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Abstract
The OpenSmalltalk virtual machine (VM) was historically
designed as a single-threaded VM. All VM code including the
Smalltalk interpreter, the garbage collector and the just-in-
time compiler run in the same single native thread.While this
VM provides concurrency through green threads, it cannot
take advantage of multi-core processors. This architecture
performs really well in practice until the VM accesses ex-
ternal resources such as e.g., FFI callouts, which block the
single VM thread and prevent green threads to benefit from
the processor.
In this paper we present GildaVM, a multi-threaded VM

architecture where one thread at a time executes the VM
while allowing non-blocking I/O in parallel. The ownership
of the VM is orchestrated by a Global Interpreter Lock (GIL)
as in the standard implementations of Python and Ruby.
However, within a single VM thread concurrency is still
possible through green threads. We present a prototype im-
plementation of this architecture running on top of the Stack
flavour of the OpenSmalltalk VM.We finally evaluate several
aspects of this architecture like FFI and thread-switch over-
head. While current benchmarks show good results for long
FFI calls, short FFI calls require more research to minimize
the overhead of thread-switch.

Keywords virtual machines, multhreading, non-blocking
I/O, ffi

1 Introduction
The OpenSmalltalk 1 virtual machine (VM) [7], main run-
time platform of several Smalltalk dialects such as Pharo,
Squeak and Newspeak, was historically designed as a single-
threaded VM. All VM code including the Smalltalk inter-
preter, the garbage collector and the just-in-time compiler
run in the same single native thread. Although the single-
threaded nature prevents parallel execution, the VM provides

1https://github.com/OpenSmalltalk/opensmalltalk-vm
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concurrency through green threads [11, 12]: threads that are
scheduled by the virtual machine itself instead of relying on
the operating system for it. Green threads run in slices of
time, running one at a time in the single VM thread, which
is shared in the long run by all green threads.
This architecture performs really well in practice, until

there is a need for accessing resources residing outside of
the VM such as external libraries or input/output (I/O) e.g.,
reading from a socket or writing into a large file. Indeed,
in a single threaded VM I/O and FFI callouts are blocking:
they take ownership of the native VM thread until they are
finished, thus preventing green threads to benefit from the
processor (Section 2).

Supporting safe parallel execution of both VM and I/O in
a more traditional way, i.e., using native threads, requires
a complete rewrite of the runtime system and the libraries
on top [13], considering that the VM and many language
libraries are not thread-safe. As a compromise, existing pro-
gramming language implementations such as CPython or
Ruby’s MRI introduce concurrency through native threads
using a lock that protects concurrent access to the language
interpreter, namely a global interpreter lock (GIL) [1]. While
the GIL prevents parallel code execution in the interpreter,
it is released during blocking I/O to them to run in parallel
with the interpreter code (Section 10).

In this paper we present GildaVM, a hybrid multi-threaded
architecture that combines green threads with native threads,
originally designed by David Simmons (Section 3). The VM
has not one but many native threads that share the same
VM. Only one thread at a time executes VM code while other
threads execute blocking I/O in parallel. When the VM per-
forms blocking I/O, another thread takes the relay and con-
tinues executing the VM, making I/O non-blocking (Section
4). This architecture is tailored to handle blocking FFI call-
outs (Section 5) and minimize the overhead on them (Section
6). The ownership of the VM is orchestrated by a GIL imple-
mentation that allows the VM to selectively schedule native
threads instead of relying on the operating system (Section
7). Moreover, this architecture keeps using green threads
to allow concurrent Smalltalk programs and thus providing
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backwards compatibility with most of the existing programs
that run on the VM.

We present a prototype implementation of GildaVM, orig-
inally started by Eliot Miranda and now built on top of Cog’s
StackVM flavour. Our prototype shows that no significant
overhead is introduced when threading is not explicitly used,
and that long blocking I/O operations are particularly ben-
efited with an improvement of around to 80% of execution
time. Yet, thread switching shows itself particularly expen-
sive, producing significant performance degradations in sce-
narios performing many short blocking I/O operations (Sec-
tion 8). In the future we will research the impact of this
architecture with the JIT compiler, and the implementation
of the vm lock in terms of a low-overhead mutex such as a
CompareAndSwap operation.

