Subsection 1.2), the Span-