2 Problem: Blocking I/O and FFI
I/O operations such as reading from a socket block the VM ex-
ecution because they are not under the VM’s control: they use
system-calls from the underlying operating system. Blocking
I/O is un-optimal for several reasons: (1) I/O operations spend
most of their time in hardware-related system calls making
the processor idle and (2) keep the VM thread locked prevent-
ing other green threads to benefit from the idle processor.
Moreover, the same problem happens when performing ex-
ternal library calls (a.k.a., FFI callouts), which is one of the
basic bricks of integration with external systems.
To illustrate why this is a problem, let’s consider a web

application performing a requests to a relational database
using a SQL query. If the execution of this SQL query takes
several milliseconds to finish, the web application will be
blocked the same amount of time. In other words, no new
requests will be handled during that time, producing slow
responses and throughput.

VM Plugins are not enough. Currently in the OpenSmall-
talk VM, developers provide asynchronous access to external
resources through VM extensions/plugins. Using plugins,
developers avoid blocking the VM thread by combining two
different mechanisms:

• Do not block the VM thread using non-blocking sys-
tem calls such as UNIX’s select, and/or start dedicated
native threads to notify the VM upon completion;

• Suspend the calling green thread on a VM managed
semaphore letting the VM to schedule ready green
threads.

Although this solution has proven useful for plugins such as
the SocketPlugin, these plugins are often handcrafted and
require a significant effort to write, build and deploy. Also,
using this strategy for integration with external libraries (i.e.,
libgit, Cairo, SDL) requires the implementation of an ad-
hoc solution for each of the libraries that perform long or
asynchronous calls.

GildaVM in a Nutshell. In the GildaVM architecture, the
VM has no longer one but many threads that share the same
VM. To guard from the fact that the VM and many language
libraries are not thread-safe, only one VM thread at a time
owns the vm. At the core of this architecture, there is a Global
Interpreter Lock (GIL), a lock creating a critical section around
VM code. The GIL limits the VM to run in a single VM thread
while other VM threads execute code from outside the VM
in parallel e.g., external libraries and wait for I/O.

3 Many Threads for a Single-Threaded VM
Instead of a single native thread executing the VM, the
GildaVM architecture introduces a pool of native threads,
namely VM threads. All VM threads have the same life-cycle,
where they alternate the execution inside the vm-executive
and outside of it. The vm-executive is all code related to VM
tasks such as interpretting bytecode, executing JIT’ed code,
running the garbage collector. All tasks unrelated to VM
execution are considered outside the vm-executive, typically
system calls performing I/O and FFI callouts.

vm-executive

start

try-acquire-vm-GIL

release-vm-GIL

lock acquired

disown

own

Figure 1. Illustrated life-cycle of a VM thread in the
presence of I/O. The GIL is acquired before entering the
vm-executive, and released on I/O operations. When the I/O
operation finishes the VM thread attempts to re-acquire the
GIL.

Figure 1 illustrates the life-cycle of a VM thread. When a
VM thread starts it first tries to acquire the GIL. If the VM
thread fails to acquire the GIL it blocks until the lock becomes
free. Otherwise, the VM thread owns the VM: it acquires the
GIL and enters the vm-executive. When the thread performs
a blocking I/O operation it disowns the vm: it releases the
GIL to let some other VM thread acquire it. Eventually, when
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the blocking I/O operation finishes its execution and returns,
the VM thread goes back to step 1 and tries to re-own the
GIL.
Implementation wise, these boundaries are explicitly set

in those VM plugins performing I/O operations. It is the VM
plugin developers responsibility to explicitly own and disown
the VM to allow parallel execution.

4 VM Thread Scheduling
In the GildaVM architecture only one thread is in the vm-
executive code in a given moment. Initially, the vm-executive
is owned and executed by a single thread: the main thread.
A separate VM thread enters the vm-executive in one of two
cases: (1) the developer explicitly states so by using a thread
affinity schema (Section 4.1) or (2) the VM thread owning
the VM releases it to execute an FFI call (Section 4.2).
Moreover, in the presence of multiple threads, the VM

needs to manage the scheduling of both native VM threads
and the already existing green threads. We call green thread
scheduling to the process deciding which green thread is
executed, and VM thread scheduling to the process deciding
which VM thread gains access to the GIL and enters the
vm-executive. These two mechanisms collaborate to keep
the vm-executive busy as much as possible (Section 4.3).
Figure 2 updates the conceptual thread life-cycle consid-

ering the entire scheduling schema. A new transition rep-
resents a VM thread switch occurring because of a green
thread switch. In this case, vm-executive transfers explicitly
the GIL to the switched VM thread, wakes that VM thread
up, and finally goes back to step 1 trying to re-acquire the
GIL.

4.1 Green Thread Scheduling and Affinity
To explicitly assign code to run in a separate VM thread, the
GildaVM architecture proposes an affinity schema in which
a green thread is affined or bound to only-one native thread.
A green thread affined to a VM thread will only execute in
that VM thread. Non-affined green threads have affinity with
no VM thread, so they may run on any VM thread.
This affinity schema produces a NxM mapping between

green threads and VM threads where N green threads run on
M native VM threads, with the edge case of M=1 for affined
green threads. When the VM schedules a green thread that
is affined to a VM thread different from the current one,
VM ownership is transferred to the affined VM thread. In
this scenario a VM thread switch happens: the running VM
thread releases the vm-executive and awakes the VM thread
affined with the awoken green thread. Table 1 presents the
possible scenarios when a green thread is scheduled. Section
7 further describes how our implementation of a GIL allows
us to perform this selective VM thread scheduling.

vm-executive

start

try-acquire-vm-GIL

release-vm-GIL

lock acquired

disown

release-vm-GIL

VM-thread-switch

wake up
other thread

own

Figure 2. Illustrated life-cycle of a VM thread in the
presence of VM thread-switch. When a green thread
affined to a VM thread different than the current one is
scheduled to run, the current VM thread releases the GIL
and the affined VM thread is awoken.

Green Thread Action

Not affined Schedule green thread in cur-
rent VM thread. No VM thread
switch takes place

Affined to current
VM thread

Schedule green thread in cur-
rent VM thread. No VM thread
switch takes place.

Affined to different
VM thread

VM thread switch to the corre-
sponding VM thread. Schedule
green thread in the switched VM
thread.

Table 1. VM scheduling rules in case of green thread affinity.

4.2 Scheduling on GIL Release
AVM thread owning the GIL releases it before performing an
I/O operation, and thus it leaves the VM unowned. The VM
must then ensure that another VM thread becomes active to
avoid VM starvation (i.e., avoid making the VM inactive for
long periods of time). For this the VM performs automatically
an implicit VM thread switch on a disown. The implicit VM
thread switch consists in a green thread scheduling and a
VM thread scheduling. In other words, it awakes a new VM
thread on a new green thread. This is required because both
the current green thread and VM thread are blocked waiting
for the I/O operation to finish.

Several VM upkeep considerations have to be taken into ac-
count in this scenario to leave the vm-executive in a coherent
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state. The green thread performing the I/O operation must
be suspended in a safe suspension point and thus the VM
must preserve its execution state. Also, all the thread-local
VM state should be transferred to the global-state of the VM
to allow other VM threads to enter the vm-executive in the
same state. Then, the owning VM thread must restore the
scheduled green-thread’s state, restore all of the VM’s state
and enter the vm-executive. Only then, the VM resumes a
ready green thread in the point it was suspended earlier.

Intuitively, performing this upkeep on each I/O operation
introduces a performance overhead that may not be negli-
gible. Section 5 presents a smarter way to outsource thread
scheduling from the disowning VM thread to the owning
VM thread to minimise this overhead.

4.3 Green Thread Scheduling
Green thread scheduling remains conceptually unchanged in
comparison with the historical VM. Green threads are coop-
erative between threads with of same priority i.e., a green
thread has to explicitly yield to let other green threads with
the same priority run. Green threads are preemptive with
threads of lower priorities i.e., if a green thread with higher
priority is ready to run the current green thread is suspended
to let the higher priority one to run. Green thread scheduling
is triggered by two main reasons: explicit synchronisation
operations and external events.
On the one hand, the VM exposes synchronisation op-

erations to yield the processor, and suspend and resume a
green thread either explicitly or implicitly through the usage
of VM-managed semaphores (using wait and signal respec-
tively). Each of these operations determine if the current
green thread needs to be put to sleep and then schedule a
new green thread to launch.

On the other hand, green thread scheduling happens also
implicitly due to events outside of the vm-executive sig-
naling VM-managed semaphores. When external events re-
quire green thread scheduling, the VM waits until the vm-
executive reaches a safe suspension point before doing it. A
separate thread, namely the heartbeat thread periodically sig-
nals an event to force the VM to check if a green thread sched-
uling is necessary. For example, sockets are implemented
through a combination of these mechanisms. Asynchronous
reading from a socket waits on a VM-managed semaphore
producing the suspension of the waiting green thread. Even-
tually, when the socket VM plugin finished reading it signals
that same semaphore to make the suspended green thread
ready to run again.
The GildaVM architecture does not modify the rules for

green thread scheduling. Instead, it augments them with VM
thread switch semantics. That is, if at any time the green
thread scheduling activates a green thread affined to another
VM thread, the VM performs a VM thread switch to the
second thread.

5 Non-Blocking FFI
The GildaVM architecture is particularly suited for non-
blocking FFI callouts. For example, thread affinity allows
developers to control what FFI callouts are executed in what
VM thread. However, native library callbacks add the possi-
bility of reentrant FFI calloutsi.e., FFI callouts in the dynamic
context of other FFI callouts. In this section we present addi-
tional considerations to perform safe callbacks and re-entrant
callouts.

5.1 Re-entrant Callouts and Callbacks
The safe execution of FFI callouts depends often on how the
called library is designed. Indeed, some external libraries
are not (sometimes by design) thread-safe, meaning they do
not perform well if different callouts are executed in parallel
from different threads. It is the developer’s responsibility to
ensure that all callouts to that library are performed from
one or more green threads affined to the same native VM
thread.

Callbacks from external libraries invoking VM code must
be taken into consideration in this design too. Callbacks
are pieces of code (i.e., block closures in the current imple-
mentation) sent as argument to a callout and eventually
invoked from the external library to execute some smalltalk
code. When an external library invokes a callback, the thread
where it happens waits until it acquires back the GIL and
then executes the callback within the vm-executive. When
the callback finishes its execution and returns, the VM is dis-
owned and the external library that performed the callback
takes the control back.
Callbacks return the control to the vm-executive, lead-

ing to the case of reentrant or nested callouts i.e., the vm-
executive performs a new callout within the dynamic execu-
tion context of a previous callout. Figure 3 shows an example
of a reentrant callout: callout2 is invoked before callout1 has
finished.

5.2 Dynamic Affinity
A different scenario presents itself in the absence of thread
affinity. Let’s suppose the case of a green thread A without
thread affinity performing a callout. This callout and further
callbacks coming from it will be executed in current VM
thread. A problem appears if during the callback execution
a thread switch transfers the vm-executive to a separate VM
thread, since the green thread executing the callback can
execute in a different thread. Moreover, reentrant callouts
coming from this green thread will now run in a different
VM thread creating potential race conditions and failures.

To solve this problem, the OpenSmalltalk VM’s GIL in-
troduces the idea of dynamic or temporary affinity within
the scope of a callout. That is, when a callout happens, if
the current green thread has no affinity to a VM thread the
VM affines it with the current VM thread. Callbacks and
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vm-executive external library

callout1

callback

callout2

callout2 return

callback return

callout1 return

obj doSomeCallout

Figure 3. Reentrant callouts in the presence of call-
backs. Callout2 is a reentrant callout, executed during the
dynamic scope of callout1’s execution. This happens because
a callback gives back the control to the vm-executive, allow-
ing new callouts before callout1 finishes.

reentrant callouts within the scope of this execution then
benefit from thread affinity as if it was explicitly defined by
the developer. Finally, when the initial callout returns, the
VM removes the affinity of the current green thread, leaving
it back in an unaffined state.

6 Lowering the Overhead of I/O Operations
One of the objectives of the GildaVM architecture is to keep
the VM running as much as possible when one or more green
threads are blocked in I/O. When a VM thread disowns the
VM on I/O, if there are threads waiting to acquire the vm-
executive, the VM selects and activates one of thewaiting VM
threads. Safely transferring the VM’s ownership between VM
threads requires that on each VM thread-switch the running
green thread is preempted to let other green threads run i.e.,
it is suspended and the execution stack is left in a coherent
state.

While a safe VM thread-switch is indeed capital for the cor-
rect execution of the VM, this requires forcing green thread
suspension and a VM thread-switch when a VM thread dis-
owns the VM. All this VM upkeep represent a significative
overhead in I/O operations, specially in short ones. In this
section we describe how the responsibility for VM thread
preemption and activation are removed from a disowning
VM thread to minimize the overhead on I/O.

6.1 Green Thread Preemption is the Acquirer’s
Responsibility

To minimize the overhead on I/O operations, the responsibil-
ity of performing the green thread scheduling is transferred
from the disowning thread to the owning thread. In other
words, it is the VM thread that enters the vm-executive that
performs the VM upkeep. This allows the disowning VM
thread to not perform any stack or green thread upkeep and
keep on executing the I/O operation. When the I/O opera-
tion finishes, the VM thread makes an attempt to re-own the
VM. If no other VM thread was activated while the VM was
free, the VM thread finds the execution stack in the same
shape it was before the callout. Thus, the VM thread directly
re-enters the vm-executive avoiding all the extra-work of
VM upkeep.

If another VM thread acquires the GIL in the middle of an
I/O operation, it preempts the first VM thread. It suspends
the current green thread and sets it in a blocked in callout
state. Then, it performs a green thread scheduling and enters
the vm-executive. Now, when the former VM thread re-owns
the VM, it detects it had been preempted and restores the
stack of the blocked in callout process. This makes the slow
case of execution to happen only if a callout returns and the
current VM thread had been preempted by another thread.
This strategy particularly benefits short I/O operations

and FFI callouts. Indeed, if they are fast enough to disown
and own the interpreter without being preempted, they do
not pay the price of the VM upkeep.

6.2 The Thread Watchdog and Thread Activation
Disowning the VMon I/O and FFI callouts triggers an implicit
VM thread switch to keep the vm-executive busy and avoid
starvation (Section 4.2). However, doing so when disowning
incurs into additional (and undesired) overhead. To avoid
this overhead we adopted a solution similar to the one above:
move the responsibility of VM thread scheduling from the
disowning thread to a separate thread, namely a watchdog
thread.

The watchdog is a separate thread that actively checks if
the VM is free with a fixed frequency of 200 micro-seconds.
If the watchdog finds that the VM is free, it acquires the GIL
and performs a VM thread scheduling, transfering the VM
ownership to a VM thread waiting for ownership or to a free
VM thread in the thread pool.

This strategy removes the extra scheduling overhead from
I/O operations and FFI callouts while keeping the vm-execu-
tive busy with a best effort. Still, the impact of the watch-
dog frequency on the behaviour of the VM requires more
research. On the one hand, during the window of time in
which the watchdog is not active I/O operations and FFI call-
outs will not be preempted. On the other hand, during this
window of time the vm-executive is idle if all active threads
are waiting on I/O and FFI callouts.
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7 A Mutex is not enough: a GIL for VM
Scheduling

To allow the VM to select which VM thread to awake during
VM thread scheduling, the GIL is not implemented as amutex
lock. A mutex lock would relegate the entire VM thread
scheduling to the operating system, as discussed in Section
9.2. Instead, the GIL is implemented with:

A vmOwnerId global variable.
Storing the current thread id owning the VM. Its value
determines whether a green thread has affinity with
the current VM owner or not. The access to this vari-
able is synchronized through the vmOwnerLock to
avoid race conditions.

A vmOwnerLock global variable.
Storing the global lock to protect concurrent access to
vmOwner.

A semaphore thread-local variable.
One native semaphore per VM thread allowing the
VM to selectively wake up the desired process.

Acquiring the GIL boils down to first check if the VM
is unowned or the current VM thread is the VM owner, in
which case the thread can enter the vm-executive code safely.
If the current VM thread does not own the VM, it suspends
itself waiting in the thread-local semaphore. VM Thread
scheduling transfers the vm-executive to another thread
by (a) setting that thread as vmOwner and (b) signaling its
semaphore to wake it up.
Releasing the GIL unsets the vmOwnerId variable: since

releasing the GIL only happens from the single thread that
owns the VM, doing it does not require thread synchroniza-
tion. Figure 4 illustrates how the GIL acquisition works in
pseudo-code.

8 Evaluation
In this section we evaluate a prototype of the GildaVM ar-
chitecture implemented on top of the StackVM flavour of
the OpenSmalltalk’s VM. Our validation consists in several
benchmarks measuring several aspects of the architecture in
the presence of FFI callouts as an example of blocking opera-
tions. Our initial measurements show that this architecture
presents a faster execution of long parallel FFI callouts. How-
ever, there is an important penalty in the execution of parallel
short FFI callouts. Moreover, we also show that the execution
of parallel green threads that do not execute FFI callouts is
neither improved nor penalized by the solution.

8.1 Setup
Our benchmarks compare the stock Stack 64 bits implemen-
tation of the OpenSmalltalk-VM2 and our modified version3

2We used the built version corresponding to the commit 4a3c9 in http:
//github.com/OpenSmalltalk/opensmalltalk-vm
3We used the commit 69e50d5 available in http://github.com/tesonep/
opensmalltalk-vm

VM >> threadSchedulingLoop
[ self tryAcquireVM

ifTrue: [ self enterSmalltalkExecutive ].
currentThread semaphore wait.
true ] whileTrue.

VM >> tryAcquireVM
| vmAcquired |
"Tries to set the vmOwner variable safely.

Returns true if the VM has been acquired or the current
thread already owned it.
Returns false if the VM is being owned by other thread
or the vmOwner was locked"

vmOwnerLock tryLock ifFalse: [ ^ false ].
self isVmUnowned ifTrue: [

vmOwnerId := currentThread threadId ].
vmAcquired := vmOwnerId = currentThread threadId.
vmOwnerLock release.
^ vmAcquired

VM >> releaseVM
vmOwnerId := 0.

VM >> isVmUnowned
^ vmOwnerId = 0.

VM >> wakeUpVMThread: vmThread
vmOwnerId := vmThread threadId.
vmThread semaphore signal.

Figure 4. Implementing the GIL with Semaphores.
Pseudo code illustrating the GIL implementation with a
semaphore-per-thread instead of a single mutex.

both running the same version of Pharo 8 64 bits. These
versions do not include the support for Cog’s just-in-time
compiler. We have performed our benchmarks on Mac OS
Sierra (10.12.6) running on a 2,8 GHz Intel Core i5 processor
and 8Gb of RAM.

All our benchmarks are included in the Pharo benchmark
project4. Each benchmark was run 50 times. For the sake of
clarity, the results shown in our analyses include only the
average of the runs.

8.2 Overhead Executing Smalltalk code
In this scenario we analyse the overhead produced during the
execution of Smalltalk code that does not perform any FFI
call. All green threads are unaffined and are able to run on any
of the VM threads. We executed three different benchmarks:

Same priority without yielding:
We spawn three green threads doing processor inten-
sive operations in a close loop (calculating 100 times
the factorial of 600). All threads have the same priority
to make them run serialized. The benchmark measures
how much time it takes for all green threads to end.

4http://github.com/tesonep/pharo-benchmarks
6
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Same priority with yielding:
We spawn three green threads doing processor inten-
sive operations loop (calculating 100 times the factorial
of 600). All threads have the same priority. After each
iteration of the loop, the thread performs an explicit
yield to make them run interlaced. The benchmark
measures how much time it takes for all green threads
to end.

Different priorities:
We spawn three green threads doing processor inten-
sive operations in a close loop (calculating 100 times
the factorial of 600). The threads have different prior-
ity to make them run serialized establishing the order
through the use of priorities. The benchmark measures
how much time it takes for all green threads to end.

Each iteration of the benchmark repeats the benchmark
20 times (problem size).

Analysis. The results shown in Table 2 show that the ex-
ecution of processor intensive Smalltalk code in the inter-
preter is not affected by multi threaded architecture. The
results show no noticeable impact in the execution of the
benchmarks. These benchmarks validates that the proposed
solution preserves the same execution qualities of the stock
solution.

Benchmark Stock
VM (Avg.)

Modified
VM (Avg.)

Same Priority
without yielding

1784 ms 1784 ms

Same Priority
with yielding

1786 ms 1800 ms

Different priorities 1783 ms 1784 ms
Table 2. Comparison of the Execution of Smalltalk code

8.3 Long callouts Impact
In this scenario we analyse the impact of performing long
FFI calls. For this analysis we implemented a function in C
that blocks the calling native thread during a second using a
sleep. We built the following benchmarks:

Non Parallel callouts.
We used this benchmark as a baseline for the compari-
son. In this benchmark we execute two long callouts in
sequence. There is no possibility of parallel execution
of these calls. The benchmark measures how much
time it takes for it to end.

Parallel callouts.
We spawn two green-threads, each of it is perform-
ing a long callout. In the GildaVM, each green-thread

is affined to a different VM thread to force the na-
tive thread switching and the parallel execution. The
benchmark measures how much time it takes for all
green threads to end.

Analysis. The results shown in Table 3 expose the main
benefit of the proposed solution. The execution time of par-
allel long blocking FFI calls is improved. The VM is able to
execute other green threads while a blocking FFI call is exe-
cuted. Depending on the load of green threads, the GildaVM
executes faster than the stock VM. In our benchmarks, the
improvement is around 80%. Moreover, there is a result that
is not shown in the benchmark. The UI green thread is not
blocked in the modified VM but blocked in the stock VM.

Benchmark Stock
VM (Avg.)

Modified
VM (Avg.)

Non Parallel 2001 ms 2003 ms

Parallel 2006 ms 1216 ms

Table 3. Comparison of the Execution of Long callouts

8.4 Short Callouts Impact
In this scenario, we analyse the impact of performing short
FFI callouts. For this analysis we implemented a function in
C that returns immediately an integer constant. We built the
following benchmarks:

Non Parallel callout.
We used this benchmark as a comparison baseline. In
this benchmark we execute 200,000 short callouts in
sequence. There is no possibility of parallel execution
of these calls. The benchmark measures how much
time it takes for it to end.

Parallel callout.
We spawn two green-threads, each of it performing
100,000 short callouts. In the GildaVM, each green-
thread is affined to a different VM thread to force the
native thread switching and the parallel execution. The
benchmark measures how much time it takes for all
green threads to end.

Analysis. The results shown in Table 4 present the main dis-
advantage of the proposed solution. The solution is unable
to execute multiple parallel short FFI calls without introduc-
ing a noticeable performance penalty. In our results, we can
observe that the execution of such parallel short FFI calls is
10 times slower that executing them in sequence. We believe
this overhead is due to a VM thread switch that is forced
very often because of the number of FFI callouts.

7
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Benchmark Stock
VM (Avg.)

Modified
VM (Avg.)

Non Parallel 63 88 ms

Parallel 60 995 ms

Table 4. Comparison of the Execution of Short callouts

8.5 VM Thread Switch Overhead
This benchmark measures the impact of having different
green-threads running in different VM threads. Thus, this
scenario is only valid for our proposed implementation and
cannot be compared with the stock StackVM.
We executed three green-threads doing processor inten-

sive operations loop (calculating 100 times the factorial of
600). All threads have the same priority. After each iteration
of the loop, the thread performs an explicit yield producing
the green-thread switch. Each green thread is affined with
a different VM thread to make the yield operation force a
VM thread switch too. Thus, the expected behaviour of this
benchmark is that green threads run interlaced but each of
them in a different VM thread. The benchmark measures
how much time it takes for all green threads to end.
The results of this benchmarks are comparable with the

results of the Same priority with yielding. This comparison
illustrates the overhead of performing a VM thread switch
when no FFI calls are involved, since one of the benchmarks
performs a VM thread switch and the other does not.

Analysis. The results shown in Table 5 show a problem
when performing VM thread switching. The proposed solu-
tion presents an overhead of around 5% when the interpreter
is forced to execute shared between two VM Threads. These
results show that the introduction of thread affinity in the
execution of pure Smalltalk green-threads does not improve
the execution, but also there exists a performance penalty
on it.

Benchmark Modified
VM (Avg.)

Without Thread Switching 1800 ms

With Thread Switching 1881 ms

Table 5. Comparison of VM Thread Switch Overhead

8.6 Overview of the Results
The preliminary set of benchmarks and results in this section
present an overview of the benefits and disadvantages of
the proposed solution. Long callouts before blocking the vm-
executive in the stock VM, can be cheaply run in parallel to
the vm-executive in GildaVM. There is however a place for

improvement to make the VM thread switch cheaper both
in the absence of FFI calls and in their omnipresence.

9 Discussion and Future Perspectives
9.1 Non-Blocking I/O and Non-Blocking FFI
An interesting open question for further work is if non-
blocking FFI support is enough to implement all non-blocking
I/O such as sockets and files.

In the current implementation of the OpenSmalltalk-VM,
non-blocking I/O is achieved through the use of ad-hoc
written plugins. Implementing non-blocking I/O with non-
Blocking FFI would represent a vast simplification of the VM
implementation and allow the developers to implement the
I/O operations at the image level.

9.2 VM vs OS Thread Scheduling
The correct scheduling of the threads has an impact on the
performance of the execution. In GildaVM the scheduling of
the VM threads is performed by the VM, thus the operating
system does not take part in the scheduling. As future work
we plan to explore the impact of operating system scheduling
in this architecture.

9.3 Growing the ThreadPool on Demand
The appropriate size of the pool of VM threads is a matter
of future analysis. A first approach could be to have a fixed
number of threads. This number of threads could be a con-
figuration in the image or a calculated value (e.g., depending
of the number of available cores in the machine) during the
start of the VM. The fixed approach eases the predictability
of the resources used by the VM. Although, it also limits the
level of parallelism and produce starvation if all VM threads
are busy but the VM has work to do.
An alternative approach is that the number of threads is

dynamically calculated during the execution of the program
depending on the level of multiprogramming. For example,
a dynamic approach could spawn a new thread if all VM
threads in the pool are busy while the VM has work to do.
The dynamic approach improves the use of the processor as
it guarantees that there is always a VM thread to run the
VM. However, this approach requires a careful handling of
the thread pool. The size of the pool should still be limited to
not overwhelm the operating system with too many native
threads. Moreover, this approach could also require a policy
to purge the unused VM threads.

9.4 FFI Considerations: libraries are not simple nor
similar

The main use of FFI is to integrate the language with existing
libraries. Different libraries impose different restrictions in
the way they should be used.

8
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For example, SQLite5 is not designed to accepts calls from
different native threads in parallel. All callouts should be
performed from the same native thread. The library is not
designed to be used in multi-threading applications.

Another example is LibGit26. This library support access
from multiple threads but the resources accessed in the op-
erations should be exclusive.
Finally UI Frameworks such as Cocoa7 not only require

that all callouts are performed in the same thread but also
that they are performed from a specific one. In the case of
Cocoa, this is the main UI thread. Moreover, Cocoa does not
only require it, but this requirement is enforced in all the
functions aborting the calling thread in such a case.

Although GildaVM allows to control what FFI callout exe-
cutes in what VM thread thanks to thread affinity, it is still
a responsibility of the developer to respect the requisites of
the external library. We believe several programming models
that provide support for these different scenarios can be built
on top of this architecture, though they are matter of further
work and analysis.

10 Related Work
Evolving Existing VMs. The standard implementations of
Ruby and Python support green threads. They rely on in-
terpreter locks (GIL). Each of the green threads is assigned
to a single native thread sharing the same instance of the
interpreter. And each native thread only runs a single green
thread producing a one-to-one mapping. The green thread
schedulling is performed by the native thread support li-
brary or operating system [1]. They provide non-blocking
FFI through the execution of the program in different green
threads (resulting in different native threads running). A
FFI call releases the GIL and allows other thread to run the
interpreter. This model presents the same advantages and
disadvantages than GildaVM. However, the execution of pro-
cess intensive green threads is penalized as they require
thread switching.
Swaine et al. present a solution to modify an existing

VM to support incremental parallelization [13]. They also
starts from a existing VM without parallel execution and
with existing programs. They implement parallel execution
through the analysis and rewriting of the operations that
does not allow them to have a full parallel solution. They
implement their solution incrementally without performing
a whole rewrite of the VM nor the programs. Their solution
does not use a global interpreter lock.
Daloze et al. present a compressive study of the changes

required to modify an existing language to run in a multi-
threaded VM [2]. They show alternatives to these changes
5https://www.sqlite.org/index.html
6https://libgit2.org/
7https://developer.apple.com/library/archive/documentation/
MacOSX/Conceptual/OSX_Technology_Overview/
CocoaApplicationLayer/CocoaApplicationLayer.html

and the impact of rewriting the programs and libraries run-
ning on top of the existing VM.

Approaches Requiring Full Rewrites. Java VMs [5] and
the .NET Command Language Runtime (CLR) [8] provide
support for multithreading through the use of multiple in-
stances of the interpreter. They implement aN-to-Mmapping
between green threads and native threads. Each of the FFI
calls is executed in a different native thread allowing to have
concurrent non-blocking FFI calls. This design requires the
construction of a VM designed to support multithreading.

Jython [4], JRuby [9] and IronPython [3] executes on top
of existing multithreading VMs (Java Virtual Machine and
.NET CLR). They are able to execute multiples instances of
the interpreter, each of them running in an independent host-
language thread. These solutions do not use a GIL and are
able to run green-threads in parallel. Although, it requires to
implement a multithreading interpreter. Also, they serialize
the access to the object memory and other data structures
used by the interpreters.

Rubinius [10] is an implementation of Ruby that runs the
interpreter in several native threads. This solution does not
implement a GIL, but it requires the reimplementation of the
existing VM to safely run in as a multithreading interpreter.
PyPy-STM [6] emulates the GIL semantics and enables

scaling; through the use of multiple interpreters synchro-
nized through transactional memory. However, this solu-
tion incurs a significant overhead on single-threaded perfor-
mance as single-threaded execution is still using the transac-
tional memory.

11 Conclusion
This paper presents GildaVM, a multi-threaded VM archi-
tecture to provide non-blocking I/O on top of the CogVM.
This work is a description and analysis of the original design
of David Simmons and the initial implementation of Eliot
Miranda; without their work this architecture would have
not existed.
This architecture is intended to be applied in an existing

implementation of a single threaded VM. In GildaVM a single
thread is executing the VM at a time while allowing other
threads to execute non-blocking I/O in parallel. This is done
through the use of a Global Interpreter Lock and a specific
strategy to handle the scheduling of VM threads.
We present not only the described solution, but also a

prototype implementation of this solution on top of the
OpenSmalltalk-VM. To evaluate the architecture we per-
formed a series of benchmarks showing different scenarios
where the solution over performs the stock VM and some
others where it under performs it. Preliminary results show
that it is possible to take advantage of the non-blocking I/O
without requiring a major rewrite of the VM nor existing
applications. We showed that the time spent on an FFI call-
out affects directly the performance of the solution. Long
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running FFI callouts are heavily improved, whereas short
callout are negatively affected. This results open the door to
further analysis and improvements.
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